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Abstract: This paper presents our research approach and findings towards maximizing the accuracy of
our classifier of feature claims for cybersecurity literature analytics, and introduces the resulting model
ClaimsBERT. Its architecture, after extensive evaluations of different approaches, introduces a feature
map concatenated with a Bidirectional Encoder Representation from Transformers (BERT) model. We
discuss deployment of this new concept and the research insights that resulted in the selection of
Convolution Neural Networks for its feature mapping aspects. We also present our results showing
ClaimsBERT to outperform all other evaluated approaches. This new claims classifier represents
an essential processing stage within our vetting framework aiming to improve the cybersecurity
of industrial control systems (ICS). Furthermore, in order to maximize the accuracy of our new
ClaimsBERT classifier, we propose an approach for optimal architecture selection and determination
of optimized hyperparameters, in particular the best learning rate, number of convolutions, filter
sizes, activation function, the number of dense layers, as well as the number of neurons and the
drop-out rate for each layer. Fine-tuning these hyperparameters within our model led to an increase
in classification accuracy from 76% obtained with BertForSequenceClassification’s original model to
a 97% accuracy obtained with ClaimsBERT.

Keywords: natural language processing; BERT; transfer learning; convolution neural network;
classification; cybersecurity; CYVET; accuracy maximization

1. Introduction
1.1. Motivation

Operational Technology (OT) audits are vital for determining whether cybersecurity
requirements are being met by OT devices, or whether they may actually deteriorate an
operator’s overall cybersecurity posture. A cybersecurity assessment evaluates that impact,
both pre-deployment as well as post-integration into an existing system, for example, when
firmware changes occur. Many critical infrastructure sectors, including the energy sector,
are seeing an increased reliance on automation and centralized operational controls [1].
While ICS vendors consistently roll out new features in their products to attract customers,
consumers are not always aware of the implications of these updated features, or how these
feature set changes or updates can alter their cybersecurity posture, as well as potentially
impacting their regulatory compliance [2]. In our previous work [1], we have shown
that different vendor-supplied features (VSF) can meet, exceed, or degrade corresponding
cybersecurity requirements (CR). A vetting system that effectively matches, reconciles, and
tallies vendor-supplied features against relevant cybersecurity requirements will help solve
this critical challenge in cybersecurity assessment. Both features and requirements are
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typically provided in the form of human-readable documents such as PDFs. However, the
manifestation of these elements in document form complicates the automation of cyberse-
curity vetting processes because of their natural language structures and representation
formats [1,3]. In order to address this issue, we are in the process of researching a semi-
automated cybersecurity vetting engine (CYVET) [1] aimed at cybersecurity assurance for
cyber-physical systems. A major objective of CYVET is to improve the current capabilities
of the energy sector and other OT systems operators to verify and validate OT infrastructure
cybersecurity claims, both prior to deployment and after deployment. In Figure 1, we
illustrate the high-level processing tasks involved in CYVET’s tallying workflow.
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Figure 1. Overall workflow of the CYVET cybersecurity vetting framework.

From this figure we can clearly observe that any errors made by the claims detector
impact virtually all of the framework’s processing stages. Given its positioning within
our framework, a claim classifier is needed to achieve the highest possible classification
accuracy so as not to deteriorate downstream performance of subsequent framework tasks.
Therefore, it is vitally important for the claims detector to achieve maximum accuracy
for the target domain. This challenge forms the core of the research presented in this
paper. Throughout the entire framework we make extensive use of Natural Language
Processing (NLP). It utilizes automated methods to evaluate vendor claims that were
identified from the text content extracted from device documentation in order to achieve
an unbiased and objective evaluation of cybersecurity ramifications related to the ICS
device being evaluated. Through the implementation of our CYVET vetting system, we can
significantly simplify ICS compliance analysis as well as preparing for mandated reporting,
providing insights into the capabilities and drawbacks of ICS systems, as well as conducting
a capabilities comparison against stated operational requirements [1]. As seen in Figure 1
and described in our previous work [2], our framework utilizes an extensive document
library, curated from vendor product documents across the OT vendor space, with a
particular focus on vendors supplying the energy sector. In [2], we provided extensive
details on how our frame constructs its ICS device information repository. This repository
contains documents related to ICS devices, including manuals, catalogs, and brochures. An
important challenge of the vetting process is the analysis of this data repository and the
identification of sequences extracted from vendor-supplied documents that represent the
vendor’s stated claims related to specific product features. The results obtained from this
processing step are vital to all downstream tasks within our framework. Thus, any errors
in claims classification negatively impact our overall system performance. This motivated
out effort to research a methodology that helps us maximize the claims detector’s accuracy
through variations both in its architecture and in its hyperparameters.

1.2. Goals and Contributions

The purpose of this article is to introduce our work in developing a unique and efficient
method of classifying cybersecurity feature claims (henceforth simply referred to as “claims”).
The final architecture resulting from the research presented in this paper that is aimed at
determining a model achieving maximum classification accuracy is based on a pre-trained
BERT language model combined with a Convolution Neural Network (CNN) to create a
feature map for extracting informative features from transformers and then assigning them
to a classifier. Specifically, for our work we define a claim as any sequence that expresses
a claim in regards to the availability, or lack of availability, of a cybersecurity feature in
a given product. Sequences that make unrelated claims or that are not making any such
claims, are subsequently labeled as not containing a cybersecurity claim. As part of this
research we studies the impact of various different NN feature map approaches, different
activation functions, and more.
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The resulting ClaimsBERT is a classification model enabling our framework to automat-
ically identify any cybersecurity claims present in ICS device documents. The contributions
of this work are summarized in the following items:

1. We introduce a new concept of ClaimsBERT to significantly enhance base model
BertForSequenceClassification, by integrating CNN feature maps in order to improve
performance and accuracy;

2. We present our findings obtained using extensive experiments for optimizing our
model’s overall architecture and its hyperparameters;

3. We discuss the effectiveness of a suitable feature map in parameter selection in our
proposed architecture for ClaimsBERT;

4. We show that our model achieves a high classification accuracy of 97 percent;
5. We discuss the results of our extensive evaluation of ClaimsBERT and its performance

comparison with other network-based BERT models. The results indicate that signifi-
cantly higher accuracy is obtained when integrating CNN into original BERT classifier
and fine-tune all layers.

2. Related Works

A pre-trained language model refers to a model of NLP that has been trained using an
unsupervised training approach on a large text corpus that represents a general domain
of language. Among the most well-established pre-trained language models are Embed-
dings from language Models (ElMo) [4], the Universal Language Model with Fine-Tuning
(ULMFiT) [5], Bidirectional Encoder Representations from Transformers (BERT) [6], and
the Generative Pre-Training (GPT) model [7].

Among all mentioned language models, we chose BERT for our work because it
is an open-source model with a very strong tokenizer and word-embedding matrix. In
our previous work we fine-tune BERT with neural network to build cybersecurity claim
sequence classifier CyBERT [8], and show that its design (BERT+NN) improves upon the
performance obtainable from other language models such as GPT2 and ULMFiT. From
Figure 1 it is readily apparent that due to its very early positioning within the overall
processing workflow the overall accuracy of our vetting system is highly dependent on
the accuracy obtained by the claims classifier. Any errors made during classification are
propagated downstream through all subsequent processing tasks. Therefore, in this is
research we focus on maximizing the claim classifier’s accuracy.

