
Fast GPU-Based Generation of Large
Graph Networks From Degree
Distributions
Maksudul Alam and Kalyan Perumalla*

Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States

Synthetically generated, large graph networks serve as useful proxies to real-world networks
for many graph-based applications. The ability to generate such networks helps overcome
several limitations of real-world networks regarding their number, availability, and access. Here,
we present the design, implementation, and performance study of a novel network generator
that can produce very large graph networks conforming to any desired degree distribution.
The generator is designed and implemented for efficient execution on modern graphics
processing units (GPUs). Given an array of desired vertex degrees and number of vertices for
each desired degree, our algorithm generates the edges of a random graph that satisfies the
input degree distribution. Multiple runtime variants are implemented and tested: 1) a uniform
static work assignment using a fixed thread launch scheme, 2) a load-balanced static work
assignment also with fixed thread launch but with cost-aware task-to-thread mapping, and 3)
a dynamic scheme with multiple GPU kernels asynchronously launched from the CPU. The
generation is tested on a range of popular networks such as Twitter and Facebook,
representing different scales and skews in degree distributions. Results show that, using
our algorithm on a single modern GPU (NVIDIA Volta V100), it is possible to generate large-
scale graph networks at rates exceeding 50 billion edges per second for a 69 billion-edge
network. GPU profiling confirms high utilization and low branching divergence of our
implementation from small to large network sizes. For networks with scattered
distributions, we provide a coarsening method that further increases the GPU-based
generation speed by up to a factor of 4 on tested input networks with over 45 billion edges.

Keywords: SIMT architectures, graph generation, GPU (graphic processing unit), random network, large graph

1 INTRODUCTION

1.1 Motivation
Random graph networks sometimes serve as useful proxies in modeling complex systems. To aid in
such use, network generation algorithms are employed to create random network instances on
demand (Penschuck et al., 2020). When the scale of the studied system is large (such as the Internet
(Faloutsos et al., 1999; Siganos et al., 2003), biological networks (Girvan and Newman, 2002), and
social networks (Leskovec, 2008; Kwak et al., 2010; Yang and Leskovec, 2015)), the generation
algorithms need to be carefully designed and implemented to increase the speed of generation. Also,
to accurately mimic the desired properties of a targeted network of interest, the generated proxies
need to preserve those properties. Degree distribution is one of the prominent properties by which
different network types are characterized. Therefore, generation of random networks conforming to
desired degree distributions is important in network applications.

Edited by:
Philippe Giabbanelli,

Miami University, United States

Reviewed by:
Ricardo Ferreira,

Universidade Federal de Viçosa, Brazil
JD Rudie,

Miami University, United States

*Correspondence:
Kalyan Perumalla

perumallaks@ornl.gov

Specialty section:
This article was submitted to

Big Data Networks,
a section of the journal

Frontiers in Big Data

Received: 08 July 2021
Accepted: 15 October 2021

Published: 26 November 2021

Citation:
Alam M and Perumalla K (2021) Fast

GPU-Based Generation of Large
Graph Networks From
Degree Distributions.

Front. Big Data 4:737963.
doi: 10.3389/fdata.2021.737963

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 7379631

ORIGINAL RESEARCH
published: 26 November 2021

doi: 10.3389/fdata.2021.737963

http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2021.737963&domain=pdf&date_stamp=2021-11-26
https://www.frontiersin.org/articles/10.3389/fdata.2021.737963/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.737963/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.737963/full
http://creativecommons.org/licenses/by/4.0/
mailto:perumallaks@ornl.gov
https://doi.org/10.3389/fdata.2021.737963
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2021.737963

