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Abstract—Detection and flagging software bugs is in general a
difficult problem, especially in collaboratively developed software
managed via large and dynamic software development systems.
There are various levels at which this problem can be tackled,
such as analysis at the level of source code or binaries. Here, we
explore a different approach, namely, investigating the potential
to tackle it at the level of metadata in software repositories and
provide a problem formulation suitable for solution using ma-
chine learning. We build an implementation of the solution using
multiple classifiers, and verify the feasibility of our approach on
metadata from synthetic datasets modeled by a characterization
of a few large software repositories and developer profiles.
The results show that, with sufficient amount of past metadata
for training, it is conceivable to flag (as potentially buggy or
not) new software commits to repositories. Good accuracy is
observed via inferencing on suitable classifiers trained on the
metadata, although, on increasing data sizes, some saturation
of the accuracy is observed. To further increase the efficiency,
additional metadata (such as inter-entity linkages) and more
complex machine learning techniques (such as graph neural
networks) may be warranted to tap more latent information
in the software evolution processes. Nevertheless, the metadata-
based learning approach appears promising as an automatable
service towards early flagging of potentially buggy commits in
software repositories. Such flags can conceivably augment the
features provided as services by software hosting companies or
institutions with large software bases.

Index Terms—vulnerabilities, characterization of commits, de-
velopers’ experience, learning model

I. INTRODUCTION

Analyses of software changes while the software evolves
can help flag undesirable effects such as bugs and vulnerabil-
ities. In this paper, we focus on metadata-based analyses that
can provide early and online flagging of software changes as
they are committed to software repositories. Specifically, we
consider the potential offered by the inclusion of metadata
about the repositories, commits, and developers in learning
latent information to inform about potentially buggy commits.
For example, how do the developers’ historical traits affect the
probability of committing bug? How do some of the features
of software repositories correlate with the chance of some
commits being buggy more than the others? Our study explores
sets of features that can be used from software repositories to
correlate and learn their contribution to buggy commits. We
evaluate the usage of these features and the extent to which

learning models can be effective. To the best of our knowledge,
such a learning formulation has not been published in the
literature.

A. Background and Related Work

Some methods using static and template-based techniques
rely on the analysis of source code to develop vulnerability
detection methods [1]–[3]. However, they suffer from several
false positive alerts. There has also been an increase in the
number of vulnerabilities disclosed after the release of soft-
ware products, which suggests that current techniques require
improvement in terms of efficiency and effectiveness [4].
Previous efforts have tried to document, track, and study the
reported vulnerabilities [5], [6], while others aimed to classify
the severity of the vulnerability using only the vulnerability
description [7]. Some of these studies use the data from Na-
tional Vulnerability Database [8]. An assumption is sometimes
made that software security threats may not undergo rapid
change, that they do not significantly evolve between analysis
and use of analysis in detection [9]. In the case of bugs that
are vulnerabilities, it is important to be able to identify the
associated software commits as early as possible to be aware
of them or address them. Although many analysis efforts deal
with the software itself in question, not many studies have
built analyses based on the conditions outside the source code
itself that have correlations (causal or incidental) with certain
commits being more prone to bugs than others.

Over the recent decades, there has also been a massive
adoption of open source software based on online systems
such as GitHub. This has made source code and development
history of millions of software projects available to public
[10]. The open source code comes with its own challenges.
Automated analyses of these open software repositories for
early bug detection is an open research challenge. Bugs
representing exploitable vulnerabilities in software can pose
potential threats to the secure operation of computer systems
as proved by Heartbleed [11] and Shellshock [12]. As a simple
illustration out of many, a vulnerability in Apache Struts in
2017 resulted in 143 million consumers’ financial data to be
compromised [13]. Such incidents highlight the importance
of investing efforts to improve detection of potentially buggy
software changes as early as possible.



A closely related body of research concerns the methods
for detection of vulnerabilities in software. Suneja et al. [2]
explore the applicability of graph neural network in learning
the nuances of source code — whether signatures of vul-
nerabilities in source code can be learned from their graph
representations and studying the relationships between nodes
and edges. The idea behind this study is to present a large
dataset already tagged as vulnerable or non-vulnerable to a
learning-based model so that the model can figure out the
properties which differentiate vulnerable code from healthy
code. This is analogous to our approach we present here,
except that theirs is focused on the internals of the code
whereas ours uses metadata external to the code.