BERT uses a contextualized embedding technique that is designed to capture word
semantics in a context based on its surrounding text [9]. BERT uses the WordPiece embed-
ding method, which divides each word into a limited set of common sub-words [10], down
to the individual letter level. This technique is very flexible and eliminates the need to deal
with unfamiliar words contained within a dataset.

BERT is a multi-layer bidirectional transformer-stacked encoder based on an attention-
based model architecture [11]. Each encoder is comprised of multi-head self-attention and
feed-forward neural network (FFN) sub-layers [11]. The self-attention layer of the first
encoder is initialized with the embedding matrix from each word (tokens). Subsequently,
the Query, Key, and Value matrices are calculated for this embedding by the attention
mechanism. Each matrix articulates a different representation of the same initial embedding.
The self-attention matrix formula is given by Equation (2):

Self-Attention(Q, K, V) = softmax(
QKT
√

dk
)V, (1)

where Q is the Query matrix, K is the Key matrix and V is the Value matrix. The parameter
dk represents the Key matrix’s dimension. The softmax score in the attention equation
determines how much each word will be expressed at this position. Multiplying the
softmax score with the Value matrix (V) produces the attention value. As a result of this
multiplication, the values of the words we want to focus on are maintained, and irrelevant
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words are dropped out. This process is repeated eight times, with eight different randomly
initiated matrices for Q, V and K, as shown in [6,12]. The multi-head attention is then
calculated by concatenating all eight self-attentions, then performing the dot product to
multiply it with another random weight matrix. The multi head attention value shows
which attention head is more important for the meaning of a given words. Each self-
attention head focuses on a different aspect of how the tokens interact with each other,
which makes BERT aware of the context of the given sentence [6,11].

Therefore, the attention mechanism is used to calculate the importance of any word
in the sentence. In BERT, each attention layer is followed by a fully connected FFN. The
FFN function consists of two linear transformations and a ReLU function, as shown in
Equation (2):

FFN(x) = max(0, xW1 + b1)W2 + b2. (2)

This feed-forward layer enhances the deep non-linearity in the model. The robustness
of the algorithm is also enhanced by residual connections from previous states. The
encoders map each input sequence to a continuous representation and then reprocesses
then using the same layer structure [11]. The output of the final encoder will be a vector
that can be supplied to the NN layers of any downstream task. In the case of ClaimsBERT,
this output is used by a classifier stacked on top of this BERT transformer architecture.

There are two different versions of BERT. Both models have been trained utilizing
a dataset comprised of the text content of the BookCorpus and the collection of pages
obtained from English Wikipedia, which combined constitute a dataset of more than
3.5 billion words [6]. The specifics of both versions of BERT are:

• BERT-Base: consists of 12 encoder layers, utilizes an embedding size of 768 dimen-
sions, 12 multi-head attentions, and is comprised of 110M tunable parameters in
total;

• BERT-Large: consists of 24 encoder layers, utilizes an embedding size of 1024 dimen-
sions, 16 multi-head attentions, and a total of 340M tunable parameters.

For completeness, we also mention the concepts of Vision Transformers (ViT) [13],
Image GPT [14], and Multiscale Vision Transformers (MViT) [15], which are the analogous
forms of their respective NLP models, adapted specifically to Computer Vision (CV) tasks
such as in the domain of autonomous vehicles. Recently, ViT models were also used
to detect and extract text from images, akin to an advanced generalized form of optical
character recognition (OCR), for example from image object labels, instructions and road
signs, within the broader application of Scene Text Recognition (STR). An example is shown
in [16], in which a ViT model was used to find text in complex environments such as
product labels, signboards, road signs and markers to help machines and agents make
informed decisions. These works, however, use the transformer approach to extract text
from image, not to extract meaning and context from within the text, as would be the case
in NLP applications. Thus, the use of transformers in the CV domain, while in many cases
a crucial technique, does not constitute natural language processing.

Another application of transformers is for so-called Vision and Language (V&L) tasks,
which utilize multi-modal transformer models, comprise of separate processing streams
that in one stream focus on text encoders, and in another stream on vision encoders [17–23].
These V&L approaches focus on determining links and relationships between visual and
textual content and learn their joint features [20]. These models leverage links between text
and image content, for example for navigation tasks of autonomous vision-based vehicles
or robots, or for lip reading and associating visual information about facial expressions
with textual information. As a result, their application domain is essentially independent
of ClaimsBERT’s application domain. Therefore, they are not considered to be feasible
choices for our research presented in this paper, which represents a specific application
with emphasis on BERT within the NLP domain.

Recently, a new multi model for news classification was introduced in [24]. The authors
used RoBERTa to obtain text features, and separately applied a Vision Transformer for



J. Cybersecur. Priv. 2022, 2 422

image feature extraction from news. Only after these two separate processes, the resulting
features from both were concatenated together to build a fusion feature. All these features
then feed into Multilayer Perceptron (MLP) layers to predict the text, image, and fusion
labels separately. The fusion label is considered to be the final prediction label for the news.
However, these models are not applicable to purely text-based processing, which is the
focus of this paper representing aspects of the research related to our vetting framework.

In recent years the use of MLPs for text classification tasks has seen increased popular-
ity [25–27]. Even though the use of MLP techniques in these models is shown to achieve
generally comparable performance to that of self attention-based transformers (BERT) [28],
in most applications self attention-based transformers are shown to achieve better accu-
racy [29]. Therefore, the foundation of our architecture presented in this paper was chosen
to be BERT.

The performance of a pre-trained language model can subsequently be further in-
creased by adapting it to a target downstream task [30–34]. Adapting a language model to
domain-specific downstream tasks can be divided into the pre-training of language models
and fine-tuning of language models. Pre-training essentially involves a full retraining of the
model on a new corpus with randomly initialized weights, whereas fine-tuning starts with
established weights and alters them to better suit the model when training on a smaller
additional corpus.

Although the pre-training of BERT into domain-specific models, such as for biomedical
language BioBERT [35] or scientific text (SciBERT) [36], improves downstream performance
significantly, the process is computationally expensive and typically requires large extra
corpora [35,37]. Therefore, we are focusing on the fine-tuning process for the ClaimsBERT
model, which can achieve very similar performance improvements. To evaluate the size of
the dataset required specifically for the fine-tuning of language models, Sun et al. [33] in
their work evaluated the impact that the dataset size has on the fine-tuning outcome, and
showed that fine-tuning an existing language model can successfully be achieved using
only a few training shots from a small dataset. This reduces or even eliminates the need to
produce large-corpus datasets when fine-tuning models.

Fine-tuning enables NLP language models to be applied to many different tasks.
For some NLP applications, however, a language model by itself is not sufficient for
accomplishing a given downstream task, and it becomes necessary to expand the language
model’s overall architecture by stacking it with another form of neural network, for example
using a convolutional neural network for language models targeting classification NLP
tasks. For such application scenarios, the combination of the BERT language model and
deep learning models such as recurrent neural networks or convolutional neural networks
were shown to be effective in recent studies for capturing meaningful features from the
available data [8,38–40]. We utilize a similar approach for our ClaimsBERT classifier. In our
approach, we train the entire pre-trained model on our dataset and use the transformer
encoders stacked with neural networks to feed the output to a softmax layer for back-
propagation through the entire architecture, which updates the pre-trained weights based
on our dataset. Adding a feature mapping stage on top of the transformers architecture
delivers useful features that can improve the performance for our downstream task. As
we will show in our paper, our research showed that a CNN network provided the best
results in comparison with other approaches for this feature mapping stage, specifically
NN, LSTM, BiLSTM and MLP.

