
Journal of

Cybersecurity
and Privacy

Article

CyBERT: Cybersecurity Claim Classification by Fine-Tuning the
BERT Language Model

Kimia Ameri 1 , Michael Hempel 1 , Hamid Sharif 1,* , Juan Lopez Jr. 2 and Kalyan Perumalla 2

����������
�������

Citation: Ameri, K.; Hempel, M.;

Sharif, H.; Lopez Jr., J.; Perumalla, K.

CyBERT: Cybersecurity Claim

Classification by Fine-Tuning the

BERT Language Model. J. Cybersecur.

Priv. 2021, 1, 615–637. https://

doi.org/10.3390/jcp1040031

Academic Editors: Giorgio Giacinto

and Phil Legg

Received: 30 August 2021

Accepted: 28 October 2021

Published: 4 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68182 , USA;
kameri2@unl.edu (K.A.); mhempel@unl.edu (M.H.)

2 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; lopezj@ornl.gov (J.L.J.);
perumallaks@ornl.gov (K.P.)

* Correspondence: hsharif@unl.edu

Abstract: We introduce CyBERT, a cybersecurity feature claims classifier based on bidirectional en-
coder representations from transformers and a key component in our semi-automated cybersecurity
vetting for industrial control systems (ICS). To train CyBERT, we created a corpus of labeled sequences
from ICS device documentation collected across a wide range of vendors and devices. This corpus
provides the foundation for fine-tuning BERT’s language model, including a prediction-guided rela-
beling process. We propose an approach to obtain optimal hyperparameters, including the learning
rate, the number of dense layers, and their configuration, to increase the accuracy of our classifier.
Fine-tuning all hyperparameters of the resulting model led to an increase in classification accuracy
from 76% obtained with BertForSequenceClassification’s original architecture to 94.4% obtained with
CyBERT. Furthermore, we evaluated CyBERT for the impact of randomness in the initialization,
training, and data-sampling phases. CyBERT demonstrated a standard deviation of ±0.6% during
validation across 100 random seed values. Finally, we also compared the performance of CyBERT
to other well-established language models including GPT2, ULMFiT, and ELMo, as well as neural
network models such as CNN, LSTM, and BiLSTM. The results showed that CyBERT outperforms
these models on the validation accuracy and the F1 score, validating CyBERT’s robustness and
accuracy as a cybersecurity feature claims classifier.

Keywords: natural language processing; BERT; transfer learning; classification; cybersecurity; CYVET

1. Introduction
1.1. Motivating Context

The role of cybersecurity audits in operational technology (OT) is a purposeful and
vital mechanism to identify the presence of cybersecurity controls. Cybersecurity assess-
ments, on the other hand, test the effectiveness of controls. Many critical infrastructure
segments, including the energy sector, heavily rely on OT and industrial control systems
(ICS) for automation, centralized monitoring, and operational efficiency. ICS vendors
continually offer new features in their devices in order to attract their customers to buy
new or upgraded products, but consumers often do not readily realize how these features
affect their cybersecurity posture and regulatory compliance [1].

As identified in our earlier work [2], different vendor-supplied features (VSF) can
satisfy and match the corresponding cybersecurity requirements (CR), or enhance the
features and go beyond the related requirements, or unintentionally violate or contradict
some of these requirements defined by international standards and industry organizations.
To address this issue of mismatches between vendor-supplied features and cybersecurity
requirements, an effective vetting system is required to match, reconcile, and tally these
feature claims against the relevant requirements. However, both features and requirements
are typically provided in the form of documents in human-readable format. This severely
complicates any automated vetting processes.

J. Cybersecur. Priv. 2021, 1, 615–637. https://doi.org/10.3390/jcp1040031 https://www.mdpi.com/journal/jcp

https://www.mdpi.com/journal/jcp
https://www.mdpi.com
https://orcid.org/0000-0003-2879-1871
https://orcid.org/0000-0002-7091-8349
https://orcid.org/0000-0001-6229-2043
https://orcid.org/0000-0001-5083-8627
https://orcid.org/0000-0002-7458-0832
https://doi.org/10.3390/jcp1040031
https://doi.org/10.3390/jcp1040031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcp1040031
https://www.mdpi.com/journal/jcp
https://www.mdpi.com/article/10.3390/jcp1040031?type=check_update&version=2

J. Cybersecur. Priv. 2021, 1 616

To resolve this problem, we are developing a semi-automated vetting engine for cyber-
physical security assurance (CYVET) [2]. The overarching goal for CYVET is to enhance the
current industry capabilities to verify and validate OT infrastructure cybersecurity claims,
at both pre-deployment and post-deployment periods.

Our vetting approach to cybersecurity assurance focuses on two major components:
Tally-Vet and Test-Vet. Tally-Vet represents that portion of the vetting approach that is de-
signed to match, reconcile, and tally the claimed features against the relevant requirements.
The Tally-Vet stage requires extensive application of natural language processing (NLP)
throughout the entire verification operation. For Test-Vet, specific features need to be sys-
tematically tested and validated against actual software and hardware through hardware
agents. By automating the vetting of vendor claims extracted from device documentation,
the vetting approach is designed to provide an unbiased, objective, and semi-supervised ap-
proach to vetting the cybersecurity implications of an ICS device. ICS compliance analysis
and reporting is simplified by using this framework, implemented in our CYVET system,
which provides insights into ICS systems and matches capabilities to requirements [2].

An overall flow for the Tally-Vet aspect of CYVET is shown in Figure 1. In our previous
study [1], we discussed our semi-supervised framework to build the ICS device information
repository that underpins CYVET and its NLP processes. This data repository contains ICS
device documents including manuals, brochures, and catalogs. One of the main challenges
in the vetting approach is to analyze this data repository and identify sequences from
vendor-supplied documents that represent the vendor’s stated claims on product features.
These sequences will then be used in the tally process by comparing them to the industry
cybersecurity requirements. In the rest of the article, we use the term “Claim” to refer to
any sequence in the text of vendor-supplied documents thus extracted that represent some
cybersecurity-related claims about features of the product being evaluated.

Vendor Supplied Features
(VSF)

Cybersecurity Requirements
(CR)

Tallied
Matched
Reconciled

Generation of test
recipes reconciled VSF

Testing reconciled VSF
for conformance with
CR

Tally-Vet Test-Vet

Verification Validation

Report:

✅
✅

⚠
❌

❌

VSF

CR

Specifica<ons

Claims

Standards

Natural
Language
Processor

Figure 1. Overall workflow of the CYVET cybersecurity vetting approach.

Recent studies have demonstrated the achievable performance for unsupervised
language models that are pre-trained on a large corpus and fine-tuned on downstream tasks
such as sequence classification and sentiment analysis. Examples include the universal
language model with fine-tuning (ULMFiT) [3], embeddings from language models (ElMo)
[4], bidirectional encoder representations from transformers (BERT) [5], and the generative
pre-training (GPT) model [6], which are some of the most well-established pre-trained
language models.

1.2. Goals and Contributions

This article presents our research into establishing a novel classifier of cybersecurity
feature claims by fine-tuning a pre-trained BERT language model. Specifically, any natural
language sequence that specifically makes a claim towards the availability of a cyberse-
curity feature related to a product is defined as a claim in this article. All other claims,
or sequences that do not make any claims, are subsequently labeled as not containing a
cybersecurity claim.

CyBERT is intended to be used as a cybersecurity-specific classification model for
detecting cybersecurity claims. This NLP model enables us to identify claims from a
large pool of sequences in ICS device documents. Claim sequences are important for

J. Cybersecur. Priv. 2021, 1 617

identifying the claimed set of cybersecurity device features. Being able to identify this set of
claimed features subsequently enables us to compare feature claims against cybersecurity
requirements, which is key to our Tally-Vet operation for OT infrastructure vetting.

The contributions of this work are summarized in the following items:

1. We introduce CyBERT, a BERT-based model that is trained on sequences gathered
from ICS device documents. This new model is designed to identify cybersecurity
claim-related sequences.

2. We present our extensive experiments conducted to optimize hyperparameters and
model architecture selection.

3. We show and discuss our results of a comparative evaluation of CyBERT against other
language models. The results suggest that a fine-tuned BERT configuration with two
hidden dense layers and a classification layer achieves the highest accuracy.