In a study by Rusell et al. [1], the authors use machine
learning on C and C++ open-source code available to develop
a large-scale, function-level vulnerability detection system. A
team of security researchers mapped the categories determined
by static analyzers to the corresponding common weakness
enumerations (CWEs) and identified which CWEs would
likely result in potential security vulnerabilities. This process
generated binary labels of “vulnerable” and “not vulnerable,”
depending on the CWE. Jie et al. [14] and Yamaguchi et al.
[15] used machine learning on the internal features of the
software to detect vulnerabilities. They classify the machine
learning-based vulnerability analysis methods into three cate-
gories: program analysis, extracting features and vulnerability
knowledge. Yamaguchi et al. identify Application Program-
ming Interface (API) symbols of each function through lexical
analysis and embed API symbols in vector space, and apply
principal component analysis (PCA) to find the usage of the
API modes. Wijayasekara et al. [16] propose a method using
text mining technology to mine potential vulnerabilities in
public bug databases. They extract description information
from open bug databases to identify through the feature vectors
whether the bug is a normal bug or a vulnerability.

Gonzalez et al. [17] aim to characterize the vulnerabilities
automatically to analyze Common Vulnerability and Expo-
sure (CVE) reports and automatically infer their Vulnerabil-
ity Description Ontology characteristics. The authors curated
365 vulnerability descriptions from the National Vulnerability
Database (NVD), each mapped to 1 of 19 characteristics
from the NIST Vulnerability Description Ontology. Han et al.
[7] propose a deep learning approach to predict multi-class
severity level of software vulnerability using only vulnerability
description. The study uses words embeddings and one-layer
shallow Convolutional Neural Network (CNN) to automat-
ically capture discriminative word and sentence features of
vulnerability descriptions for predicting vulnerability severity
into one of the severity levels — critical, high, medium, low
— of the Common Vulnerability Scoring System framework.

Another closely related body of research concerns methods
for detecting plagiarism. The study by Viuginov et al. [18]
uses a dataset of solutions for 62 different competitive pro-
gramming tasks from service code forces. These tasks were
collected from 10 real contests hosted on the platform. The
total dataset consists of 80,000 programs on C++. The authors

proposed a new feature set, which allowed to consider ACM
solutions as feature vectors. Ullah et al. [19] propose a method-
ology for software plagiarism detection in multiprogramming
languages including C, C++, Java, C#, and Python. The
software plagiarism detection in multiprogramming languages
is a major challenge because each language has different
syntax and semantic structures. The authors remove noisy
words using tokenization to convert the source codes into
meaningful tokens. The authors use Principal Component
Analysis for extracting features to convert high dimensional
datasets into lower dimensional spaces without losing the ac-
tual information. Bandara et al. [20] believe that any algorithm
that may be suitable for pattern recognition can be used for
source code author identification. The authors mention three
such algorithms, including Naı̈ve Bayes Classifier, k-Nearest
Neighbor Algorithm and AdaBoost Meta-learning Algorithm.
Since not all source code metrics contribute equally for source
code author identification, the authors identified nine metrics
including line-length (number of characters in one source code
line), line-words (number of words in one source code line),
and underscores-calculator (number of underscore characters
in identifiers).

A tangentially related area of work deals with “learning” to
identify and distinguish among software repositories. Rokon
et al. [21] identify similar repositories and their clusters in a
large online archive, GitHub. They propose a comprehensive
embedding approach, Repo2Vec, to represent a repository as
a distributed vector by combining features from three types
of information sources: (a) metadata, (b) the structure of the
repository, and (c) the source code. The authors combine
these information types into a single embedding using a
series of embedding approaches. The methodology is evaluated
with two real datasets from GitHub for a combined 1013
repositories. The authors create an embedding for each type
of data: (i) meta2vec for metadata, (ii) source2vec for the
source code, and (iii) struct2vec for the directory structure. An
embedding vector is created for each of the three data types.
Then, all of this is combined into a repository embedding to
determine similarity.