In this paper, we focus on maximizing the accuracy of our claim classifier without
significantly impacting its efficiency. We apply our novel framework ClaimsBERT on our
curated cybersecurity claim sequence database. To the best of our knowledge, no other
cybersecurity-related classifier using BERT has been published in the scientific literature.
Furthermore, our approach presented herein marks a significant improvement upon the
original BERT classifier. The new ClaimsBERT classifier can detect claim sequences from the
large dataset of vendor documents. These sequences then will be used in a vetting approach
against industry standard requirements in our cybersecurity vetting engine (CYVET).
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Language Models in Cybersecurity

Using language models such as BERT for cybersecurity applications is a growing
research area in recent years [8,41–49]. Fine tuning language models such as BERT for
cybersecurity domain tasks can provide many benefits to the cybersecurity community.

One example of using language models in this domain is the fine tuning of BERT for
Name Entity Recognition (NER) applications for different languages, such as Chinese [50],
Russian [46] and English [42–44]. NER models provide cybersecurity professionals with an
efficient way to extract specific entity information about attacks and vulnerabilities [48].
In another study, BERT was fine tuned on Android source code applications to identify
and classify existing malware [41]. Fine-tuning BERT for classification tasks such as at-
tack classification [48], cybersecurity claim classification [8], knowledge graph [51] and
vulnerability classification [52]. ExBERT is another example of fine-tuning BERT for vulner-
ability exploitability prediction using sentence-level sentiment analysis [52]. An effective
evaluation of evolving risks can be accomplished with the help of semantically connected
text graphs using the Construction Cybersecurity Knowledge Graph (CKG) and Graph
Convolutional Network (GCN) based on BERT [51]. Analysts who are usually required to
sort through attack details to categorize various types of attack vectors may benefit from
Cybersecurity Knowledge Graph (CKG) [51].

Our review shows the benefits of fine tuning language model such as BERT for the
downstream tasks in the cybersecurity domain. Therefore, we developed and present
ClaimsBERT, which can accurately identify feature claims based on claim sequences from
our cybersecurity domain database. The focus here is on how NLP can be leveraged for
cybersecurity applications.

3. Dataset Curation

When we initiated this research effort, there was no dataset available for NLP tasks
specific to cybersecurity literature [2]. As a result, we proposed a framework for curating a
large repository of device information for ICS in our previous work [2]. Using this frame-
work, we are able to identify ICS vendor websites, collect website-accessible documents,
and identify documents relevant to the dataset using web scraping, data analytics, and
natural language processing (NLP). Our framework starts by determining ICS vendor
names by scraping CISA’s ICS-Cert website at https://us-cert.cisa.gov/ics (Access on
1 March 2021). These results are combined with the vendor name results obtained utilizing
predefined keyword search queries applied to different search engines, including Google,
Bing, AOL, and Baidu. The framework then expands vendor names into vendor websites
by conducting web searches to identify their most likely website URLs. The resulting names
and websites are then classified using a web content-based scoring metric along with Latent
Dirichlet Allocation (LDA) to identify vendors-of-interest. This process evaluates the home
page content of each vendor’s website to determine if that vendor falls within the category
of an ICS solutions vendor. Finally, our framework conducts a comprehensive web site
crawl through all relevant pages to curate a list of downloadable documents, and proceeds
to download each document it located. All downloaded documents are then associated
with the corresponding ICS vendor. Based on our results from processing the identified
vendor websites, we found that [2]:

• 3% of the documents were unreadable;
• 5% were scanned documents;
• 29% where not related to ICS products;
• 63% of the downloaded documents are ICS product-related documents.

When analyzing the 12,581 ICS product-related documents that were found, we could
determine that

• 25% were classified as “manuals”;
• 69% were classified as “brochures”;
• 6% were classified as “catalogs”.

https://us-cert.cisa.gov/ics
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Downloaded documents may contain regular paragraphs, tables, lists, and images.
Text from readable documents was extracted via the PyMuPDF python package, and we lever-
aged python’s Pytesseract package for performing optical character recognition (OCR)
with any scanned PDFs. With this approach, we managed to extract 2,160,517 sequences
with 41,073,376 words across our curated dataset of ICS documents [8].

In order to label the sequences in our curated dataset we developed a new mobile
cross-platform application based on Xamarin that allows us to manually label sequences
extracted from these ICS documents. We first identified three types of claim sequences:
generic, device, and cybersecurity claims. Specifying individual claim types facilitates
future investigations into claim type detection. We categorized all of these types of claims
as “claim” labels in this study and removed the sequences with the “Not Sure” label from
the classification dataset. For more details on this labelling process please refer to [8].

Figure 2 illustrates the labeled dataset we used to train our classifier models for the
Tally-Vet project. In this paper we focus only on identifying “Claim” sequences. Figure 3
presents the final class count and distribution of all classes.

Not a Claim Generic 
Claim

Device 
Claim

Cybersecurity 
Claim

Not a Claim Claim

Labelled Dataset

Dataset used to train 
Claim Classifier

Figure 2. An illustration of the labeled dataset and classes used to train our classifiers.

Label: NotClaim
Dataset Entries: 4544 (67%)

Label: ClaimGeneric 
Dataset Entries: 807 (12%)

Label: ClaimCybersec
Dataset Entries: 335 (5%)

Label: ClaimDevices
Dataset Entries: 848 (13%)

Label: NotSure
Dataset Entries: 226 (3%)

Figure 3. Class label distribution in each class contained in our curated dataset.

4. NLP Model Optimization for ClaimsBERT

In this section we detail the process we followed to maximize the accuracy for our claim
sequence classifier. To achieve this goal we first utilized the BertForSequenceClassification
on our curated dataset. This allows us to establish a performance baseline. To improve upon
this BertForSequenceClassification baseline model’s accuracy in our cybersecurity claims
classification, our initial objective was to research and select the best component to add to
BERT that aids in its achievable accuracy, and then fine tune the resulting models. Next, we
focused on extensive experiments to optimize hyperparameters, including the learning rate
(LR), type of activation function, the number of convolution layers and their corresponding
filter sizes, as well as the number of dense layers and their configuration such as drop-
out rate and number of neurons. After we determined the best model configuration and
optimized its hyperparameters we finally tested the resulting model for its susceptibility to
the randomness effect.
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4.1. BERT Baseline (BertForSequenceClassification)

The Google research team released a pre-trained classifier BertForSequenceClassifi-
cation in [6]. This model is based on BERT with an added drop-out layer on top of the
stacked encoders, as well as a softmax classification/regression layer. To predict each class
label in this classifier, the label probability is therefore determined by:

P(c|h) = softmax(Wh), (3)

where W indicates the matrix for task-specific parameters and h is the final hidden state of
the first token in the BERT token embedding matrix (CLS). The highest accuracy we could
achieve in any of our tests using BertForSequenceClassification applied against our curated
cybersecurity claim dataset without any fine-tuning applied first was 76%. Therefore, in
order to evaluate how far we could improve the accuracy of the base BERT classifier we then
fine-tuned this baseline architecture, without any architectural modifications, by unfreezing
all layers and allowing the model to adjust its weights during the training process. This is
described in the section below.