An important part of NLP tasks is word embedding. Embedding represents each
word as a multidimensional vector. Traditional neural network models use the traditional
word-level embedding methods, including GloVe and Word2vec. These models are only
trained based on a specific task to capture features and remove the contextual meaning of
each word.

Newer language models, on the other hand, use contextualized embedding methods.
These methods are designed to capture the semantics of words by including information
about its surrounding context. The BERT-Base model is one such model that uses a
contextualized embedding method and utilizes 768-dimensional tokens to represent its
vocabulary entries. More details on these embedding methods are provided in Section 3.1
further below.

In this article, we compare the results and performance of our model with other
well-known transformer-based models, such as GPT, as well as more traditional models,
such as ULMFiT and neural network (NN) models. The results are discussed in detail in
Section 5. Because of the above-mentioned limitations of word-level embedding methods
such as GloVe, and the benefits of contextualized embedding methods, we used the BERT
tokenizer for our language models.

The remainder of this article is organized as follows. In Section 2, we briefly review
related works. We present background information related to NLP in Section 3. In Section 4,
we describe the overall system framework and our proposed architecture including prepara-
tion of the domain-specific dataset, hyperparameter selection, and the fine-tuning strategy.
We present and discuss our findings by comparing CyBERT’s results with those of other
NLP and neural network models in Section 5, and in Section 6 our conclusions are presented.

2. Related Works

Adapting a pre-trained language model for specifically targeted tasks can dramat-
ically improve performance. In recent years, language models have demonstrated sig-
nificant advances in downstream tasks including classification and sentiment analysis.
In the following paragraphs, we discuss recent studies in language model improvements.
These improvements are divided into pre-training language models and fine-tuning lan-
guage models.

BERT [5] has gained popularity among researchers in a wide variety of fields. Lee et al.
used a large biomedical corpus to build BioBERT, a pre-trained biomedical language
representation model for biomedical text mining [7]. BioBERT is trained on the original
corpora of BERT and expanded with additional biomedical corpora. The resulting BioBERT
improves biomedical name entity recognition (NER), biomedical relation extraction (RE),
and biomedical question answering (QA) tasks. Naseem et al. [8] used the same corpus
as BioBERT to pre-train a new domain-specific language model based on the ALBERT [9]
architecture, including its initial weights. The new pre-trained language model is then
fine-tuned on four different biomedical NER datasets.

A pre-trained language model for scientific text (SciBERT) was introduced by Beltagy,
I., Lo, K., and Cohan, A. [10]. This model was pre-trained on a large corpus of biomedical

J. Cybersecur. Priv. 2021, 1 618

and computer science studies and a specific in-domain vocabulary (SCIVOCAB). SciBERT
outperforms BERT and BioBERT on all downstream tasks in the scientific domain.

All of these studies demonstrate the benefits of pre-training a language model using a
domain-specific corpus. However, although pre-training shows great improvements on the
downstream tasks, the process is very computationally expensive and typically requires
large additional corpora [7,11]. For those reasons, we focused on the fine-tuning process
for our CyBERT language model.

Many NLP studies investigate the use of language models on specific downstream
tasks, such as [12–16]. Several studies have shown that fine-tuning language models such
as BERT for a downstream task on a domain-specific dataset may improve the performance
of the model. Some examples of these models are patent classification with fine-tuning a
pre-trained BERT Model (PatentBERT) [17], financial sentiment analysis with pre-trained
language models (FinBERT) [18], or a pre-trained financial language representation model
for financial text mining [19]. These research works have shown that fine-tuning can
substantially improve the performance of BERT for a specific task. Sun et al. [15] showed
that fine-tuning a pre-trained language model for a specific downstream task can be
trained on a small dataset with only a few training shots and thus does not require a large
additional corpus.

Language Models in Cybersecurity

The use of language models such as BERT specifically for applications in the cyber-
security domain is rather limited so far. One of the few studies from this domain is [20],
which describes the use of BERT for classifying vulnerabilities. Some other examples are
fine-tuning BERT for NER for the cybersecurity domain in English [21–23], Russian [24],
and Chinese [25]. Another example is ExBERT [26], a fine-tuned BERT with sentence-level
sentiment analysis for vulnerability exploitability prediction.

From our review, we could not find any language model tuned for cybersecurity text
classification tasks. In this study, we thus developed a claim sequence database specifically
for the cybersecurity domain. This database was then used to generate CyBERT, a fine-
tuned BERT classifier on cybersecurity sequences to identify feature claims. These claim
sequences will then be used in our cybersecurity vetting engine to verify those features
against the published industry requirements for cybersecurity.

3. Background Knowledge
3.1. Word Embedding

Word embedding is a critical part of any sequence-related NLP task. With embedding,
each word is represented in a multidimensional vector space. These vectorized words,
or tokens, are subsequently used as an input for neural networks. Embedding techniques
are mainly divided into word-level and contextualised techniques:

3.1.1. Word-Level Embedding

Traditional vector representations of words, such as word2vec [27], fastText [28],
or GloVe [29] are generally used to provide subword features in conjunction with an
embedded conventional word. A recurrent neural network (RNN) or convolutional neural
network (CNN) encoder produces the word-level embedding of a word from the input
word set [30,31]. A disadvantage of word-level representations is that they strictly compile
all the different possible meanings of a word into a single representation, thus not taking
the surrounding context into consideration. Therefore, these methods cannot disambiguate
word meanings based on the context in which a word is used.

3.1.2. Contextualized Embedding

A contextualized embedding is designed to capture word semantics in a context
based on their surrounding text [32]. ELMo [4], GPT [6], and BERT [5] are well-developed
contextualized embedding tools for language models and downstream tasks.

J. Cybersecur. Priv. 2021, 1 619

ELMo can produce context-sensitive embeddings for each word within a sentence,
which can then be supplied to downstream tasks. BERT, and GPT, on the other hand,
utilizes a fine-tuning approach that can adapt the entire language model to a downstream
task, resulting in a task-specific architecture.

BERT uses a masked language model (MLM) technique to train a deep bidirectional
representation of a sentence by randomly masking an input token and then predicting it. It
also utilizes next-sentence prediction (NSP) to characterize and learn sentence relationships.
With the help of these two unsupervised tasks, BERT is combining the strengths of GPT
and ELMo [21].

BERT uses the WordPiece embedding technique [33] with a 30,000-token vocabu-
lary [5]. The WordPiece method divides each word into a limited set of common sub-words
and eliminates the need to deal with unknown words. This technique is very flexible for
single characters and highly efficient for full-word decoding [33].

3.2. Pre-Trained Models

A pre-trained language model mainly refers to an NLP model that was trained on a
large text corpus using an unsupervised training approach and that represents a general
language domain. These models can be used for next-word prediction, for example.
Some pre-trained language models such as BERT and GPT architecture contain multiple
transformers stacked on top of each other to extract features from inputs with an attention
mechanism. Each transformer element itself utilizes an encoder–decoder architecture,
with both the encoder and decoder comprised of six layers, each with a multi-head self
attention and a fully connected feed-forward network [34].

Leveraging a pretrained architecture and its associated pretraining weights enables us
to more easily transfer the learning to our specific problems. Broadly, pretrained models
can be divided into two main categories, in terms of their application:

1. Multi-purpose language models such as ULMFiT [3], Google BERT [5], and OpenAI
GPT [6].

2. Word-embedding language models such as ELMo [4].

Out of all reviewed models, including GPT, UlMFiT, and ElMo, we determined that
BERT embodies our target domain the closest. It requires the least amount of training
and adaptation. BERT is an open-source model with a very strong tokenizer and word-
embedding matrix. Based on these advantages, it was therefore chosen as the basis for
our work.

BERT has two versions: BERT-Base, with 12 encoder layers, an embedding size
of 768 dimensions, 12 multi-head attentions, and 110M parameters in total as well as
BERT-Large, with 24 encoder layers, an embedding size of 1024 dimensions, 16 multi-
head attentions, and 340M parameters. Both of these models have been trained on the
BookCorpus and the collection of pages from the English Wikipedia, which have more
than 3.5 billion words in total [5].