Degree distributions may be specialized or general in nature,
and the network generators vary depending on the type of degree
distribution of interest. In the past, a few well-understood graph
models have been developed to capture the diversity of the degree
distributions in the generated network. These include
Erdős–Rényi (Erdős and Rényi, 1960), stochastic block models
(Holland et al., 1983), small-world (Watts and Strogatz, 1998),
Barabási–Albert (Barabási and Albert, 1999; Albert et al., 2000),
exponential random graph (Frank and Strauss, 1986; Robins
et al., 2007), recursive matrix (Chakrabarti et al., 2004),
stochastic Kronecker graph (Leskovec and Faloutsos, 2007;
Leskovec, 2010), and HOT (Carlson and Doyle, 1999) models.
Each of these models have been developed considering some
specific aspects of the networks. Many of these models generate
graphs with a pre-defined class of degree distributions. Here, we
focus on general degree distributions in which any desired set of
degrees can be specified as input.

1.2 Efficient Algorithms for Graph
Generation
As the scale of the network increases in terms of the number of
vertices and edges, the time taken to generate the network also
increases. Therefore, generation of large random graphs
necessitates efficient algorithms, in terms of both time and
space requirements. However, even efficient sequential
algorithms for generating such graphs were not prevalent until
recently. While some efficient sequential algorithms have
emerged (Chakrabarti et al., 2004; Batagelj and Brandes, 2005;
Leskovec and Faloutsos, 2007; Miller and Hagberg, 2011), these
algorithms can generate graphs with only millions of vertices in a
reasonable amount of time. Without efficient realization of the
generator on the computational platform, the generation of
graphs with billions of vertices can take a long amount of
computational time.

Advancements in computing hardware, software, and
algorithms have enabled increasing levels of variety,
sophistication and scale of generated graph networks. On
conventional processors, some of the early algorithms included
efficient sequential generators of Erdős–Rényi and
Barabási–Albert networks (Batagelj and Brandes, 2005), and a
distributed memory–based parallel algorithm to generate
networks with approximate power–law degree distribution
(Yoo and Henderson, 2010). Recent work has also developed
distributed memory–based parallel algorithms to generate exact
power–law degree distributions (Alam et al., 2013; Meyer and
Penschuck, 2016; Sanders and Schulz, 2016). A shared–memory-
based parallel algorithm has been designed for generating
networks with power–law degree distribution (Azadbakht
et al., 2016), and another massively parallel network generator
based on the Kronecker model is available (Kepner et al., 2018).
Highly scalable generators for Erdős-Rényi, 2D/3D random
geometric graphs, 2D/3D Delaunay graphs, and hyperbolic
random graphs are now known (Funke et al., 2019). R-MAT
(Chakrabarti et al., 2004) and stochastic Kronecker graph (SKG)
(Leskovec, 2010) are some popular models to generate networks
with power–law degree distribution using matrix multiplication.

The SKG model is notable in that the Graph500 group chose the
SKG model in their supercomputer benchmark due to its
simplicity of implementation.

In our previous work (Alam et al., 2016), we have shown that a
generalized and efficient generation of degree distribution-
conforming networks is possible using an approach based on
the Chung-Lu (CL) model (Chung and Lu, 2002a; Chung and Lu,
2002b). The model is suitable for generating proxy networks from
the degree distribution of nearly any real-world network. The CL
model is remarkable due to its similarity to the SKGmodel (Pinar
et al., 2011). In fact, the CL model can be used to not only replace
the SKG model, but also expand the generation to an even wider
range of degree distributions. An efficient sequential algorithms
for the CL model is available (Miller and Hagberg, 2011), as also a
distributed–memory parallel algorithm (Alam and Khan, 2015).
An efficient and scalable algorithmic method to generate
Chung–Lu, block two–level Erdős–Rényi (BTER), and
stochastic blockmodels have been previously presented by us
(Alam et al., 2016).

Although there has been progress in scalable generation on
conventional processor (CPU) systems, no algorithms have so far
been presented in the literature to exploit specialized accelerated
hardware that offers significantly faster computational
possibilities.