B. Our Contributions

Our key contribution is to introduce a machine learning-
based formulation for the problem of early flagging of poten-
tially buggy software commits by multiple developers/coders
in large software respositories. The promising use of this
formulation is demonstrated via an implementation and testing
on representative datasets. It fills a gap in the literature,
namely, exploiting the information available in the form of
metadata of software repositories and evaluating the extent
to which they could be useful in classifying the commits as
potentially buggy or not.

To aid in the experimental evaluation, we created a synthetic
dataset with features including the characteristics of reposito-
ries to which commits are made, the characteristics of the
commits themselves and the traits of the developers making



the commits. The essential aim of the learning models is to
use the input features to classify commits as buggy or not.

II. LEARNING PROBLEM FORMULATION

We formulate the learning problem as follows for a ma-
chine learning-based early flagging of potentially buggy com-
mits. The system of interest consists of a set of software
repositories R = {r1, . . . , rNR

} and a set of developers
D = {d1, . . . , dND

}. Each repository r has a sequence of
commits Cr = [c0, . . . , cNr

]. Each commit c is defined by
its timestamp tc, developer dc, and a set of files Fc. Each
developer d has a set of traits such as age and years of
experience. All commits are by default considered (labeled)
as not-buggy. Over time, some subset of commits from the
past are determined (and labeled) as buggy. At any time T ,
the system has the opportunity to learn from the data in a
snapshot of R, C, and D of that time. The learning manifests
as a classification problem – given the feature vectors of R,
C, and D with training labels assigned to C, the problem is
to accurately predict the labels on commits, coming after time
T , as buggy or not-buggy.

Note that we use the term “buggy” in a generic way,
which can be customized for different purposes based on
the application. The essential nature in our initial, simplified
formulation is that of a binary tagging scheme. For example,
“buggy” versus “non-buggy” could be interpreted as “vulner-
able” and “non-vulnerable,” or as “correct” and “incorrect,”
and so on, without affecting our learning scheme. Although
our experimentation has been on binary tagging, it could in
principle be extended to multiple labels for other applications.

The basic assumption behind this approach is that an
unknown set of processes drive the buggy versus non-buggy
nature of the commits, and some information about the pro-
cesses gets manifested and encoded in the overall aggregate
phenomenon of the system made of R and D. If the unknown
set of processes are essentially random, this learning problem
essentially fails in learning anything meaningful and hence
cannot do a good job of predicting the labels for the subsequent
commits. On the other hand, if the underlying processes are
preserved in some shape or form in the feature space formed
by the union of R, C, and D, then the learning can be
effective. Furthermore, the sophistication warranted in the
learning model would depend on the linear and non-linear
nature of the contribution by the features ultimately to the
buggy versus non-buggy labels of the commits.

Here, we implement this formulation of the learning prob-
lem using what ultimately boils down to a binary classi-
fication problem after the data is appropriately collected,
organized, and processed. In the absence of a large amount
of accurately labeled data for our evaluation purposes, we
experiment with the three scenarios just described: (1) random
labeling to model the absence of effective correlation between
the underlying processes and the final labels, (2) piece-wise
linear contributions of the features to the probabilities of the
final labels, and (3) complex, non-linear contributions of the
features to the probabilities of the final labels.

Fig. 1. Number of contributors vs number of commits

III. DATA PREPARATION

The datasets for R, C, and D are prepared based on
empirically determined distributions from different, publicly
available data sources. Note that although not all three ele-
ments of R, C, and D are necessarily from a single system,
their composition provides a reasonable aggregate system for
experimentation. A production version of our approach could
clearly be built by interested parties with access to a consistent,
large corpus of ground truth.

We used the metadata from a snapshot of GitHub containing
452 million real commits from 16 million GitHub repositories
[22], and fit the data to probability density functions (PDF)
that model the features. Fig. 1 shows the relation between
number of contributors and number of commits in this dataset.
For the developers’ traits, we used the results of a similar
PDF analysis from a Stack Overflow Developer Survey 2021
[23]. Using these sources, we created a synthetic dataset to
explore the learning formulation. We initially started with a
sample of 5000 commits, and steadily increased the sample
size to compute the results at each step until we reached a
sample size of 50,000 commits. To verify the appropriateness
of our sample size, we used the Cochran’s formula [24] and
Slovin’s formula [25] to calculate the appropriate sample size
for our study. We assumed a total of 100 million repositories
each with 500 commits. Our assumptions are inspired by
the total number of repositories hosted by GitHub [26] and
average number of commits in repositories with more than
100 commits in the 452 million metadata.