4.2. Fine-Tuning BERT

Although adapting a pre-trained language model such as BERT for a specific task can
improve performance significantly, an appropriate fine-tuning strategy must be developed [5].
In this paper we followed the same techniques we utilized in our previous paper [8] in order
to maximize the performance we gain from the fine-tuning process. These techniques are
utilized for any of the model improvements presented throughout the remainder of this
paper in order to ultimately successfully train our ClaimsBERT classifier. Specifically, these
techniques are employed to avoid the risk of catastrophic forgetting, overfitting and any
randomness effects, which can occur when training a language model on a small dataset.

To ensure that the model will be able to modify BERT’s pre-trained weights during
the training process based on our given downstream task, the chosen hyperparameters,
and our curated dataset, we unfreeze all of the transformer layers during the fine-tuning
process [33].

Hyperparameter Selection

The two primary hyperparameters that affect fine-tuning BERT are the learning rate
(LR) to avoid catastrophic forgetting, and selecting an appropriate epoch limit in order
to avoid overfitting. More detailed information on these are available in our previous
paper [8], but both are summarized below for convenience:

• Catastrophic Forgetting: The cyclic method we utilized was first presented by Smith
in [53], and it allows us to determine the optimal learning rate for our model train-
ing that avoids catastrophic forgetting. This method initially selects a low learning
rate, which is then increased exponentially for each subsequent batch. The LrFinder
function [53] was used to determine the best learning rate for each architecture.

• Overfitting: A common problem when training a neural network is the determination
of an appropriate number of training epochs to use. An overfitted training dataset can
result from too many epochs, while underfitting may be caused by a lack of iterations.
If the monitored metric does not improve after a certain number of epochs, then
we can stop the training process through selection of an appropriate early-stopping
method. By implementing a data-driven automation approach, it eliminates the need
to manually select the number of epochs. Our model monitors validation loss values,
and if it does not show any improvement after two epochs, we stop training.

Fine-tuning BERT allowed us to improve its performance from the 76% maximum
accuracy obtained prior to fine-tuning, to a significantly higher 92% accuracy [8]. This is a
very significant improvement. It allowed our research to progress on the implementation
of all downstream tasks for the CYVET framework. However, we needed to explore how
to further improve the accuracy of this claims classifier. The achieved accuracy of 95% still
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indicated that 1 out of every 20 sequences would be misclassified. It was our goal, therefore,
to explore architectural changes that would help us further improve this accuracy.

4.3. Classification Optimization Using Feature Map

One significant way to aid the classifier is by providing it with information on specific
features that are not readily apparent from the dataset. This is achieved through the use
of a feature map component that is added to the overall architecture prior to the classifier
stage. In our proposed architecture for this study, we therefore added a new component to
the original BertForSequenceClassification model, indicated by the feature map box shown
in Figure 4. This component is responsible for extracting informative features from the
output of the transformers, and connecting the resulting feature map to the classifier. More
specifically, the role of the feature map is to reduce the sequence dimensions into a form
that is easier to process, without losing features that are critical for obtaining a reliable
prediction. This component concentrates on three main steps:

1. Reshaping: This involves reshaping the output of the transformers’ NSP layer from
BERT, in order for the batch size and the sequence length to be compatible with the
convolutional layer’s input;

2. Convolution: This involves connecting multiple convolutional layers with different
filter sizes, and then using the max pooling to learn higher-order representations of
the data while reducing the number of parameters;

3. Flattening: This involves converting the matrix from the final pool to a single array.
This flattened vector is then connected to a fully connected neural network for the
classification task.

Determining the most informative layer of BERT that is then connected to the feature
map, as well as determining the filter size, activation function and number of convo-
lution layers are additional important considerations for fine-tuning our new classifier
architecture.

1
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Figure 4. ClaimsBERT framework components.

Delving into the feature map component itself, we first needed to determine the best
possible network-based model to be used as part of the feature map. Our research focused
on five different types: Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM),
Multilayer Perceptron (MLP), Convolution Neural Network (CNN) and Neural Network
(NN). All five are types of Artificial Neural Networks (ANN) that can be used for extracting
abstract features from complex data. Essentially, the difference between these architectures
is the type of neurons that form them, and the manner in which information flows through
them [54]. The NN consists of multiple neurons or perceptrons in each layer, which enables
the NN to capture the correlation distribution between inputs [55]. MLP operates very
similar to the NN. CNN is a multilayer neural network with convolution, which is able
to detect complex features within data that are not readily apparent. Convolution is
responsible for identifying the most significant features [56]. LSTM networks benefit from
recognizing the relationship between values at the beginning and end of a sequence [54].
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BiLSTM networks utilize information from both directions in sequences, which helps to
produce meaningful information, especially when applied in NLP tasks [57]. NN, MLP
and CNN models are hierarchical, while BiLSTM and LSTM have a sequential architecture.
For NLP tasks such as text classification, CNNs and LSTMs are often preferred. However,
since they provide somewhat complementary information, there is no consensus within
the scientific community on which deep neural network is best suited for any specific NLP
problem [56]. This is also precisely what influenced our research effort presented here.

This necessitated a comprehensive evaluation of the different ANN architecture
choices presented above, in the context of our specific NLP application, to determine
which architecture would provide the best performance. The results of this evaluation
are presented further below in the results chapter. Those results indicate that the best
choice for our claims classifier’s feature map component was the CNN type. Once the
most appropriate model architecture was determined we could then focus on researching
the optimization of our hyperparameter selection of the revised architecture. A detailed
illustration of the architecture for BERT + CNN (ClaimsBERT) is shown in Figure 5, where
the model starts with initial weights established using a general corpus for the BERT-base
model. This is followed by a CNN model and a classifier, used to further fine-tune BERT
using supervised data to target tasks for text classification.

12 Transformers Encoders
E[cls]    E1 ...                                       

T[cls] 

Feed-forward Neural Network + 
Softmax

Convolution (None,768,256)
MaxPooling (None, 383, 256)

Reshape (None, 768, 1) 
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MaxPooling (None, 191, 128)

Flatten (None, 24448) 

NSP-Dense (None, 768)

BERT-Base 

Figure 5. Optimal architecture for ClaimsBERT components.

We conducted extensive research and experimentation to jointly optimize the hyper-
parameters for the feature map and the classifier, including the number of convolution
and dense layers as well as their corresponding configuration, such as filter and kernel
size, activation function type, drop-out rate and number of neurons. The final optimal
architecture and hyperparameters are shown in Table 1. The corresponding classification
performance results are shown and discussed in the results section below.

Table 1. Optimal architecture for ClaimsBERT model.

Layer Input Shape Output Shape Activation Function Parameters

NSP-Dense (None, 768) (None, 768) – 590,592
Reshape (None, 768) (None, 768, 1) – 0

Convolution1D (None, 768, 1) (None, 767, 256) ReLU 768
MaxPooling1D (None, 767, 256) (None, 383, 256) – 0
Convolution1D (None, 383, 256) (None, 382, 128) ReLU 65,664
MaxPooling1D (None, 382, 128) (None, 191, 128) – 0

Flatten (None, 191, 128) (None, 24448) – 0
Drop-out (None, 24448) (None, 24448) – 0

Dense (None, 24448) (None, 64) ReLU 1,564,736
Drop-out (None, 64) (None, 64) – 0

Dense (None, 64) (None, 2) Softmax 130
Note: Total parameters: 110,769,474 (all are trainable parameters).
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5. Comparative Analysis Results and Discussion

All training and testing tasks related to any models presented in this paper were
conducted utilizing our university’s high-performance computing infrastructure, HCC
Crane [58]. All compute nodes we utilized are equipped with NVIDIA Tesla V100 GPUs
with 16 GB of RAM per GPU. Our sequence dataset was first divided into appropriate sets
for training, validation, and testing. This ensures an unbiased estimate of out-of-sample
accuracy. The respective set sized were 70%, 10%, and 20% of or our total dataset, for
training, validation, and testing.