1.3 Graphics Processing Units-Based
Network Generation
In accelerated computing, graphics processing units (GPUs)
represent a cost-effective, energy-efficient, and widely available
parallel processing platform. GPUs are highly parallel, multi-
threaded, many-core processors that have greatly expanded
beyond graphics operations and are now widely used for
general purpose computing. Most desktops, laptops and
workstations contain this next generation computing based on
GPUs. They are now so prevalent that many high performance
computing and supercomputing systems are also built using GPU
hardware as the major computational workhorse. However,
conventional CPU-oriented algorithms are not ported easily to
GPU platforms. The unique execution mode of GPUs needs to
be carefully exploited to realize their promise of
computational speed.

The use of GPUs is prevalent in many areas such as scientific
computation, complex simulations, big data analytics, machine
learning, and data mining. Although GPUs are now being applied
to graph problems, there is a general lack of GPU-based network
generators. Some of the known works include a GPU–based
algorithm for generating Erdős–Rényi networks (Nobari et al.,
2011) and a GPU–based algorithm for generating random
networks (Leis et al., 2013) using the small–world model
(Watts and Strogatz, 1998). However, until recently no
GPU–based algorithm existed for other important degree
distributions such as power–law. In our previous research, we
presented the first GPU-based algorithms to generate networks
with power–law degree distributions (Alam, 2016; Alam et al.,
2016; Alam and Perumalla, 2017a; Alam and Perumalla, 2017b),
as well as a multi-GPU implementation for the same problem

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 7379632

Alam and Perumalla GPU-Based Graph-Generation from Degree Distributions

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

(Alam et al., 2019). So far, to the best of our knowledge, there is no
GPU-based algorithm to generate networks conforming to
arbitrary degree distributions.

1.4 Contributions and Organization
In this paper, we focus on achieving a GPU-based capability for
fast generation of random networks conforming to any specified
degree distribution. Our aim is achieve a high speed of graph
generation by designing and implementing new algorithms
specifically suited to the SIMT execution style required on
GPUs. Towards this end, we present a novel GPU-based
method, based on grouping the vertices by their degrees, that
leads to space and time efficient algorithms.

Our Main Contributions Are Summarized
Below
1. The algorithm presented here is the first GPU-based algorithm

published in the literature for degree distribution-based
network graph generation.

2. To improve the performance of network generation on GPUs,
we present a new distribution coarsening approach that
provides gains in run time without affecting the degree
distribution of the generated output graph.

3. The rate of network generation (measured in terms of millions of
edges generated per second) achieved by our algorithm design
and implementation (on a single CPU or GPU device) is among
the highest reported so far in the literature, exceeding 50 billion
edges per second for some test networks.

In Section 2, we recapitulate the basic concepts and the
algorithmic building blocks for degree distribution-conforming
graph generation, borrowing the terminology from our previous
work that was based on CPU platforms (Alam et al., 2016). In
Section 3, we build on this basic, generic framework and re-target
it specifically to suit the SIMT (single instruction multiple thread)
architecture of GPU accelerators. The GPU algorithms and task
scheduling approaches are described in the same section. A
detailed study of the runtime performance is presented in
Section 4 using multiple test networks. Performance
improvements are also reported using a degree distribution
coarsening scheme designed to improve the task-to-thread
mapping on the GPU architecture. The research is
summarized and future work is identified in Section 5.

2 THEORYANDALGORITHMIC APPROACH

2.1 Problem and Solution Approach
The problem of generating a random network that conforms to a
given degree distribution is defined as follows. The desired output
is a graph G(n, m) of n vertices and m edges such that the degree
of connectivity of each vertex conforms to a user-specified
distribution. That is, given an input degree distribution, a
random network is to be generated such that the edge
connectivity of vertices of the generated network obeys the
input degree distribution. The input could be specified either

as a desired histogram of the vertex degrees in the graph, or it
could be specified as the exact count of the connectivity degree for
each vertex in the graph.