Since the goal is to predict whether the commit is buggy
or not, we use a buggy indicator column with values 1 and 0
indicating the commit is buggy or otherwise, respectively. This
dataset captures the characteristics of the commit including the
repository to which the commit belongs and the traits of the
developer committing.

A. Input Features

We used seven input feature vectors to feed into our learning
algorithm. These features are listed next, along with the
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Fig. 2. Beta distribution used for sampling the ages of repositories

method we used in generating the column values. Each row
of the data corresponds to a single commit.

1) Total number of commits: The value in this column
corresponds to the total number of commits in the
repository to which the commit in the record belongs.
To create the values in this column, we used our analysis
from the GitHub metadata mentioned previously. We
characterized the number of commits and found that
number of commits follow an exponential distribution
with parameter λ = 1.07. Using this information, we
generated this column by sampling the values from the
exponential distribution with parameter value λ = 1.07.
To determine the range of this column, we took a sample
of 50,000 data points from the 452 million records and
noted the maximum number of commits, ignoring the
right outliers.

2) Total number of contributors: This column represents the
total number of contributors to the repository to which
the commit in the record belongs. The analysis of 452
million commits metadata showed that the distribution
of the number of contributors is right skewed. Thus,
for this column, we sampled the values using a right
skewed Gamma distribution (α = 1 and β = 10.75).
We again used the sample of 50,000 data points from
the 452 million commits to find the maximum number of
contributors to be around 250, ignoring the right outliers.

3) Age of the repository (in weeks): This column represents
the age of the repository to which the commit has been
made. Since the number of repositories is generally
increasing, we expect that the age of the repositories
would be slightly skewed to the left. For this column, we
sampled the values from a Beta distribution [27] (with
parameters α = 3 and β = 2). Fig. 2 show the PDF
of this beta distribution. The age of repositories ranges
from about 6 months to about 25 years.

4) Number of files in the commit: We explored a dataset
of over 8000 Android applications [28]. Inspired by
the results of this data, we set the number of files in
a commit to be positively skewed by an Exponential

distribution (we used λ = 1.13). We sampled the
values of this column using exponential distribution and
modeled it from one file to few dozen files per commit.

5) Number of types of file in the commit: Lacking prior
data analysis on the number of types of files, we set the
number of types of files to be distributed between 1 and
20.

6) Years of experience of developers: As mentioned in Sec-
tion III, we used the raw data from the Stack Overflow
Developer Survey 2021 and analyzed the distribution of
the years of experience of the developers. The results
indicated that years of experience follow an exponential
distribution with λ = 1.13. We generated the values
of this column by sampling from an exponential dis-
tribution with λ = 1.13, with the highest developer
experience of about 44 years (note that this is consistent
with the results of the stack overflow survey).

7) Time of the day the commit was made: We set this
for a uniformly selected time across the day and night,
accommodating the scenarios of late work nights and
world-wide developer base.

B. Buggy Indicator Labels

As previously mentioned, to indicate whether a commit in
our dataset is buggy, we introduce a buggy indicator which
takes a value of 1 for vulnerable commits and 0 otherwise. We
begin by introducing buggy indicators where no relation may
be inferred between the indicator and the chance of individual
variables contributing to the overall probability of making a
buggy commit. We introduce two such sets of indicator labels.

• Random Buggy Indicator: To create this indicator, we
uniformly distributed the labels of 0 or 1 for non-buggy
and buggy commits respectively, with one-third of the
commits set to be buggy.

• Logistic Buggy Indicator: For this scenario, we set a
linear relationship between each feature variable and the
logit of the baseline indicator variable. That is, we fit a
logistic model using the random buggy indicator as the
response variable and all the features as the dependent
variables. Using the threshold of 40%, we predicted the
binary values for the buggy indicator using this logistic
model. We used these predicted values as the logistic
buggy indicator for the binary classifiers we discuss in
Section IV-A.