Considering the label ratios in a dataset for the average F1 score results in the expres-
sion for the macro-weighted F1 score. This macro-weighted F1 score, together with the
prediction accuracy for the test set are the parameters we used to compare the models.

5.1. Comparison of ClaimsBERT against the Pre-Trained BertForSequenceClassification

We use the pre-trained BertForSequenceClassification as the baseline for our cybersecu-
rity claim classifier. In the BertForSequenceClassification model, all transformer layers are
frozen and only the classifier layer weights are tuned during training process. Table 2 com-
pares the classification performance for BertForSequenceClassification and ClaimsBERT.

Table 2. Comparing classification performance of ClaimsBERT with BertForSequenceClassification.

Model Architecture Accuracy F1 Score Precision Recall

BERT + CNN 12 Encoder
(ClaimsBERT) 2 Convolution 0.973 0.96 0.963 0.966

2 Dense

BERTSequence 12 Encoder
Classifier 1 Dense 0.764 0.751 0.743 0.741

5.2. Comparison of ClaimsBERT against Other Network-Based Classifier Models

In order to evaluate our proposed architecture and fine-tuning strategy on BERT,
we compare the results of ClaimsBERT with our previously trained classifier CyBERT
(BERT + NN) [8] and other network-based models.

5.2.1. LSTM

In Long Short-Term Memory (LSTM) neural networks learn features at the phrase-
level by using a convolutional layer. Then the convolutional layers used to learn how
such higher-layer representations relate to long-term features through this convolutional
layer [12,59].

The output of this convolutional layer are higher-layer representations of the processed
content, and is then provided to the LSTM in order to learn relationships regarding long-
term features.

In order to determine the optimal hyperparameters and the resulting architecture, we
assessed the different numbers of LSTMs and dense layers. With the LrFinder function [53],
we found that the best LR for each model architecture varied based on the different numbers
of LSTM and Dense layers. Table 3 reports the highest accuracy and F1 for each architecture.
The best LSTM network-based model contains a single LSTM layer with 50 hidden units
and a 0.3 dropout rate, linked to two dense layers with 150 and 124 neurons, respectively.
Our experiments clearly demonstrated that this configuration best adapts to the information
in our dataset compared to other LSTM-based models.
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Table 3. Comparing BERT + LSTM Classifier results. (Bold text indicates the model parameters
achieving the highest accuracy.)

Architecture LR Accuracy F1 Score

BERT + 1 LSTM
1 Dense 7× 10−5 0.92 0.9
2 Dense 2× 10−5 0.94 0.93
3 Dense 4× 10−5 0.93 0.91

BERT + 2 LSTM
1 Dense 3× 10−5 0.92 0.91
2 Dense 7× 10−5 0.94 0.92
3 Dense 4× 10−5 0.93 0.91

BERT + 3 LSTM
1 Dense 2× 10−5 0.93 0.91
2 Dense 1× 10−4 0.92 0.91
3 Dense 7× 10−5 0.91 0.9

5.2.2. BiLSTM

Bidirectional LSTM (BiLSTM) models are especially convenient for sequential model-
ing [60]. BiLSTM models have therefore found widespread application in retrieving contextual
knowledge. This knowledge is the results of convolution layer feature maps [60]. In bidirec-
tional LSTMs, the embeddings are obtained by concatenating two one-way actions [61].

For this research we also explored the relative impact provided by varying the number
of BiLSTM layers and their hidden units, the dense layers and their neurons, and the
dropout rates for each layer stacked on top of BERT. The LrFinder function [53] was used
to determine the optimum LR for each architecture. Table 4 reports the highest accuracy
and F1 for each architecture. The highest accuracy for the combined BERT+BiLSTM-based
model was achieved by stacking a BiLSTM with 150 hidden units and a 0.3 dropout rate on
top of BERT, linked to one dense layer with 64 neurons and a 0.5 dropout rate.

Table 4. Comparing BERT + BiLSTM Classifier results. (Bold text indicates the model parameters
achieving the highest accuracy.)

Architecture LR Accuracy F1 Score

BERT + 1 BiLSTM
1 Dense 5× 10−5 0.94 0.93
2 Dense 6× 10−5 0.95 0.94
3 Dense 4× 10−5 0.94 0.93

BERT + 2 BiLSTM
1 Dense 8× 10−5 0.92 0.91
2 Dense 5× 10−5 0.93 0.92
3 Dense 4× 10−5 0.91 0.91

BERT + 3 BiLSTM
1 Dense 1× 10−4 0.91 0.91
2 Dense 8× 10−5 0.94 0.92
3 Dense 4× 10−5 0.91 0.9

5.2.3. Multilayer Perceptron

A Multilayer Perceptron (MLP) is a feedforward artificial neural network. For this
research, each MLP block consists of two fully-connected NN layers, connected by a
GELU nonlinearity, which matches the configuration of the MLP modules used in the
MLP-Mixer paper [28].

For this research we also explored the relative impact provided by the number of MLP
layers and their hidden units, the dense layers and their neurons, and the dropout rates
for each layer stacked on top of BERT. The LrFinder function [53] was used to determine
the optimum LR for each architecture. Table 5 reports the highest accuracy and F1 for each
architecture. The highest accuracy for the combined BERT + MLP model was achieved by
stacking three MLP blocks with 256 and 128 neuron sizes with a GELU activation function
and a 0.5 dropout rate. These MLP blocks then connected to a dense layer with 64 hidden
units and a 0.5 dropout rate on top of BERT, linked to one dense layer with the softmax
activation function for the classifier.
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Table 5. Comparing BERT + MLP Classifier results. (Bold text indicates the model parameters
achieving the highest accuracy.)

Architecture LR Accuracy F1 Score

BERT + 1 MLP
1 Dense 4× 10−5 0.936 0.925
2 Dense 6× 10−5 0.942 0.932
3 Dense 3× 10−6 0.941 0.935

BERT + 2 MLP
1 Dense 4× 10−6 0.943 0.935
2 Dense 3× 10−6 0.932 0.921
3 Dense 2× 10−5 0.945 0.931

BERT + 3 MLP
1 Dense 4× 10−6 0.93 0.923
2 Dense 5× 10−6 0.952 0.942
3 Dense 3× 10−5 0.925 0.911

5.2.4. Neural Network

In order to evaluate the effect of NN-based model on BERT, we compare the results
of ClaimsBERT with our previously trained classifier CyBERT [8]. Different numbers of
dense layers on top of stacked encoders in BERT were studied. For our initial BERT + NN
model we studied the impact of selecting different dropout rates and numbers of neurons
within each dense layer. The best results were achieved when the model was comprised of
two dense layers of 64 and 16 neurons, respectively, and corresponding dropout rates of 0.5
and 0.3 [8].

As shown in Table 6, ClaimsBERT maximizes the accuracy of the claims classifier. As
it is shown in Table 6, ClaimsBERT achieves an accuracy of the claim classifier of 97%.

Table 6. Comparing classification performance of ClaimsBERT with other network-based models.
The bold row indicates best model parameters with highest accuracy.