Input: The input in general is an array in which element i the
number of neighbors bi of the i

th vertex. In other words, it is an
array of n expected vertex degrees, denoting one degree count per
vertex: B � b1, b2, . . . bn{ }, 0 ≤ bi < n. Let D � {d1, d2, . . . , dΛ} be
the set of all Λ distinct, non-zero degrees in B. Let ni be the
number of vertices each of which has an expected degree di. Note
that not all degrees need be present in the input distribution. In
other words, di for which ni � 0 are not included in the degree
distribution. Thus,

DD � (di, ni)|1≤ i≤Λ and 0< di < n and 0< ni ≤ n{ } (1)

represents the input degree distribution, where n � ∑Λ
i�1ni. Also,

we denote by S the sum of the degrees of all vertices, that is,
S � ∑Λ

i�1(dini).
Preprocessing: Our algorithm accepts either the sequence

of degrees B or the degree distribution DD as input. If B is
specified as input, it is converted into its equivalent DD degree
distribution. The vertices are grouped by their expected degrees: if
Vi � u|bu � di{ } is the group of vertices with expected degree di,
then ni � |Vi| is the number of vertices in Vi for 1 ≤ i ≤ Λ.
Therefore, in the rest of this paper, without loss of generality, we
assume the input is specified as DD.

The terms are illustrated in Figure 1 with a small example
graph comprising n � 13 vertices such that there are Λ � 4 unique
degrees given as D � 1, 2, 5, 7{ }. The input degree distribution,
therefore, is DD � (1, 7), (2, 3), (5, 2), (7, 1){ }. Therefore, there
are four groups, V1. . .V4, containing 7, 3, 2, and 1 vertices
respectively.

Output: With the preceding background, every edge e � (u, v)
in the output graph will correspond to exactly one of the
following two types:

1. Intra-group edge, or intra edge for short, is an edge
between u and v if both u and v belong to the same group,
that is, u, v ∈ Vi for some i, and

2. Inter-group edge, or inter edge for short, is an edge
between u and v if u and v belong to two different groups,
that is, u ∈ Vi and v ∈ Vj for some i ≠ j.

Problem.We now redefine the graph generation problem to that of
correctly and efficiently generating all the intra edges and inter edges.
The union of the two sets of edges will directly constitute a graph
network whose combined vertex-connectivity conforms to the
desired degree distribution specified as input. In generating both
types of edges, we exploit the Chung–Lu (CL) model in which any
pair of vertices u and v are connected by an edge with the probability
pu,v � bubv

S , where S � ∑ubu (assuming maxub
2
u ≤ S, we have 0 ≤ pu,v

≤ 1 for all u and v) (Chung and Lu, 2002a; Chung and LU, 2002b).
For simple graphs without self-loops (u≠ v), the expected degree of a
vertex u is ∑v

bubv
S � bu − b2u

S , which converges to bu for large graphs.

2.2 Vertex Labels
Each vertex is identified by a unique integer label from 1 to n
as follows. Let λi be the label of the first vertex of a groupVi, where
λ1 � 1 and λi � 1 +∑i−1

j�1nj for i > 1. Then, the vertices in Vi are

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 7379633

Alam and Perumalla GPU-Based Graph-Generation from Degree Distributions

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

labeled by the integers from λi to λi+1 − 1. Note that we only store
the starting label for each group, which requires O(Λ) memory.

2.3 Intra Edge Generation
In the case of generating any intra edge e � (u, v), where u, v ∈ Vi,
the edge (u, v) is created with probability pu,v � bubv

S � d2i
S , since

bu � bv � di. Notice that, for all pairs of u, v ∈ Vi, the probabilities
pu,v are equal. Thus generating the intra edges in Vi is equivalent
to generating an Erdős-Rényi (ER) random graph Gi(ni, pi) with
ni � |Vi| and pi � d2i

S . The ER model G(n, p) generates a random
graph with n vertices where each of n(n−1)2 possible potential edges
is selected and added to the generated graph with probability p.
We generate the intra edges on Vi for all i by generating ER
random graphs G(ni, d

2
i
S).