Although adapting a pre-trained language model such as BERT for a specific task
improves performance dramatically, there is an inherent risk of catastrophic forgetting
during training when unlocking all layer weights. Furthermore, it also can suffer from
randomness effects as a result of training with smaller datasets. Our efforts to avoid
these two potential risks to CyBERT’s successful model training included the approaches
described in Sections 4.2.1.1 and 4.3.1 related to catastrophic forgetting and randomness
effects, respectively.

4. Proposed Architecture

In this section, we introduce CyBERT and detail its fine-tuning strategy for BERT
hyperparameters. Recall that CyBERT is a cybersecurity claim classifier to detect sequences
related to device features. These claims then will be used to vet against relevant cybersecu-
rity requirements.

J. Cybersecur. Priv. 2021, 1 620

There are two main steps in our framework: claim sequence database curation and
fine-tuning BERT. Figure 2 shows an overview of CyBERT workflow. To the best of our
knowledge, there currently is no readily available dataset representing a corpus specific
to cybersecurity that we could use for training CyBERT. Hence, we created a new labeled
dataset that contains claim-related sequences. For fine-tuning, CyBERT is first initialized
with BERT’s initial weights, adding dense layers and dropouts and subsequently tuning all
layers and parameters using our labeled database and architecture.

BERT
E[CLS] E1 En

Trm Trm Trm

Trm Trm Trm

T[CLS] T1 Tn

Sampling
Sequence
Extraction

Initial
Labeling

Claim
NoClaim

Claim

Claim

Class
label

Claim
NoClaim
NoClaim

Claim

Revise
Labels

Fine-Tune
BERT

Classifier

VSF documents

CyBERT

Figure 2. Overview of CyBERT workflow.

4.1. Dataset

As previously stated, there was no available dataset specific to the cybersecurity
literature for NLP tasks, in particular with an emphasis on industrial control systems (ICS).
Therefore, in our previous work [1] we proposed a framework to curate a large repository
of ICS device information. This framework was designed to perform web scraping, data
analytics, and natural language processing (NLP) techniques to identify ICS vendor web-
sites, automate the collection of website-accessible documents, and automatically derive
metadata from them for identification of documents relevant to this dataset.

All of the ICS device information documents that our framework curates were down-
loaded from vendor websites in PDF format.

Out of 19,793 documents, we scraped across the identified vendor websites; 3% were
unreadable, and 5% were scanned documents. ICS product-related documents accounted
for 63% of the downloaded documents. From those 12,581 product-related documents, 25%
were classified as “manual,” 69% were classified as “brochure,” and 6% were “catalogs”.
On average, each of the product-related documents contained 31.2 pages. Some statistics
from this repository are presented in Table 1.

The PyMuPDF python package was used to extract text from readable documents, and
the Pytesseract python package was employed for optical character recognition (OCR)
from any scanned PDF. These documents contain regular paragraphs, tables, lists, and
images. Our system aimed to extract sequences from all of those document entities. Across
the collection of ICS-related documents in our dataset, we extracted 216,0517 sequences
with 41,073,376 words.

J. Cybersecur. Priv. 2021, 1 621

Table 1. ICS vendor and documents statistics in repository.

Manual Brochure Catalog

Number of entities 2844 7832 666

Number of documents per vendor
Mean 19.77 47.75 4.06
Max 164 839 111
Min 0 0 0

Number of pages per vendor
Mean 19.77 3.37 83.84
Max 164 12 2155
Min 0 0 0

Number of pages per document
Mean 29.51 3.12 164.67
Max 292 14 2155
Min 3 1 10

Bias in machine learning often is the result of bias present in the training data set
and is a known problem for any language model [35], including when training CyBERT.
Language models such as BERT and GPT are well known to exhibit an exploitable biases,
including for unethical AI behavior [36], the irresponsible use of AI [37], perpetuating
stereotypes [38], and negative sentiments towards specific groups [39].

According to these articles, these issues are due to the characteristics of the training
data. We therefore tried, as much as possible, during the curation of our dataset to remove
any sequences that contained obvious bias towards or against vendors, devices, capabilities,
etc., but we nevertheless do not presume that there is no bias present in our dataset. Hence,
we are committed in our ongoing efforts to further evaluate and mitigate the bias within
CyBERT’s training data set, as well as from CyBERT’s operation.

4.2. Fine-Tuning BERT

An appropriate fine-tuning strategy is needed to adapt BERT to a given downstream
task in a target domain. Howard and Ruder have discussed the benefits of fine-tuning a
language model on a specific dataset to improve the classification performance [3]. An
illustration of the architecture for CyBERT is in Figure 3, where the model starts with initial
weights from a general corpus and is subsequently fine-tuned based on target task-specific
supervised data for text classification.

CyBERTBERT from Devlin et.al (2018)

Generic Corpora

English WikipediaBooks Corpus

E[CLS] E1 En

Trm Trm Trm

Trm Trm Trm

T[CLS] T1 Tn

Initialize Weight

E[CLS] E1 En

Trm Trm Trm

Trm Trm Trm

T[CLS] T1 Tn

Fine-tune BERT

SoftMax
Class
label

Cyber Security Claim
Sequences Dataset

Figure 3. Overview of fine-tuning BERT for CyBERT.

A critical issue that must be considered when fine-tuning BERT for a target task is
the problem of overfitting. It is necessary to develop a better optimization method with a

J. Cybersecur. Priv. 2021, 1 622

suitable learning rate. In the following subsections, we describe in detail our strategies for
learning rate (LR) and epoch limit selection to avoid catastrophic forgetting and overfitting,
respectively. A third consideration for fine-tuning a BERT classifier is determining the
most informative layer of BERT to connect to the classifier layer. The final fine-tuning step
is finding best number of dense layers and dropout rate for the classifier based on the
hyperparameters and the dataset.

4.2.1. Hyperparameters
4.2.1.1. Catastrophic Forgetting

During the process of learning new knowledge by unlocking weights already es-
tablished from prior training, there is a risk that the pre-trained knowledge is erased.
McCloskey et al. referred to this as the catastrophic forgetting effect in transfer learn-
ing [40]. Sun et al. showed that BERT is prone to the catastrophic forgetting problem [15].
We fine-tuned BERT with different learning rates (ranging from 1× 10−4 to 1× 10−7) in
order to investigate the catastrophic forgetting effects. Figure 4 shows the learning curves
of error rates in our training and validation sets. The validation set is a portion of the
overall data set and was used to determine whether the learned patterns are extendable to
unseen data.

As demonstrated by Sun et al.’s [15] method, unfreezing all transformer layers and
concatenating the layer weights would reduce the error rate. Therefore, we unfroze all
layers in the BERT model during CyBERT’s fine-tuning process. This allows all weights
to be updated in all the layers during the training process. We conducted the training
repeatedly, in order to allow us to fine-tune the selection of our starting learning rate,
and then we carefully monitored the training progress, specifically to avoid the risk of
catastrophic interference for the model.

(a) LR=1 x 10-4 b) LR=1 x 10-5 c) LR=1 x 10-6 d) LR=1 x 10-7

Figure 4. Learning rate effect on model convergence.

Figure 4 shows that a lower learning rate, such as 1× 10−6, is necessary for our fine-
tuned BERT model in order to overcome the catastrophic forgetting effect. Furthermore,
the figure also shows that fine-tuning BERT using a higher learning rate, such as 1× 10−5

or 1× 10−4, results in convergence failure.
We utilized the cyclic method explained by Smith to determine the optimal learning

rate range for our model [41]. In this method, the learning rate is initially low, and then it
is increased exponentially for each batch. To find the best learning rate, we plotted training
loss results for each batch. The best initial value of the learning rate was somewhere around
the middle of the sharpest descending loss curve (left plot) or the lowest value in the loss
derivatives with respect to the learning rate (red arrow in the right plot in Figure 5).

J. Cybersecur. Priv. 2021, 1 623

Optimum Learning
Rate Range

Optimum Learning Rate Value

Figure 5. Impact of learning rates when fine-tuning our model.

We analyzed different values within the optimal range shown in Figure 5 to determine
the best initial learning rate for our model. In our model, the loss function started to
decrease very rapidly when the learning rate was between 1× 10−7 and 1× 10−6 (see
Figure 5). By choosing a value in this range, we still were able to further decrease the LR
using ReduceLROnPlateau. ReduceLROnPlateau reduces learning rate by a factor of 0.5 if
the validation loss does not improve after two iterations (epochs).