The essential consideration underlying the data is about
how each input feature contributes to the overall chance of
committing a bug. Therefore, an obvious next step is to
be able to infer some natural relation between an overall
probability of committing a bug and the chance of bug by
each individual input features. That is, each input feature that
we created in the dataset would contribute to the probability
of whether a commit is buggy or not. For example, let us
say that each contributor adds to the probability of a buggy
commit according to a trend. We experimented with the trend
that the more the number of contributors in a repository, the
higher the probability that the commit may be buggy. Note that



our methodology remains unaffected even if this model must
be changed to suit another dataset. Specific probabilities are
assigned to each feature and these probabilities are averaged
to determine the final probability that the commit is buggy.
Below, the assignment of probabilities is discussed.

• Total number of contributors: As the number of contribu-
tors increases, the chance of committing a bug is higher.
To calculate the probability of committing a bug due to
the number of contributors, the number of contributors is
normalized to a scale of 0 to 1. These normalized values
are then used as the probability of committing a bug in
association with this feature. This essentially determines
a correlation between the number of contributors and
probability of committing a bug.

• Total number of commits, Number of files in the commit,
and Number of types of file in the commit: For these
three features, we made the same assumption as for the
number of contributors. That is, there exists a positive
relation between the values of each of these features and
probability of committing a bug. Again, each of these
features is normalized to a scale of 0 and 1 for use as
the probability of committing a bug contributed by each
of this feature.

• Age of the repository (in weeks): The probability of
committing a bug in relation to the age is modeled to
increase at first with the age, then start to decrease and
then again increase for older repositories. As we see in
Fig. 3, the probability of committing a bug increases
for repositories with age upto 10 years, the probability
decreases for repositories with age between 10 to 20 years
and then again increases for older repositories.

• Years of experience of developer: As the developer gains
more experience, the probability of committing a bug
is expected to reduce. This model is used to assign
probability values based on the years of professional
experience (see Fig. 4).

• Time of the day the commit was made: The probability
of bugs are modeled to increase later in the day; during
normal range of office hours (7 AM to 6 PM), the
probability of committing a bug is set lower than the
probability during late night hours (11 PM to 5 AM),
with probabilities for the rest of the day between these
two extremes (see Table I).

TABLE I
PROBABILITY OF COMMITTING A BUG VARIED BY TIME OF THE DAY

Time Probability of bug
Office hours Randomly between 1% to 10%

Late night hours Randomly between 20% to 50%
Rest of the day Randomly between 10% to 30%

To calculate the final probability of committing a bug,
that would incorporate the probabilities we assigned to each
individual feature, the average of all the seven individual
probabilities associated with each feature is calculated. This is

then used to estimate the probability-based buggy indicator by
comparing with a random value uniformly distributed between
0 and 1.

Again, we note that other feature models and their con-
tributions to the buggy labels can be varied for another
dataset without affecting our basic formulation and classi-
fication approach. Here, we evaluate the approach with the
aforementioned empirically-based features as representative of
the possible target systems where this learning-based flagging
can be applied.
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Fig. 3. Probability of committing based on age of the repository
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Fig. 4. Probability of committing bug based on years of experience of
developer

IV. EVALUATION METHODOLOGY

A. Binary Classifiers

We use four different binary classifiers to identify the buggy
commits: (1) Random Forest (RF) [29], (2) TabNet [30],
(3) XGBoost [31], and (4) Light Gradient Boosting Machine
(LightGBM) [32]. Here we briefly discuss the importance of
these classifiers:

• RF is generally highly robust against overfitting. RF also
helps in ranking feature importance per the total decrease
in the Gini measure of node impurities [33]. For the



RF model, based on preliminary results using out-of-bag
(OOB) error, 100 trees were included in the model.

• TabNet was introduced by Google in 2019 [30]. Their
paper claims that this neural network outperforms the
leading tree-based models across a variety of benchmarks.
TabNet uses sequential attention to choose which features
to reason from at each decision step. Thus it is consider-
ably more explainable and interpretable than boosted tree
models as it has built-in explainability. It is also claimed
that TabNet is more efficient as the learning capacity
is used for the most salient features. We fit our model
using the default parameters with maximum epochs of
200, patience of 15, batch size of 1024 and virtual batch
size of 128.

• XGBoost is an efficient and scalable implementation of
gradient boosting framework by Friedman [34]. Gradient
boosting is a popular and effective approach to classifi-
cation. It produces a prediction model in an ensemble of
weak models, typically decision trees [35].