Model Architecture Accuracy F1 Score Precision Recall

BERT + CNN 12 Encoder
(ClaimsBERT) 2 Convolution 0.973 0.96 0.963 0.966

2 Dense

BERT + NN 12 Encoder 0.954 0.93 0.914 0.943
(CyBERT [8]) 3 Dense

BERT + BiLSTM 12 Encoder
1 BiLSTM 0.951 0.941 0.951 0.949
2 Dense

BERT + LSTM 12 Encoder
1 LSTM 0.947 0.937 0.947 0.947
2 Dense

BERT + MLP 12 Encoder
3 MLP 0.952 0.942 0.947 0.938
2 Dense

5.3. Hyperparameter Finetuning Results

In the following subsections, we detail the methodology we used to determine the
optimal values for the hyperparameters associated with our ClaimsBERT claim classification
model.

5.3.1. Convolution Layer

There are several layers of filtering and pooling in the initial part of a CNN. Feature
maps are created by applying these layers to an array of multi-dimensional features [62].
These features represent abstractions of the most significant characteristics contained in
the input data. This is followed by a fully connected network that maps the extracted
features to their respective targets [63]. In classification problems, this target represents
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data that share common characteristics. CNNs flatten out the multi-dimensional output of
convolutional components and pass it on to the fully connected network.

For the CNN hyperparameters, we investigated the effects of different values, such as
the number of convolutions, as well as different filter and kernel sizes for each convolution
layer. The filter size in the convolution layer determines the dimension of the output space,
whereas the kernel size specifies the length of the convolution window. The output of the
convolution layer has a shape of:

(m− k + 1, n), (4)

where n is the number of filters, k is the kernel size of the filters, and m indicates the
number of words in each sentence [62]. The number of filter weights (i.e., parameters) in
the convolution layer are:

n ∗ (k ∗ w) + n, (5)

where n is the number of filters, k is the kernel size, and w is the embedding dimension [62].
We also investigated the effects of filter size on the training process and the classifier

model accuracy. Different architectures with different filter sizes, including 256, 128, 64
and 32, were tested to find the most effective model. We experimented starting with a
BERT base model, expanded it with different numbers of convolution layers, followed
by dense layers for each model. In order to determine the configuration maximizing the
accuracy of the classifier we utilized a parameter sweep methodology. With this approach
we started at a configuration of one convolution layer and one dense layer and swept
both parameters upwards until we found the peak accuracy. We validated the peak by
observing the configuration that showed a reduction in accuracy. The resulting sweep
spanned the range of one to four dense layers and one to three convolutional layers. The
results presented in Table 7 show the results from that sweep operation.

The input sequence length is 68 for all models. Using the LrFinder function [53], the
best learning rate was determined for each architecture. The training process initiates
with 100 epochs and uses the early-stopping method to avoid the overfitting problem, as
described earlier.

The best results were achieved when we utilized two convolutions, with filter sizes
of 256 and 128, respectively. We found that a kernel size of two performed best for both
convolutions. Figure 6 compares the highest accuracy based on the number of convolutions
and filter sizes. Figure 6 illustrates the effect of filter size on training time and accuracy for
different BERT + CNN models.

According to the results, if the filter size is small, the model takes longer to train.
This can be attributed to the fact that the model takes more epochs to converge. Figure 6
illustrates how the accuracy increases as the filter size increases. Input parameters are more
informative for models, which start building their feature map with a filter size of 256. As
a result, the model will start with significantly better features and therefore can converge
more quickly. The two plots on the right side shows the distribution of training time and
accuracy for models with same filter size but different convolution and dense layers. In
the bottom plot, for instance, we see that the accuracy distribution for models with a filter
size of 128 is between 91 and 96, whereas that of models with a filter size of 32 is between
89 and 93. However, the same model training time with filter size 32 is twice as long as a
model with filter size 128.
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Figure 6. Filter size effect on training time and accuracy when fine-tuning BERT with different
number of convolution and dense layers.

5.3.2. Max Pooling

In our model, the convolutional layer is followed by a pooling layer. The primary aim
of the pooling layer is to decrease the size of the convolved feature map, and therefore
reduce the computational costs. It involves dividing the output layers into subsections and
calculating the value that best represents the output. In addition to reducing the number
of parameters, this helps the algorithm learn higher-order representations of the data [64].
Max pooling reduces the dimensionality of the input by reducing the number of parameters
in the output from the previous convolutional layer. This can be seen in the input and
output shapes, shown in Table 1.

Figure 7 shows an example of max pooling in CNN, which reduces the dimensionality
and also represents the highest value in each kernel window.
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Figure 7. An example of max pooling in CNN with a 2 × 2 kernel size and the flattening function.

The final pooling layer then is flattened. The flattening layer involves taking the
pooled feature map that is generated in the pooling step and transforming it into a one-
dimensional vector. An example visual representation of the flattening process is illustrated
in Figure 7. The flattened layer then is connected to a fully connected neural network for
the classification task.
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5.3.3. Activation Function

The other important parameter in CNN networks is the activation function. The choice
of activation function has a significant impact on the neural network’s performance, and
most notably the accuracy. Hence, in our research to maximize the overall accuracy of our
classifier, studying various different activation functions was a vital aspect.

An activation function is the feature of activated neurons that can be maintained and
mapped by a nonlinear function, which can be used to solve nonlinear problems. The
activation function enhances the expression capacity of the neural network model [65]. The
most common activation functions include: sigmoid, tanh, Rectified Linear Unit (ReLU)
and softplus.

Mathematically, these activation functions are defined as:

ReLU(x) = max(0, x) (6)

tanh(x) = (1− exp(−2x))/(1 + exp(−2x)) (7)

sigmoid(x) = 1/(1 + exp(−x)) (8)

so f tplus(x) = log(1 + exp(x)). (9)

Figure 8 shows the different activation function mentioned above.
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Figure 8. Different activation functions visualization.

As shown in Figure 8 and Equation (6), the ReLU function will return 0 if it receives
any negative input. The softplus is a smooth approximation to the ReLU activation function.
When the softplus function is near 0, it is smooth and differentiable (Equation (9)). The
sigmoid activation function values lies between zero and one (Equation (8)) while the tanh
activation function outputs outputs between −1 and 1 (Equation (7)). Both sigmoid and
tanh suffer from gradient problem near the boundaries.

ReLU and its derivative are both monotonic functions. The main advantage of the
ReLU function is its simplicity. It does not require heavy processing, and because a smaller
number of neurons is activated in the ReLU function it is also more computationally
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efficient than the sigmoid and tanh functions [66]. That is a result of the fact that for any
positive input, the derivative of ReLU is of value 1.

Another significant advantage of using the ReLU activation function is its sparsity [67].
Finally, ReLU can produce true zero values. In contrast, the tanh and sigmoid activation
functions both approximate zero outputs, i.e. a close value to zero, but not the true zero
value. Therefore, negative input can result in true zero values in the hidden layers of neural
networks, allowing one or more true zero values to be reflected. This is called a sparse
representation and can have a significant impact on accelerating learning and simplifying a
model in representational learning [67].

Figure 9 illustrated the effect of activation function on training time and accuracy for
different BERT + CNN models. According to the results, sigmoid, tanh and softplus acti-
vation functions failed to understand and learn separable features to distinguish between
class labels. According to Figure 9, the ReLU activation function manages to enhance the
claim classifier significantly.