4.2.1.2. Overfitting

Choosing the exact number of training epochs to use is a common problem in training
neural networks. Overfitting of the training dataset can be caused by too many epochs,
whereas underfitting may result from too few iterations. By selecting an appropriate
early-stopping method we can start with a large number of epochs and stop the training
process if the monitored metric does not show any improvement. This alleviates the needs
to manually select the number of epochs and instead utilize a data-driven automation
approach. In our model, we monitor the validation loss value and will stop training after
four epochs if it does not show any improvement.

4.2.2. Selecting Optimal Classification Layer

The BERT-base model consists of an embedding layer, a stack of 12 encoders for the
base model, and a pooling layer. The input embedding layer operates on the sum of the
token embeddings, the segmentation embeddings, and the position embeddings. The final
hidden state from encoders is corresponding to the special classification token (CLS).
For the text classification task, this token is used as the aggregate sequence representation.

The first layer after the encoders is the next sentence prediction (NSP) layer. The NSP
layer is utilized to understand sentence relationships [5]. This layer transforms the last
encoder layer output (CLS token) into two vectors, each representing IsNext and Not-
Next, respectively. The NSP layer then is connected to a fully connected neural network
for classification.

We did not freeze any of the layers during the fine-tuning process. In this way,
the model will adjust BERT’s pre-trained weights based on our dataset, hyperparameters,
and our given downstream task.

4.2.3. Selecting the Optimal Number of Dense Layers

Different layers of a neural network can capture different levels of syntactic infor-
mation for text classification [3]. We studied the impact of different numbers of fully
connected dense layers on top of the stacked encoders in BERT, in order to determine
the best model based on our given dataset. The hyperparameters we adapted here are
the different dropouts and the number of neurons for each dense layer. We achieved the
best results for two dense layers with 64 and 16 neurons and dropout rates of 0.5 and 0.3,
respectively. Table 2 shows the highest accuracy and learning rate based on the different
number of dense layers.

J. Cybersecur. Priv. 2021, 1 624

Table 2. Comparing different number of dense layers in fine-tuning CyBERT.

Model Architecture LR Accuracy F1 Score

BERT base + 1 dense 2× 10−5 0.92 0.91
BERT base + 2 dense 2× 10−6 0.92 0.92
BERT base + 3 dense 4× 10−6 0.948 0.932
BERT base + 4 dense 1× 10−5 0.93 0.93

4.2.4. Labeling Process

We designed and implemented a mobile application to aid in the manual labeling of
extracted sequences. A snapshot of the application is provided in Figure 6. This mobile
app was written as a Xamarin.Forms app [42], an open-source mobile app development
framework for building Android and iOS apps with .NET and C#. This application
supports initial labeling and relabeling and also supports labeling using multiple people,
by associating designated labels with the person providing that label. This can subsequently
be used for outlier removal, computation of majority decisions on final labels, and more.

Figure 6. A snapshot of the manual labeling mobile app.

4.2.4.1. Initial Labelling

We manually labeled sequences extracted from a sample of ICS device documents.
Claim sequences were initially categorized into three types, including generic claims,
device claims, and cybersecurity claims. Having these individual claim types will help
future investigation regarding claim type detection. For the purpose of this study, we
grouped all these types of claims as claim labels and also removed the sequences with the
“Not Sure” label from the classification dataset.

4.2.4.2. Prediction-Guided Relabeling Process

After obtaining our initial labeled dataset, we used it to train CyBERT. We followed
the fine-tuning process we detailed earlier in this article. The trained model was then used
to predict the class labels for each sequence, and we compared the results with the manual
labels. From that comparison, we could find that there were a number of sequences whose
class prediction probability was in the vicinity of 0.5, indicating a large uncertainty in
some instances. We carefully reviewed each of those cases and adjusted the labels where
necessary. The final class count and their distribution are reported in Table 3.

J. Cybersecur. Priv. 2021, 1 625

Table 3. Number of sequence labels and label distribution in each class.

Class Label Final Label Counts Final Label Distribution

NotClaim 4544 67.189%
ClaimDevice 848 12.53%
ClaimGeneric 807 11.93%
ClaimCybersec 335 4.95%
NotSure 226 3.34%

After this label review process, we repeated the fine-tuning process to obtain new
model parameter values. A comparison of the obtained results pre- and post-label re-
view demonstrate the improvement to CyBERT from this iterative refinement process.
The obtained probabilities were sorted and plotted in the Figure 7, showing that we could
successfully reduce the model uncertainty.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
ob

ab
ili

ty
 o

f s
eq

ue
nc

e
be

in
g

a
cl

ai
m

b) Revised Labeling

sequence not being a claim sequence being a claim

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
ob

ab
ili

ty
 o

f s
eq

ue
nc

e
be

in
g

a
cl

ai
m

a) Initial labeling

sequence not being a claim sequence being a claim

Figure 7. Sorted probabilities with (a) initial labeling and (b) revised labeling.

4.3. Classifier Training

One of the benefits of the pre-trained model is being able to train a model for down-
stream tasks by utilizing relatively small training data sets [15]. We manually labeled
6763 sequences from a set of documents then fine-tuned BERT on the resulting dataset.
For training the classifier, we evaluated the impact of selecting different number of dense
layers and learning rate values.

We subsequently tested the model on our dataset and adjusted labels for sentences
causing uncertainty within the model. This iterative process helped us to reduce the
uncertainty of our tuned model (Figure 7). We fine-tuned BERT on the revised database
and tuned the associated hyperparameters to improve the claim classifier. The final model
accuracy we achieved with CyBERT was 94.4%. We set the sequence length and batch size
to 128 and 32, respectively.

J. Cybersecur. Priv. 2021, 1 626

4.3.1. Impact of Randomness

Fine-tuning BERT on a small dataset can be unstable [5]. Randomness in machine
learning models can happen because of randomly initialized weights and biases, dropout
regularization, and optimization techniques [43]. To investigate their effects and impact on
our model, we performed the training stage 100 times, using the same model hyperparam-
eters and only varying the random seeds, in order to achieve a statistically reliable result
for our model accuracy.

The distributions of the training accuracy, validation accuracy, and testing accuracy are
plotted in Figure 8. Table 4 reports the standard deviation, mean, and confidence interval
(CI), as well as the margin of error for 100 training runs each for validation, training, and
testing. These plots and the associated table show that CyBERT’s true accuracy was within
the 0.943 and 0.945 interval with a 95% CI.

These results suggest that the accuracy of our model can be impacted by the ran-
dom seed value selection. Therefore, based on the recommendation published in the
literature [5], we chose the random seed that leads to the highest validation accuracy
for CyBERT.

Table 4. Standard deviation and mean for training, validation, and testing accuracy.

Dataset SD Mean CI (95%) Margin of Error

Training 0.012 0.959 0.957 to 0.961 0.00235
Validation 0.006 0.944 0.943 to 0.945 0.00118
Testing 0.007 0.935 0.934 to 0.936 0.00137

The results from Table 4 and Figure 7 confirms that even though our labeling set was
small, the resulting CyBERT classifier can successfully identify cybersecurity feature claims
within sequences with a high level of confidence.

(a) KDE (b) Boxplot (c) Histogram

Figure 8. Kernel density estimation (a); box plot (b) for training, validation, and testing accuracy; validation accuracy
histogram (c).

5. Results and Discussion

All the models in this study were executed on our university’s supercomputing
infrastructure, HCC Crane [44] with NVIDIA Tesla V100 GPUs with 16 GB of RAM per
GPU. To obtain an unbiased estimate of out-of-sample accuracy, we divided the sequence
dataset into training, validation, and test samples, utilizing 70%, 10%, and 20% or our total
dataset, respectively.

For the comparison of the models, we used accuracy and macro-weighted F1 for all
models. All accuracies reported in this article were based on predictions for the test set.
Macro-weighted F1 is a measure of a model’s accuracy on a dataset, which returns the
average F1 score considering the proportion for each label in the dataset.

J. Cybersecur. Priv. 2021, 1 627

5.1. Comparing CyBERT with Pre-Trained BERT for Sequence Classification

In order to evaluate our strategy for fine-tuning BERT, we compared the results
with BertForSequenceClassification. BertForSequenceClassification is a pre-trained BERT
transformer model released by the Google research group in [5] with a dropout layer
followed by a softmax classification/regression layer on top of the stacked decoder output.
The predicted probability of each label is calculated as:

P(c|h) = softmax(Wh) (1)

where h is the final hidden state of the first token in the BERT token embedding matrix
(CLS), and W is the matrix for task-specific parameters.