• GBM is a gradient boosting framework based on decision
trees that increases the efficiency of the model. It uses
two novel techniques including Gradient-based One Side
Sampling and Exclusive Feature Bundling which over-
comes the limitations of histogram-based algorithm that
is primarily used in all Gradient Boosting Decision Tree
frameworks.

Generally speaking, it has been observed in our experiments
that RF and LightGBM produced similar results and seem to
do better than the other two classifiers for most scenarios.

B. Evaluation Metrics

To evaluate the performance of all the binary classifiers
across all the models, we calculate the three standard eval-
uation metrics including accuracy, F1 Score and area under
the curve (AUC). We used the confusion matrix (Table II) to
calculate these metrics. For completeness, the definitions we
use for these terms are provided next.

• Accuracy: Accuracy is defined as the ratio of correct
predictions over total predictions.

Accuracy =
a+ d

N

• F1 Score: It is the harmonic mean of precision and recall.

F1 = 2 ∗ precision ∗ recall
precision+ recall

– Precision: Precision is the proportion of positive
predictions that are correct.

Precision =
a

a+ b

– Recall: Recall is the proportion of positive predic-
tions that are correctly classified. That is, it measures
the effectiveness of a classifier to identify positive
labels.

Recall =
a

a+ c

• Area under the curve (AUC): AUC is the value that
reflects the overall ranking performance of a classifier
[36].

TABLE II
CONFUSION MATRIX

Actual Labels
Positive Negative Total

Predicted Labels
Positive a b a+ b

Negative c d c+ d

Total a+ c b+ d N

V. EXPERIMENTS VARYING THE RELATION OF FEATURES
TO BUGS

A. Random Relation of Features to Bugs

Here, we explore the case when there exists a random
relation between the input features and the buggy labels. That
is, we fit all four binary classification models to predict the
random buggy indicator (section III-B) using the seven input
features as described in section III-A on 50,000 commits. We
calculated the evaluation metrics discussed in section IV-B and
present them in the Table III. As we see here, the accuracy
is about 63% for all the four classifiers. The binary classifier
for the random buggy indicator was assigned randomly so we
did not expect the models to do any better than 50%. But it
seems like the classifiers did identify some pattern and were
able to predict the labels correctly with more than an average
chance.

We used feature ranking capability of the RF classifier to
rank the features based on their importances. See Fig. 5 for
ranking the feature importances using the Gini measure. The
most important feature using this measure appears to be the
time of the day at which the commit was made, followed by
number of commits, age of the repository and others.

TABLE III
RESULTS FROM RANDOM RELATION OF FEATURES TO BUGS

RF TabNet XGBoost LightGBM
Accuracy 63.00% 62.73% 62.28% 63.00%
F1 Score 29.47% 41.63% 28.07% 28.42%

AUC 54.16% 57.09% 53.13% 53.69%

B. Logistic Relation of Features to Bugs

Next, we fit the classifiers using the logistic buggy indicator
label as the dependent variable, using the seven features as in-
puts. The results are presented in Table IV. Not surprisingly, all
the classifiers seem to work almost perfectly in this scenario.
This is expected because we created the buggy indicator to
follow a linear relationship between each feature variable and
the logit of the buggy indicator. All our classifiers are able to
identify this relation and make nearly perfect predictions. This
model serves the role of a sanity check on the working of the
classifiers and confirms the correct working of our model.



0.00 0.05 0.10 0.15 0.20

Time

Commits

Age

Contributors

Experience

Types

Files

Fig. 5. Ranking of features by importance in the base model

TABLE IV
RESULTS FROM LOGISTIC RELATION OF FEATURES TO BUGS

RF TabNet XGBoost LightGBM
Accuracy 99.45% 99.73% 99.55% 99.59%
F1 Score 99.19% 99.61% 99.33% 99.39%

AUC 99.35% 99.64% 99.39% 99.46%

C. Probability-based Relation of Features to Bugs

In the more complex model encoding a more complex
dependency of the buggy indicator on the features, we fit the
binary classifiers on the probability-based buggy indicator that
was created using the individual probabilities of committing
bug of the input features (as described in section III-B). We
again used all the seven features as inputs from section III-A
and used the same sample of 50,000 commits. The values
of the three evaluations can be found in Table V. The three
classifiers – RF, TabNet and LightGBM – predicted the labels
with an accuracy of over 75%. Although the accuracy for
TabNet is the lowest among the four models, this model
outperforms the other three in terms of F1 Score and AUC.