The conventional activation function in the neural network of our ClaimsBERT model
is the ReLU function [65]. Based on the aforementioned advantages of the ReLU activation
function and our evaluation results, we selected this function for the hyperparameter
selection process in our model.

Figure 9. Activation function effect on training time and accuracy when fine-tuning BERT with
different number of convolution and dense layers.

5.3.4. BERT Classifier Layer

The BERT model consists of an embedding layer, whose operation is based on calcu-
lating the sum of the embeddings of the tokens, segmentation, and positions, respectively.
For the BERT base model, the embedding matrix is followed by 12 encoders stacked on
top of it, plus an additional pooling layer. The special classification token (CLS) is the
aggregation of the last hidden state weights after the final encoder, and is used for sequence
representation. The CLS token is an input for the next-sentence prediction (NSP) layer. This
NSP layer is the first layer after the encoders, and is used to determine what relationship
exists between neighboring sentences [6]. The NSP layer then is reshaped to be connected
to the convolutional layer (Figure 4) to build the feature map.

An artificial neural network is capable of collecting different levels of syntactic struc-
ture information from different layers, based on the defined downstream task, such as a text
classifier [5]. For this paper, we researched the impact of different convolution and dense
layers linked to the output of the stacked BERT encoders. For each evaluated configuration
we then trained and tested the model in order to select the highest-performing model for
our given dataset.

For this paper, we next focused on adapting different hyperparameters, including the
different filter sizes for convolution layers, the drop-outs, and the number of neurons for
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each dense layer. We achieved the best results for two convolutions with 256 and 128 filter
sizes, respectively. Both convolution layers are followed by a Max pooling layer, which
capture the largest element of the feature map based on the kernel size. A fully connected
neural network with a 64 neuron dense layer is followed by a drop-out layer with rate 0.5.
This feed forward network is followed by a final dense layer with the “softmax” activation
function for the classification task. Table 7 illustrates the results we obtained for different
configurations of convolution and dense layers.

Table 7. The impact of the number of convolution and dense layers on fine-tuning ClaimsBERT. The
bold row indicates best model parameters with highest accuracy.

Architecture Filter Size LR Accuracy F1-Score

BERT + 1 Convolution
1 Dense (256) 6× 10−5 0.95 0.94
2 Dense (256) 2× 10−7 0.94 0.93
3 Dense (256) 3× 10−5 0.94 0.92
4 Dense (256) 7× 10−5 0.94 0.93

BERT + 2 Convolution
1 Dense (256,128) 3× 10−5 0.94 0.93
2 Dense (256,128) 9× 10−5 0.97 0.96
3 Dense (256,128) 2× 10−7 0.93 0.93
4 Dense (256,128) 3× 10−7 0.91 0.89

BERT + 3 Convolution
1 Dense (256,128,64) 7× 10−5 0.93 0.91
2 Dense (256,128,64) 2× 10−6 0.94 0.92
3 Dense (256,128,64) 5× 10−5 0.92 0.91
4 Dense (256,128,64) 1× 10−6 0.94 0.92

5.3.5. Randomness Impact

Devlin et al. suggested that when fine-tuning BERT utilizing a small dataset, it can
result in an unstable model [6]. This stems from the fact that the training outcome can be
heavily influenced by the randomly selected initial weights and biases [68]. The training
process for our model utilizing the optimized hyperparameters was therefore repeated for
100 different random seeds. The purpose of this was to accomplish a statistically reliable
result in regards to the accuracy of our model’s performance measurements.

The resulting standard deviation, confidence interval (CI), mean, and the margin
of error for the 100 random seeds are presented in Table 8. The Figure 10 displays the
distributions of the training accuracy, validation accuracy, and testing accuracy for all
100 random seeds. According the results from Figure 10 and Table 8, the ClaimsBERT’s
true accuracy was within an interval of 0.952 to 0.956 with a 95% CI. As the results shows
in Table 8, the mean accuracy value for both validation and testing improved significantly
in ClaimsBERT model.

The obtained results also suggested that the random seed value selection can impact the
ClaimsBERT’s accuracy nominally. Hence, based on the literature recommendation [6], the
random seed that results in the greatest validation accuracy for ClaimsBERT was selected.

Table 8. ClaimsBERT Accuracy Performance Results for Investigating the Seed Randomness Effect.

Model Dataset SD Mean CI (95%) Margin of Error

BERT + CNN Training 0.007 0.991 0.99 to 0.993 0.00142
(ClaimsBERT) Validation 0.009 0.953 0.952 to 0.956 0.0.0018

Testing 0.009 0.951 0.95 to 0.953 0.00183

Despite the fact that our dataset contained only a relatively small number of labelled
entries, the results we are showing in Figure 10 and Table 8 clearly illustrate that Claims-
BERT, with optimized configuration, achieves high classification accuracy at a high degree
of confidence when identifying cybersecurity feature claims.
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Figure 10. Kernel density estimation (a) and box plot (b) for all sets accuracy; histogram only for
validation set accuracy (c).

5.4. Performance Comparison for All Models

Figure 11 compared the validation and training and accuracy for all BERT models
stacked with different network-based models. The highest validation accuracy was 97.3%
attained by ClaimsBERT, which is a classifier we proposed based on BERT followed by
optimal feature map obtained from CNN, fully connected NN and a classifier.

Figure 11 compares the training and validation loss for our new model ClaimsBERT
against our previous model CyBERT, BERT + MLP, BERT + BiLSTM, BERT + LSTM and
BertForSequenceClassification. Based on the loss plots, we can see how well the learning
rate function initialized both models. Furthermore, the loss plots illustrate how early-
stopping avoids overfitting when the validation loss increases in the training phase after
four epochs.

We also evaluated and compared the classification performance of our ClaimsBERT
and other network-based models, with the results shown in Table 9. To evaluate the time
complexity for these models, we utilized the same machine when training both models
and measured the time needed to complete the training process. We then also evaluated
the classification time, again utilizing the same machine, with the results for training and
classification time measurements shown in Table 9. All time measurements are shown
in seconds.

The classification time refers to the time required to complete the entire training
process, from building the model architecture, loading the best trained model checkpoint,
and training the model on the set of sequences. The classification time measurements we
report in this table represent the time that the respective model required in order to test the
classifier on each of the 6420 sequences in the dataset. The classification time indicates that
for the exact same set of data on the same machine, the ClaimsBERT model is only 19 s, or
2.96%, slower than CyBERT, while the ClaimsBERT accuracy is two percent higher than
CyBERT. We believe that the significant boost in accuracy 97% more than justifies the slight
increase in classification time.
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Figure 11. Comparing training accuracy (left), validation accuracy (right) for all tested models.

Table 9. Comparing ClaimsBERT and other tested models performance.

Model Training Time *̂ Classification Time *̂ Trainable Parameters

BERT + CNN 12,873 727 110,769,474
(ClaimsBERT)

BERT + NN 32,970 708 108,647,026
(CyBERT [8])

BERT + BiLSTM 51,211 1125 112,915,970

BERT + LSTM 47,176 989 109,482,240

BERT + MLP 10,478 821 109,380,482

BERTSequence 7832 335 109,483,778
Classifier

*̂ Times are in seconds.

Determining and reviewing the receiver operating characteristic (ROC) curves is a use-
ful technique for evaluating binary classification algorithms. The ROC curve demonstrates
a Dual dimensional presentation of the classifier efficiency. The False Positive Rates (FPR)
versus the True Positive Rates (TPR) in classification are plotted in ROC. We would like to
observe a high TPR and a low FPR in the ideal classifier scenario [69].