To evaluate the impact of the architecture and the training approach, we conducted
two separate experiments. In both, we started with the BertForSequenceClassification
model. This model is comprised of 12 stacked encoders, a dropout layer, and a classifier
layer. This model was initialized from pre-trained BERT.

In the first experiment, all transformer layers remained frozen. During training of
the classifier it can therefore only tune the last layer, which is the classification layer.
The resulting accuracy of this model on our dataset was 76%.

In the second experiment, for the purpose of comparison and to show the effect of fine-
tuning, we employed the same model architecture as in the first experiment but enabled
full fine-tuning by unfreezing all its layers. The fine-tuning process also involved finding
the optimum LR based on this model architecture and dataset.

Table 5 shows the best accuracy among all the learning rates we studied for both
approaches using BertForSequenceClassification, from among the tested range of 1× 10−2

to 5× 10−7. The results show that unfreezing all encoders during fine-tuning of the model,
training the classifier, and optimizing hyperparameters improved the model accuracy by
16 percentage points, from 76% to 92%.

As we have shown in the previous section, by further optimizing the architecture itself
and introducing additional layers, we could further improve CyBERT’s accuracy to 94.4%.

Table 5. Fine-tuning effect on BERT with one classification layer.

LR Accuracy F1 Score

BertForSequenceClassification 1× 10−7 0.76 0.72
Fine-tune BERT-base uncased 2× 10−5 0.92 0.91

5.2. Comparing CyBERT with Other Language Models
5.2.1. Generative Pre-Trained Transformer (GPT)

GPT models are unsupervised transformer language models that are trained on a
very large corpus of text. GPT-2 [6] was trained on a diverse corpus of unlabeled text
(40 GB of Internet text). The GPT-2’s main training objective is to be able to predict the next
word while all of the previous words are given. Although BERT and GPT are both very
strong language models, trained on a large corpus of data, and based on the transformer
architecture using masked self attention, they are fundamentally different. GPT-2 uses
decoder blocks from the transformers, while BERT utilizes encoder-only transformers.
The other main difference between these two models is the word embedding. GPT-2
takes word vectors as input and produces the probability estimation of the next word
as outputs (one token word at a time), while BERT uses the entire surrounding context
together. GPT-2-small contains a 12-layer decoder-only transformer with 12 attention heads.
Fine-tuning pre-trained GPT-2 is a two-stage semi-supervised approach. This process starts
with using the pre-trained GPT model weights to set the initial parameters (unsupervised).
Fine-tuning is then the supervised discrimination technique to adjust parameters to the
target task. In this study, we fine-tuned GPT-2 (small and medium) with our dataset after
unfreezing all layers in the transformer blocks. We also tried different learning rates and

J. Cybersecur. Priv. 2021, 1 628

reported the values in Table 6. Due to model limitations, we were not able to perform
GPT-2 large and GPT-2 extra large. We also requested OpenAI GPT-3 API services, but as
of the time of writing this article, we were still awaiting approval for resource access.

Table 6. Fine-tuning GPT-2 small and medium.

LR Accuracy F1 Score

GPT-2 Small

1× 10−2 0.86 0.84
2× 10−4 0.89 0.87
2× 10−3 0.88 0.85
2× 10−5 0.91 0.89
2× 10−6 0.85 0.81
2× 10−7 0.70 0.52

GPT-2 Medium

2× 10−2 0.87 0.85
2× 10−3 0.90 0.87
2× 10−4 0.90 0.86
2× 10−5 0.91 0.89
2× 10−6 0.92 0.91
2× 10−7 0.75 0.63

Table 6 indicates that the highest accuracy was 91%, which was achieved by the
GPT-2 medium model with an LR of 2× 10−6. We observe from Figure 9 that the GPT-2
classifier model will not converge if the learning rate is higher than 2× 10−6(blue lines) for
GPT-2 small, or 2× 10−7 (orange lines) for GPT-2 medium, respectively. This phenomenon
indicates the catastrophic forgetting effect present in the GPT-2 models. These plots indicate
that the acceptable hyperparameters for these models for training small and medium GPT-2
models are in the vicinity of 2× 10−6and 2× 10−7, respectively.

Figure 9. Loss changes for GPT-2 models with different learning rates: GPT-2 medium (left) and GPT-2 small (right) for
15 epochs.

5.2.2. ULMFiT

Universal language model fine-tuning (ULMFiT) [3] is a transfer learning method
for NLP tasks including text classification. The ULMFiT architecture includes a three-
layer weight-dropped LSTM (AWD-LSTM). The averaged stochastic gradient method
(ASGD) AWD-LSTM [45] uses the DropConnect method to regulate weights in the recurrent
networks. The ULMFiT training starts with a general language model pre-trained on a
large Wikipedia text corpus (103 million words). For any domain-specific task, ULMFiT
provides a discriminative fine-tuning process for the desired domain. The discriminative

J. Cybersecur. Priv. 2021, 1 629

fine-tuning refers to using different learning rates to tune each layer. The final step is
fine-tuning the updated language model on the target downstream task (such as text
classification). In order to compare our CyBERT model with ULMFiT, we used the gradual
unfreezing method to fine-tune ULMFiT. This process starts by only unfreezing the final
layer while keeping all others frozen. The process then fine-tunes the model for several
epochs and determines a new optimal learning rate for the tuned model up to this point
before repeating this process while gradually unfreezing all other layers. The accuracy for
each step is presented in Table 7.

Table 7. Fine-tuning ULMFiT.

Fine-tuning ULMFiT Accuracy F1 Score

Unfreeze last layer 0.83 0.83
Unfreeze last two layers 0.87 0.85
Unfreeze all layers 0.91 0.91

The best accuracy we achieved by fine-tuning ULMFiT on our dataset was 91% with
unfreezing all three-layer AWD-LSTM weights. Unfreezing all layers will update all
weights during the training process.

5.2.3. ELMo

Embeddings from language models (ELMo) [4] is a context-based word embedding
method. This model learns contextualized word representations using two layers of
BiLSTMs and a character-based encoding layer. Using a character-based layer, characters
are encoded into a word’s representation for the following two BiLSTM layers that enable
hidden states to enhance a word’s final embedding.

Classification using ELMo starts with tokenizing each sequence with ELMo, with the
resulting embedding vectors subsequently used as input to different NN models. In our
experiments using ELMo, we utilized a fully connected neural network, CNN, BiLSTM,
and LSTM in order to compare the results with our model. For each model, based on
the defined architecture, we first determined the best learning rate based on the method
explained in [41]. Table 8 summarizes the best results for each type of neural network.

Table 8. Classification using ELMo.

Architecture LR Accuracy F1-Score

ELMo + NN 2 Dense 9× 10−5 0.91 0.9

ELMo + CNN
3 Convolution 4× 10−7 0.91 0.89
2 Convolution 1× 10−4 0.91 0.89
1 Convolution 6× 10−5 0.92 0.9

ELMo + BiLSTM
3 BiLSTM 2× 10−4 0.87 0.85
2 BiLSTM 4× 10−6 0.88 0.86
1 BiLSTM 1× 10−4 0.91 0.89

ELMo + LSTM
3 LSTM 9× 10−4 0.89 0.86
2 LSTM 2× 10−4 0.89 0.87
1 LSTM 2× 10−5 0.90 0.88

Table 8 shows that the highest accuracy was achieved by using the ELMo tokenizer
and one convolutional layer with a filter size of 128, connected to two dense layers with
256 and 128 neurons, respectively, each followed by dropout layers with rates 0.3 and 0.2,
respectively.

J. Cybersecur. Priv. 2021, 1 630

5.3. Comparing CyBERT with Neural Networks

Traditionally, text classification with NN models utilized word-level embedding
methods such as GloVe. The problem with these embedding methods is that it removes the
contextual meaning of these words.

Throughout all of the different evaluations shown in the following sections for the
different NN models, in each case we first obtained the 768-dimensional BERT-Base uncased
tokenizer embeddings for each WordPiece token in the input sequences. By utilizing the
same tokenizer for all these models, we can exclude the effect of the tokenizer embedding
on a model’s performance.