RF and LightGBM appear to produce similar results for this
model. Another important observation here is that the F1 Score
seems very low across all four classifiers. We investigated this
further and found that although precision outcomes for three
of the models are pretty high (over 98% for RF, XBGoost
and LightGBM), the values for recall are as low as 0.4% for
LightGBM. Because F1 Score is a harmonic mean of these two
metrics, the recall value is pulling down the F1 Score for all
classifiers. Further investigation of this phenomenon remains
as part of future work.

We again used RF to find the importances of input fea-
tures and ranked them. Refer to Fig. 6 for the ranking and
importances using the Gini measure. The ranking of features
is similar to that of the base case apart from the first two
features which are reversed in order here.

TABLE V
RESULTS FROM PROBABILITY-BASED RELATION OF FEATURES TO BUGS

RF TabNet XGBoost LightGBM
Accuracy 76.06% 59.15% 75.87% 76.34%
F1 Score 4.47% 37.34% 5.53% 0.8%

AUC 50.34% 56.57% 50.65% 50.07%
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Fig. 6. Ranking of features by importance in the probablity-based model

D. Including the Time of Commit in Features

Next, we include the probability of bug due to the time of
the day as an input feature to the probability-based model.
Recall that the final probability of committing a bug is
computed as the average of probabilities contributed by each
of the individual features (see Section III-B). By design, the
probability contributed by each feature, except the commit
time, is (step-wise) linearly related to that input feature. For
the commit time, we introduce a variant in the model by
which a non-linear relation is defined between the probability
contributed by the feature and the final bug probability. The
thinking behind this experiment is to explore if the classifiers
are able to identify the non-linear relation thus introduced. The
results from this variation can be found in Table VI.

As we observe here that all the classifiers appear to deliver
a higher quality of classification than in the case where the
probability contributed by the commit time is not considered
as an input feature (Table V).

TABLE VI
RESULTS FROM INCLUDING THE COMMIT TIME

RF TabNet XGBoost LightGBM
Accuracy 88.21% 80.71% 88.11% 88.33%
F1 Score 67.37% 61.95% 67.91% 67.94%

AUC 75.75% 75.86% 76.12% 75.93%

E. Excluding the Time of Commit from Features

As we observed earlier, including the probability contributed
by the commit time as an input feature improved the results



significantly. This raises an obvious question about the sig-
nificance of this feature. To explore this, we experiment with
another scenario by dropping this feature altogether from the
input features and fit the binary classifiers on the remaining
six features. The results of this experiment can be seen in
Table VII. The results do not appreciably change from the
results of the model whose results are shown in Table V which
includes this feature.

TABLE VII
RESULTS FROM DROPPING THE COMMIT TIME

RF TabNet XGBoost LightGBM
Accuracy 73.64% 59.6% 74.03% 74.51%
F1 Score 9.66% 39.76% 7.85% 3.04%

AUC 50.72% 57.27% 51.04% 50.44%

VI. EXPERIMENTS VARYING DATA SIZES AND DATASETS

A. Varying Data Sizes

The consolidated results of the final model are presented
here and the variation of results is analyzed with changes
in the sample size. We fit the binary classifiers using a
series of increasing sample sizes of 5000 commits, 10,000
commits, 25,000 commits and finally 50,000 commits. The
results are presented in Table VIII and Fig. 7. We observe
here that the results for the three classifiers RF, XGBoost
and LightGBM does not seem to change much across all
sample sizes. But we do see the metrics varying significantly
for TabNet. We would not worry much about this since, as
we pointed before, accuracy for TabNet seems really low
throughout when compared with the other classifiers although
this classifier seems to outperform the others in terms of F1
Score and AUC.