The True Positive Rate, which is also known as sensitivity is calculated as:

TPR =
TP

(TP + FN)
, (10)
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where TP measures the probability of an actual positive instance being classified as positive,
and where FN is a measure of the probability that an actual positive instance will be
classified as negative.

The False Positive Rate is calculated as:

FPR =
FP

(TN + FP)
, (11)

where FP is a measure of the probability that an actual negative instance will be classified
as positive. TN is the probability of an actual negative instance classified as negative.

The ROC curve comparison for all the models we evaluated for this study is presented
in Figure 12. Compared to the other models we tested, our ClaimsBERT classifier performed
better, because ClaimsBERT ROC curve is closer to the upper-left corner than the other
models (Figure 12). The Area Under the ROC curve (AUC) is another important parameter
for analyzing classifier models. In general, a higher AUC score indicates a better classifier
performance [69]. Table 10 and Figure 12 presenting the AUC value for all language models,
which indicate that ClaimsBERT had the best AUC value amongst all language models we
have tested for this study.

Figure 12 shows that the highest AUC belongs to ClaimsBERT, which was 0.968. This
demonstrate that ClaimsBERT is better at identifying classes than any other language
models we evaluated in this study. This figure also shows that our model (ClaimsBERT)
improves the AUC by more than 19 percentage points compared to BertForSequenceClassi-
fication’s AUC.
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Figure 12. ROC comparison for all language models.

The Table 10 reports the required for completing model training after optimum learning
rate determination for each evaluated model architecture. We found that BERT + BiLSTM
training took the longest of all the models, followed by BERT + LSTM. We can also observe
that the ClaimsBERT model training time is smaller than CyBERT’s training time, even
though it has more trainable parameters (Table 10). An explanation for the faster training
process in the ClaimsBERT classifier is observable in Figure 11: Because of the effectiveness
of feature map selection via CNN, the model starts out with more informative parameters
and can therefore converge faster than CyBERT. Training these models does not need to be
repeated, unless changes to the training dataset are necessary. Based on results reported in
Table 10, we observe that adding LSTM and BiLSTM on top of BERT encoders increase the
training time, and does not improve the accuracy compare with adding neural network to
BERT (CyBERT model).
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Table 10. Comparison across all tested models.

Model Best Accuracy Macro AUC Training Testing Trainable
Architecture Weighted F1 Time *̂ Time *̂ Parameters

BERT + CNN 12 Encoder 0.97 0.96 0.968 12,873 108 110,769,474(ClaimsBERT) 2 Convolution
2 Dense

BERT + NN 12 Encoder 0.954 0.93 0.948 32,970 97 108,647,026(CyBERT) [8] 3 Dense

BERT + BiLSTM 12 Encoder 0.951 0.941 0.937 51,211 142 116,693,5701 BiLSTM
2 Dense

BERT + LSTM 12 Encoder 0.947 0.937 0.929 47,176 135 112,915,9701 LSTM
2 Dense

BERT + MLP 12 Encoder 0.952 0.942 0.940 10,487 85 1,093,800,4823 MLP
2 Dense

BERTSequence 12 Encoder 0.76 0.72 0.773 7832 77 109,482,240Classifier 1 Dense

*̂ Times are in seconds.

6. Conclusions

In this paper, we introduced a new concept of ClaimsBERT, a classifier model generated
by incorporating feature maps via CNN into BERT, which resulted in significantly im-
proved accuracy and performance. The proposed classifier was established by fine-tuning
BERT using two convolution layers—a fully connected dense layer and a classification
layer stacked on transformers.

This classifier model marks a significant improvement over BertForSequenceClassifi-
cation, which is a sequence classifier introduced by BERT. We use our curated cybersecurity
claim sequences dataset to train our claim classifier. Our ClaimsBERT model increases the
accuracy of the claim sequence classifier compared to BertForSequenceClassification, im-
proving it from 72 to 97 percent. The ClaimsBERT model is established based on the feature
map generated via CNN. These convolution layers are able to generate a feature map with
smaller overall dimensionality, which helps the model understand the input features more
efficiently. We also provided an in-depth comparative analysis of ClaimsBERT to show the
effectiveness of our fine-tuning strategies and our hyperparameter selection method.

The extensive experimental results demonstrate the effectiveness, efficiency and ro-
bustness of our ClaimsBERT classifier. The results demonstrate that the performance of our
ClaimsBERT is better than all other language models we tested for this paper.

The development of our novel classification model was inspired by our ongoing
research activities that aim to create a new unbiased, objective, and semi-supervised
cybersecurity vetting approach named CYVET that focuses on feature set claims for ICS
devices, in order to obtain insights into the impact these ICS devices have on an operator’s
overall cybersecurity posture. This is based on the detection and verification of vendor
claims that are found in device documentation, identified using NLP. In this context, the
research advancement presented here represents a fundamental cornerstone of our CYVET
program for vetting cybersecurity claims in the broad domain of industrial control systems.

We wish to clarify that while our claims classifier is highly successful in identifying
sequences that contain claims, it does not provide an indication of whether this is a claim
of interest, or a generic claim unrelated to cybersecurity features. To accomplish this finer
distinction, our research efforts are also now focusing on a claims type classifier, which
requires a subsequent NLP processing step that follows the use of our ClaimsBERT classifier
to detect claim sequences.

Furthermore, this classification does not provide an indication of whether the claim
represents a statement in support of this feature, or expressing the lack of this feature. For
this support indication, our research has contributed a sentiment analysis capability to our
vetting framework that provides this indication. Nevertheless, we note that these steps
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require additional processing and it would be preferable for ClaimsBERT to provide all of
these as an output vector.

7. Future Work

Beyond the expansion of our current ClaimsBERT to incorporate claims type and
support indication into its generated output, we are also actively pursuing research into
alternate approaches to BERT. One example is the use of Gated Multi-Layer Perceptrons
(gMLP), which have recently been introduced by the team at Google Brain [27]. The gMLP
deep-learning model is reported to achieve better performance with comparable accuracy
on some benchmark datasets for NLP tasks. For our future work, we will investigate
the merits of gMLP for cybersecurity-specific NLP applications. Additionally, to further
strengthen the exploration of feature mapping approaches within our overall architecture,
we also plan to investigate a transformer two-stack architecture, which concatenates a trans-
former architecture on top of our existing BERT model, in order to explore the feasibility of
using transformers to extract features from the BERT model’s outputs.
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BERT Bidirectional Encoder Representations from Transformers
BiLSTM Bidirectional LSTM
CI confidence interval
CNN Convolutional Neural Network
CR Cybersecurity requirements
CKG Cybersecurity Knowledge Graph
CyBERT Cybersecurity BERT
CYVET Cyber-physical security assurance
ELMo Embeddings from Language Models
FFN Feed Forward Neural Network
GPT Generative Pre-Training
GCN Graph Convolutional Network
ICS Industrial Control Systems
LR Learning Rate
LSTM Long Short-Term Memory
NER Name Entity Recognition
NLP Natural Language Processing
NN Neural Network
NSP Next Sentence Prediction
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Multi-Layer Perceptron MLPs
Multiscale Vision Transformers MViT
OCR Optical Character Recognition
OT Operational Technology
ROC Receiver Operating Characteristic
ULMFiT Universal Language Model with Fine-Tuning
VSF Vendor-supplied features
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