5.3.1. Convolutional Neural Network

A convolutional neural network (CNN) is a class of artificial neural network models
that is capable of extracting abstract features from complex data. Through many iterations,
the model learns to map inputs to their class labels. CNNs are composed of two main
components: (1) the first component consists of several filters and pooling layers that are
applied to multi-dimensional arrays in order to create a feature space. These features are
abstractions of the most significant characteristics contained within the input data; (2) the
second component of CNNs contains a fully connected network that maps the extracted
features to their target. In classification problems, this target is a group of data that shares a
common property. In CNNs, the multi-dimensional output of the convolution component
is flattened and passed to the fully connected network.

We studied the impact of different values for the CNN hyperparameters, including the
number of convolutions, different dropout rates for each layer, and the number of dense
layers after the convolutions. For each architecture, the best learning rate was determined
using the LrFinder function [41]. The best accuracies for all architectures are reported in
Table 9.

Table 9. Comparing CNN-based classifier results using the BERT tokenizer.

Architecture LR Accuracy F1 Score

1 Convolution
1 Dense 4× 10−4 0.88 0.87
2 Dense 5× 10−4 0.87 0.87
3 Dense 1× 10−4 0.87 0.86

2 Convolution
1 Dense 5× 10−5 0.87 0.86
2 Dense 5× 10−5 0.87 0.86
3 Dense 2× 10−3 0.87 0.86

3 Convolution
1 Dense 4× 10−4 0.86 0.85
2 Dense 4× 10−4 0.86 0.85
3 Dense 1× 10−4 0.86 0.86

Table 9 shows that the best results were achieved using a network with one convolution
(128 filters) connected to a dense layer with 256 neurons followed by a dropout layer with
a 0.3 dropout rate.

5.3.2. LSTM

It has been shown in [46] that neural network models can be applied to learn dis-
tributed sentence representations and achieve good results in tasks related to sentiment
classification and text categorization with little external domain knowledge. In long short-
term memory (LSTM) neural networks, features are learned at the phrase-level by using a
convolutional layer. This convolutional layer then feeds sequences of such higher-layer
representations into LSTMs to learn their relationships to long-term features.

The LSTM model for NLP tasks requires an embedding matrix. We once again utilized
the BERT-based uncased tokenizer for embedding each token into its vector for initializing

J. Cybersecur. Priv. 2021, 1 631

the model. We evaluated different options for the number of LSTM and dense layers,
in order to determine the best hyperparameters and the resulting architecture. The best
learning rate for each architecture was determined again using the LrFinder function.
We achieved the best accuracy with an architecture comprised of a single LSTM with
150 hidden units and a 0.1 dropout rate, combined with two dense layers with 150 and
124 neurons, respectively, coupled with the BERT tokenizer. The achieved accuracies for
different configurations are reported in Table 10.

Table 10. Comparing LSTM-based classifier results using the BERT tokenizer.

Architecture LR Accuracy F1 Score

1 LSTM
1 Dense 1× 10−4 0.873 0.864
2 Dense 4× 10−5 0.867 0.830
3 Dense 5× 10−5 0.871 0.859

2 LSTM
1 Dense 2× 10−4 0.871 0.860
2 Dense 5× 10−5 0.872 0.862
3 Dense 4× 10−5 0.866 0.855

3 LSTM
1 Dense 2× 10−4 0.871 0.862
2 Dense 2× 10−3 0.865 0.853
3 Dense 5× 10−3 0.861 0.851

5.3.3. BiLSTM

Bidirectional LSTM models are especially suited for sequential modelling and can be
used to extract additional contextual information from the feature sequences provided by
the convolutional layer [47]. The bidirectional LSTM actually concatenates two one-way
actions to obtain the embeddings from the networks [48].

The BiLSTM recurrent network is once again utilizing the BERT-Base uncased tok-
enizer. In this model, we studied the impact of the number of BiLSTM layers, the number
of hidden LSTM dimensions, the dropout rates for each layer, and the number of dense
layers on top of the concatenated BiLSTMs. For each architecture, we determined the best
learning rate using the LrFinder function. Table 11 shows the achieved accuracies and F1
scores for each architecture configuration we tested.

Table 11. Comparing BiLSTM-based classifier results using the BERT tokenizer.

Architecture LR Accuracy F1 Score

1 BiLSTM
1 Dense 1× 10−5 0.88 0.87
2 Dense 5× 10−5 0.87 0.86
3 Dense 1× 10−4 0.88 0.87

2 BiLSTM
1 Dense 5× 10−4 0.87 0.86
2 Dense 4× 10−5 0.87 0.86
3 Dense 2× 10−5 0.87 0.85

3 BiLSTM
1 Dense 2× 10−5 0.87 0.86
2 Dense 4× 10−6 0.86 0.85
3 Dense 4× 10−5 0.87 0.86

Table 11 shows that the best result was achieved using a network with one BiLSTM
with 150 hidden units and a 0.1 dropout rate, which was connected to one dense layer with
150 neurons followed by a 0.1 dropout rate.

5.4. Performance Comparison for All Models

As shown in Figure 10, we presented the training and validation accuracy and the
loss values for all models during the training phase. The best validation accuracy was

J. Cybersecur. Priv. 2021, 1 632

achieved by CyBERT, proposed by our NLP model, with a 95.4% accuracy. The loss plots
indicate the effectiveness of the learning rate function we used for initializing all models.
Additionally, the loss plots show the effectiveness of the early-stopping method to avoid
overfitting in cases where the validation loss increases during the training phase.

Figure 10. Comparing training accuracy (left top), validation accuracy (right top), training Loss (bottom left), and validation
loss (bottom right) for all models.

Table 12 compares the accuracy for each model from our test set. The learning rates we
report in this table indicate the best LR we found for each model based on the architecture
and dataset we provided earlier. The learning rate was found via the LrFinder method
and fine-tuned during the training phase.

Binary classification algorithms are often evaluated using receiver operating charac-
teristic (ROC) curves. Instead of a single value, it provides a two-dimensional illustration
of classifier performance. ROC plots the false-positive rates against the true-positive rates
in classification. For the ideal classifier scenario, we want to observe a high true-positive
rate and a low false-positive rate [49]. Figure 11 compares the ROC curve for all the models
we tested in this study. The classifier was desired to be closer the upper-left corner of the
ROC curve plot. Figure 11 illustrates that our CyBERT classifier performed better in all
areas compared to all other models.

J. Cybersecur. Priv. 2021, 1 633

Table 12. Comparison across all tested models.

Model Architecture Accuracy Macro AUC Training *̂ Testing *̂ Trainable

Weighted F1 Time Time Parameters

CyBERT 12 Encoder 0.954 0.93 0.948 32,970 97 108,647,026(Our Model) 3 Dense
BERT 12 Encoder 0.76 0.72 0.773 7832 77 109,482,240Classifier 1 Dense
CNN with 1 Convolution 0.88 0.87 0.862 1470 75 11,330,286BERT Tokenizer 1 Dense
LSTM with 1 LSTM 0.86 0.83 0.852 1190 58 10,884,324BERT Tokenizer 2 Dense
BiLSTM with 1 BiLSTM 0.88 0.87 0.871 2412 61 12,604,804BERT Tokenizer 3 Dense

GPT2-Small 12 Decoder 0.9 0.87 0.908 37,640 134 125,444,1341 Dense

GPT2-Medium 24 Decoder 0.92 0.91 0.857 61,340 175 354,825,2161 Dense

ELMo + NN 2 Dense 0.91 0.9 0.910 3950 88 295,554

ELMo + CNN 1 Convolution 0.92 0.9 0.912 4128 105 16,778,2422 Dense

ELMo + LSTM 1 LSTM 0.90 0.88 0.916 15,603 74 19,785,4102 Dense

ELMo + BiLSTM 1 BiLSTM 0.91 0.89 0.897 18,216 58 15,854,2742 Dense

ULMFiT 3 AWD-LSTM 0.91 0.91 0.902 1873 42 62,652

*̂ Times are in seconds.

The other important parameter for a classifier is the “area under the ROC curve”
(AUC). Generally, the higher the AUC score, the better a classifier performs for the given
task [49]. The AUC is reported for all models in Table 12 and Figure 11, which indicate that
CyBERT had the highest AUC value among all tested models.