TABLE VIII
RESULTS FROM VARYING DATA SIZES

Datasize RF TabNet XGBoost LightGBM

Accuracy

5,000 77.00% 59.60% 74.67% 76.00%
10,000 76.35% 72.33% 73.13% 75.07%
25,000 76.67% 60.91% 75.65% 76.13%
50,000 76.06% 59.15% 75.87% 76.34%

F1 Score

5,000 6.50% 28.03% 10.38% 4.26%
10,000 2.47% 20.35% 7.78% 2.60%
25,000 5.04% 35.70% 8.43% 3.66%
50,000 4.47% 37.34% 5.53% 0.8%

AUC

5,000 50.94% 50.72% 50.69% 50.12%
10,000 50.13% 52.59% 49.66% 49.78%
25,000 50.59% 55.83% 51.08% 50.41%
50,000 50.34% 56.57% 50.65% 50.07%

B. Using Features from Samples of Real Metadata

Taking a random sample of 50,000 records from the meta-
data of 452 million commits where the number of commits
are between 100 and 50,000. Our exercise was to sample the
records of repositories each of which has at least 100 commits

10000 20000 30000 40000 50000
Data (sample) size

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

Ac
cu

ra
cy

 (i
n 

pe
rc

en
ta

ge
)

Random Forest
TabNet
XGBoost
LightGBM

10000 20000 30000 40000 50000
Data (sample) size

0

5

10

15

20

25

30

35
F1

 sc
or

e 
(in

 p
er

ce
nt

ag
e)

Random Forest
TabNet
XGBoost
LightGBM

10000 20000 30000 40000 50000
Data (sample) size

50

51

52

53

54

55

56

AU
C 

(in
 p

er
ce

nt
ag

e)

Random Forest
TabNet
XGBoost
LightGBM

Fig. 7. Accuracy (above), F1 Score (center) and AUC (below) results are
shown for varying sample sizes. Note that the results for RF, XGBoost and
LightGBM do not seem to change significantly across different sample sizes.



(since the repositories with less than 100 commits represent
very low activity). Also, we limited the maximum number of
commits as 50,000 similar to our synthetic data.

We calculated the probability of committing a bug using the
methodology we adopted for probability-based buggy indicator
defined in section III-B. However, this time we restricted the
feature vectors to the number of commits and number of
contributors. The other features are not included as input for
computing the buggy indicator for this experiment. We fit the
four models as described in section IV-A using the number of
commits and number of contributors as input features and the
buggy indicator as the output label.

Table IX show the results for the computed metrics for all
four models. We see here that all models are able to predict
the buggy labels with high accuracy. Although the accuracy
for TabNet is the lowest among the four models, it is still
fairly good and ouperforms the other three in terms of F1
Score and AUC. We investigated the F1 Score levels further
and the results seem similar as before, that is, the numbers
for precision for most the models are quite high (over 93%
for RF, XGBoost and LightGBM), but the recall values are as
low as 43% for LightGBM.

TABLE IX
CLASSIFICATION RESULTS WITH 50,000 SAMPLES OF COMMIT

METADATA

RF TabNet XGBoost LightGBM
Accuracy 83.64% 77.97% 85.15% 85.29%
F1 Score 57.26% 60.10% 57.15% 56.76%

AUC 71.58% 76.75% 70.65% 70.33%

VII. CONCLUSION

In software evolution, detecting potentially buggy commits
to repositories can help mitigate many types of problems.
Broadly speaking, the methods for such detection can be
based on analyses of the software internals such as source
code. In contrast to such methods that rely on internals, we
proposed an approach that exploits features that are external
to the actual software. Specifically, we focused on exploiting
the metadata associated with the repositories, commits, and
developers that are part of the software evolution system. A
learning formulation of the detection problem is presented
along with a simplified machine learning solution based on
binary classification. We evaluated the potential for learning
using this approach and found that it is conceivable to get good
performance. Our approach has been implemented in software
and the results from experiments using this implementation are
encouraging. Using samples from metadata of a large software
repository warehouse, as well as from synthetic data generated
to mimic the distributions of real data from repositories,
commits, and developer information, we verified that it is
feasible to train and test the system. Overall, the results point
to the possibility of using machine learning for early flagging
of potentially buggy commits to software repositories. This
can be useful in various ways, such as a service offered by

the hosting institutions to software development communities.
Other uses include expansion of the binary model to more
labels and customization beyond early detection of bugs or
vulnerabilities at their very origins.
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