Figure 10 shows that the best value for AUC belongs to CyBERT, whichwasis 0.948.
This indicates that CyBERT is better at distinguishing classes than any other models we
compared it against in this study. The next-highest AUC values belonged to the ELMo
models, which were all at least three percentage points lower than CyBERT’s AUC.

The training time reported in Table 12 was only for the training phase after determin-
ing the optimum learning rate for each model. Language models such as BERT, GPT-2,
and ELMo typically require more time for the training phase because of the higher number
of trainable parameters. Among all these models, GPT-2 required the most time to complete
training, for both medium and small models, followed by our proposed model, CyBERT.
This result was expected based on the number of trainable parameters in these models.
Once trained, we do not need to repeat training for these models. They are ready to be
used for classification, unless the dataset needs to be updated.

J. Cybersecur. Priv. 2021, 1 634

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic curve (ROC)

CyBERT(our model) (AUC = 0.948)
ELMO+BiLSTM (AUC = 0.897)
ELMO+LSTM (AUC = 0.916)
ELMO+CNN (AUC = 0.912)
ELMO+NN (AUC = 0.910)
GPT2_Medium (AUC = 0.857)
GPT2_Small (AUC = 0.908)
BERTSequenceClassifier (AUC = 0.773)
CNN (AUC = 0.862)
LSTM (AUC = 0.852)
BiLSTM (AUC = 0.871)
ULMFit (AUC = 0.902)

Figure 11. ROC comparison for all models.

5.5. Summary of Results

Our CyBERT as well as the original BertForSequenceClassification employ 12 en-
coders. CyBERT employs two additional dense layers. The resulting F1 and accuracy
for CyBERT were 19 and 21 percentage points higher, respectively, than the performance
for BertForSequenceClassification, which indicates the fine-tuning effect on the model
performance. ULMFiT had the lowest number of trainable parameters and was the fastest
model in training and testing. However, it had a 4, 2, and 5 percentage point lower accuracy,
respectively, for accuracy, F1, and AUC, compared to CyBERT.

A comparison of the training and testing loss and accuracy results for all models is
also provided in Figure 10, with the red curve indicating CyBERT’s performance. The
macro-weighted F1 for CyBERT was 0.93, whereas, for GPT2-small, it was 0.87, which
represents a 6 percentage point improvement. Moreover, although CyBERT’s training time
was higher than the training times for the ELMo and ULMFiT language models, its accuracy
was 3 and 4 percentage points higher, respectively, which is a significant improvement.

6. Conclusions

We introduced CyBERT, a classification model obtained through fine-tuning the BERT-
base language model, utilizing our curated cybersecurity domain NLP dataset. This
classification model is motivated by our ongoing research in developing an unbiased,
objective, and semi-supervised approach, named CYVET, for vetting ICS device cybersecu-
rity implications through a process of automatically vetting vendor claims extracted from
device documentation via natural language processing against industry requirements. This
article details one of the core building blocks of the overall CYVET approach for vetting
cybersecurity claims.

We first generated a dataset comprised of a large number of ICS device documenta-
tions. We subsequently extracted and labeled sequences from these documents for the
purpose of this study. The resulting dataset was used to train a CyBERT that can be used to
detect claims about device features from within these documents. Our new CyBERT model
increased the accuracy of this classification task by 19 percentage points compared to the
original BERT text classifier.

J. Cybersecur. Priv. 2021, 1 635

We also provided an in-depth comparative analysis of BERT and CyBERT to show
the necessity of our fine-tuning strategies. In addition to CyBERT, we implemented other
pre-trained language models such as GPT-2, ELMo, ULMFiT, and various neural-network-
based models, including a convolution neural network (CNN), LSTM, and BiLSTM, for com-
parison against our presented model. The extensive experimental results showed the
effectiveness and robustness of CyBERT. The results demonstrate that the performance of
our CyBERT is better than that of all other models we tested as part of this study.

Author Contributions: Investigation, K.A., M.H. and H.S.; writing—original draft preparation, K.A.
and M.H.; writing—review and editing, K.A., M.H., H.S., K.P. and J.L.J.; supervision, H.S., M.H., K.P.
and J.L.J.; project administration, K.P. and J.L.J.; funding acquisition, H.S., M.H., K.P. and J.L.J. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the US. Department of Energy through a subcontract from
Oak Ridge National Laboratory, project No. 4000175929 (project CYVET).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research has been supported in part by the Department of Energy Cyberse-
curity for Energy Delivery Systems program and the Oak Ridge National Laboratory.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CYVET Cyber-physical security assurance
BERT Bidirectional encoder representations from transformers
CyBERT Cybersecurity BERT
ICS Industrial control systems
CR Cybersecurity requirements
VSF Vendor-supplied features
OT Operational technology
OCR Optical character recognition
NLP Natural language processing
ULMFiT Universal language model with fine-tuning
ELMo Embeddings from language models
GPT Generative pre-training
NER Name entity recognition
RE Relation extraction
QA Question answering
MLM Masked language model
NSP Next sentence prediction
LR Learning rate
CI Confidence interval
ASGD Averaged stochastic gradient
RNN Recurrent neural network
CNN Convolutional neural network
NN Neural network
LSTM Long short-term memory
BiLSTM Bidirectional LSTM
ROC Receiver operating characteristic
AUC Area under the ROC curve

J. Cybersecur. Priv. 2021, 1 636

References
1. Ameri, K.; Hempel, M.; Sharif, H.; Lopez, J., Jr.; Perumalla, K. Smart Semi-Supervised Accumulation of Large Repositories for

Industrial Control Systems Device Information. In Proceedings of the ICCWS 2021 16th International Conference on Cyber
Warfare and Security, Nashville, TN, USA, 25–26 Februray 2021; pp. 1–11.

2. Perumalla, K.; Lopez, J.; Alam, M.; Kotevska, O.; Hempel, M.; Sharif, H. A Novel Vetting Approach to Cybersecurity Verification
in Energy Grid Systems. In Proceedings of the 2020 IEEE Kansas Power and Energy Conference (KPEC), Manhattan, KS, USA,
13–14 July 2020; pp. 1–6.

3. Howard, J.; Ruder, S. Universal language model fine-tuning for text classification. arXiv 2018, arXiv:1801.06146.
4. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep contextualized word representations.

arXiv 2018, arXiv:1802.05365.
5. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
6. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners.

OpenAI Blog 2019, 1, 9.
7. Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: A pre-trained biomedical language representation model

for biomedical text mining. Bioinformatics 2020, 36, 1234–1240. [CrossRef] [PubMed]
8. Naseem, U.; Khushi, M.; Reddy, V.; Rajendran, S.; Razzak, I.; Kim, J. BioALBERT: A Simple and Effective Pre-trained Language

Model for Biomedical Named Entity Recognition. arXiv 2020, arXiv:2009.09223.
9. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. Albert: A lite bert for self-supervised learning of language

representations. arXiv 2019, arXiv:1909.11942.
10. Beltagy, I.; Lo, K.; Cohan, A. SciBERT: A pretrained language model for scientific text. arXiv 2019, arXiv:1903.10676.
11. Edwards, A.; Camacho-Collados, J.; De Ribaupierre, H.; Preece, A. Go simple and pre-train on domain-specific corpora: On the

role of training data for text classification. In Proceedings of the 28th International Conference on Computational Linguistics,
Barcelona, Spain, 8–13 December 2020; pp. 5522–5529.

12. Jwa, H.; Oh, D.; Park, K.; Kang, J.M.; Lim, H. exbake: Automatic fake news detection model based on bidirectional encoder
representations from transformers (bert). Appl. Sci. 2019, 9, 4062. [CrossRef]

13. Vogel, I.; Meghana, M. Detecting Fake News Spreaders on Twitter from a Multilingual Perspective. In Proceedings of the 2020
IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), Sydney, Australia, 6–9 October 2020; pp.
599–606.

14. Liu, C.; Wu, X.; Yu, M.; Li, G.; Jiang, J.; Huang, W.; Lu, X. A two-stage model based on BERT for short fake news detection. In
Lecture Notes in Computer Science, Proceedings of the International Conference on Knowledge Science, Engineering and Management,
Athens, Greece, 28–30 August 2019; Springer: Cham, Switzerland, 2019; pp. 172–183.

15. Sun, C.; Qiu, X.; Xu, Y.; Huang, X. How to fine-tune bert for text classification? In Lecture Notes in Computer Science, Proceedings of
theChina National Conference on Chinese Computational Linguistics, Kunming, China, 18–20 October 2019; Springer: Cham, Switzerland,
2019; pp. 194–206.

16. Khetan, V.; Ramnani, R.; Anand, M.; Sengupta, S.; Fano, A.E. Causal BERT: Language models for causality detection between
events expressed in text. arXiv 2020, arXiv:2012.05453.

17. Lee, J.S.; Hsiang, J. Patentbert: Patent classification with fine-tuning a pre-trained bert model. arXiv 2019, arXiv:1906.02124.
18. Araci, D. Finbert: Financial sentiment analysis with pre-trained language models. arXiv 2019, arXiv:1908.10063.
19. Liu, Z.; Huang, D.; Huang, K.; Li, Z.; Zhao, J. Finbert: A pre-trained financial language representation model for financial text

mining. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI, Yokohama, Japan,
16–18 January 2021; pp. 5–10.

20. Das, S.S.; Serra, E.; Halappanavar, M.; Pothen, A.; Al-Shaer, E. V2W-BERT: A Framework for Effective Hierarchical Multiclass
Classification of Software Vulnerabilities. arXiv 2021, arXiv:2102.11498.

21. Zhou, S.; Liu, J.; Zhong, X.; Zhao, W. Named Entity Recognition Using BERT with Whole World Masking in Cybersecurity
Domain. In Proceedings of the 2021 IEEE 6th International Conference on Big Data Analytics (ICBDA), Xiamen, China, 5–8
March 2021; pp. 316–320.

22. Chen, Y.; Ding, J.; Li, D.; Chen, Z. Joint BERT Model based Cybersecurity Named Entity Recognition. In Proceedings of the 2021
The 4th International Conference on Software Engineering and Information Management, Yokohama, Japan, 16–18 January 2021;
pp. 236–242.

23. Gao, C.; Zhang, X.; Liu, H. Data and knowledge-driven named entity recognition for cyber security. Cybersecurity 2021, 4, 1–13.
[CrossRef]

24. Tikhomirov, M.; Loukachevitch, N.; Sirotina, A.; Dobrov, B. Using bert and augmentation in named entity recognition for
cybersecurity domain. In Lecture Notes in Computer Science, Proceedings of the International Conference on Applications of Natural
Language to Information Systems, Saarbrücken, Germany, 24–26 June 2020; Springer: Cham, Switzerland, 2020; pp. 16–24.

25. Xie, B.; Shen, G.; Guo, C.; Cui, Y. The Named Entity Recognition of Chinese Cybersecurity Using an Active Learning Strategy.
Wirel. Commun. Mob. Comput. 2021, 2021, 6629591. [CrossRef]

26. Yin, J.; Tang, M.; Cao, J.; Wang, H. Apply transfer learning to cybersecurity: Predicting exploitability of vulnerabilities by
description. Knowl.-Based Syst. 2020, 210, 106529. [CrossRef]

http://doi.org/10.1093/bioinformatics/btz682
http://www.ncbi.nlm.nih.gov/pubmed/31501885
http://dx.doi.org/10.3390/app9194062
http://dx.doi.org/10.1186/s42400-021-00072-y
http://dx.doi.org/10.1155/2021/6629591
http://dx.doi.org/10.1016/j.knosys.2020.106529

J. Cybersecur. Priv. 2021, 1 637

27. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their
compositionality. In Proceedings of the Advances in Neural Information Processing Systems, Carson City, NV, USA, 5–10
December 2013; pp. 3111–3119.

28. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching word vectors with subword information. Trans. Assoc. Comput.
Linguist. 2017, 5, 135–146. [CrossRef]

29. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543.

30. Lample, G.; Ballesteros, M.; Subramanian, S.; Kawakami, K.; Dyer, C. Neural architectures for named entity recognition. arXiv
2016, arXiv:1603.01360.

31. Zhang, X.; Zhao, J.; LeCun, Y. Character-level convolutional networks for text classification. Adv. Neural Inf. Process. Syst. 2015,
28, 649–657.

32. Akbik, A.; Blythe, D.; Vollgraf, R. Contextual string embeddings for sequence labeling. In Proceedings of the 27th international
conference on computational linguistics, Santa Fe, NM, USA, 20–26 August 2018; pp. 1638–1649.

33. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s
neural machine translation system: Bridging the gap between human and machine translation. arXiv 2016, arXiv:1609.08144.

34. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December, 2017; pp.
5998–6008.

35. Bender, E.M.; Gebru, T.; McMillan-Major, A.; Shmitchell, S. On the Dangers of Stochastic Parrots: Can Language Models Be Too
Big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, Virtual Event Canada, New
York, NY, USA, 3–10 March 2021; pp. 610–623.

36. Leib, M.; Köbis, N.C.; Rilke, R.M.; Hagens, M.; Irlenbusch, B. The corruptive force of AI-generated advice. arXiv 2021,
arXiv:2102.07536.

37. McGuffie, K.; Newhouse, A. The radicalization risks of GPT-3 and advanced neural language models. arXiv 2020,
arXiv:2009.06807.

38. Basta, C.; Costa-Jussà, M.R.; Casas, N. Evaluating the underlying gender bias in contextualized word embeddings. arXiv 2019,
arXiv:1904.08783.

39. Hutchinson, B.; Prabhakaran, V.; Denton, E.; Webster, K.; Zhong, Y.; Denuyl, S. Social biases in NLP models as barriers for persons
with disabilities. arXiv 2020, arXiv:2005.00813.

40. McCloskey, M.; Cohen, N.J. Catastrophic interference in connectionist networks: The sequential learning problem. In Psychology
of Learning and Motivation; Elsevier: Amsterdam, The Netherlands, 1989; Volume 24, pp. 109–165.

41. Smith, L.N. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE winter conference on applications
of computer vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 464–472.

42. Hermes, D. Xamarin Mobile Application Development: Cross-Platform c# and Xamarin. Forms Fundamentals; Apress: Berkeley, CA,
USA, 2015.

43. Dodge, J.; Ilharco, G.; Schwartz, R.; Farhadi, A.; Hajishirzi, H.; Smith, N. Fine-tuning pretrained language models: Weight
initializations, data orders, and early stopping. arXiv 2020, arXiv:2002.06305.

44. Holland Computing Center (HCC) at University of Nebraska-Lincoln. Available online: https://hcc.unl.edu/ (accessed on 1
January 2021).

45. Merity, S.; Keskar, N.S.; Socher, R. Regularizing and optimizing LSTM language models. arXiv 2017, arXiv:1708.02182.
46. Zhou, C.; Sun, C.; Liu, Z.; Lau, F. A C-LSTM neural network for text classification. arXiv 2015, arXiv:1511.08630.
47. Liu, G.; Guo, J. Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing

2019, 337, 325–338. [CrossRef]
48. Liu, P.; Qiu, X.; Huang, X. Recurrent neural network for text classification with multi-task learning. arXiv 2016, arXiv:1605.05101.
49. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]

http://dx.doi.org/10.1162/tacl_a_00051
https://hcc.unl.edu/
http://dx.doi.org/10.1016/j.neucom.2019.01.078
http://dx.doi.org/10.1016/j.patrec.2005.10.010

	Introduction
	Motivating Context
	Goals and Contributions

	Related Works
	Background Knowledge
	Word Embedding
	Word-Level Embedding
	Contextualized Embedding

	Pre-Trained Models

	Proposed Architecture
	Dataset
	Fine-Tuning BERT
	Hyperparameters
	Selecting Optimal Classification Layer
	Selecting the Optimal Number of Dense Layers
	Labeling Process

	Classifier Training
	Impact of Randomness

	Results and Discussion
	Comparing CyBERT with Pre-Trained BERT for Sequence Classification
	Comparing CyBERT with Other Language Models
	Generative Pre-Trained Transformer (GPT)
	ULMFiT
	ELMo

	Comparing CyBERT with Neural Networks
	Convolutional Neural Network
	LSTM
	BiLSTM

	Performance Comparison for All Models
	Summary of Results

	Conclusions
	References