A simple algorithm to generate a random graph G(n, p) is as
follows: for each of the n(n−1)

2 potential edges, toss a biased coin
and select the edge with probability p. As an improvement over
this scheme, an efficient algorithm for the ER model based on an
edge-skipping technique is available (Batagelj and Brandes, 2005),
which we borrow to generate the inter edges for each group.

For each groupVi, to generate the intra edges as an ER random
graph G(ni, d

2
i
S), we apply the edge skipping technique on the

sequence of all potential edges. To save memory space, we avoid
creating explicit sequence of the edges. Instead, the edges are
represented by a set of consecutive integers 1, 2, . . ., Mi, where
Mi � (|Vi |

2) � (ni2), following a lexicographic order of the edges as
shown in Figures 2A,B. We select a subset of the integers from 1,
2, . . .,Mi by applying the skipping technique with the probability
p � d2i

S as follows. Let x be the last selected edge (initially x � 0).
The skip length ℓ is computed as ℓ � � log r

log(1−p)�, where r ∈ (0, 1] is a
uniform random number. The next selected edge is given by x←
x + ℓ + 1. The selected edge number x is converted into an edge

using the equations shown in Figure 2C. This process is repeated
until x ≥ Mi.

2.4 Inter Edge Generation
For generating all inter edges, consider any two groups Vi and Vj.
Given any u ∈ Vi, v ∈ Vj, the edge (u, v) is created with probability
pu,v � didj

S . Note that for all pairs of u ∈ Vi, v ∈ Vj, the probabilities
pu,v are equal. Therefore, generating the inter edges between Vi

and Vj is equivalent to generating a random bipartite graph
(Shang, 2010) formed by two columns of vertices, each with ni
and nj vertices respectively, and with an edge probability equal to
p � didj

S (see Figure 3A).
The edge skipping technique is also applied here to

generate the inter edges using the random bipartite model
(Figure 3A). In this case, the potential edges are represented
by consecutive integers 1, 2, . . .,Mij, whereMij � |Vi‖Vj| � ninj
(Figure 3B). Next, the edge skipping technique is applied on
this sequence with probability p� didj

S . The selected numbers x
are converted to the edges using the equations shown in
Figure 3C.

3 GRAPHICS PROCESSING UNITS-BASED
DESIGN AND IMPLEMENTATION

In this section, we will describe the details of the algorithmic
design and implementation for efficient execution on
a GPU.

3.1 Task Definition and Identification
To generate the whole graph, all possible intra and inter group
edges need to be visited, as previously outlined. Note that there

FIGURE 1 | Illustrative example of the input and preprocessing for a desired graph with n � 13 vertices.

FIGURE 2 | Illustration of intra edge sequences with a group Vi using G(n,p) model with ni � 4 and p � d2
i
S .

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 7379634

Alam and Perumalla GPU-Based Graph-Generation from Degree Distributions

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

are Λ intra edge groups and (Λ2) � Λ(Λ−1)
2 inter edge groups

that need to be evaluated. Therefore, there are a total of τ �
Λ(Λ+1)

2 such groups. Let T i,j represent the task of generating
edges between groups Vi and Vj, where di, dj ∈ D. When i � j,
task T i,i generates intra edges; otherwise T i,j produces inter
edges. Each edge generation task has a computational cost.
Let ci,j be the computational cost of executing task T i,j

defined as:

ci,j � α + βmi,j �
α + β

ni(ni − 1)
2

d2
i

S
, i � j

α + βninj
didj

S
, i≠ j,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2)

where, α is the fixed cost of time required to initialize a task, β is
the time to evaluate the generation of an edge, and mi,j is the
expected number of edges evaluated by task T i,j.

FIGURE 3 | Illustration of inter edge sequences between groups Vi and Vj with ni � 2 and nj � 3.

FIGURE 4 | Listing of edge generation tasks T i,j and relabeling to Qx .

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 7379635

Alam and Perumalla GPU-Based Graph-Generation from Degree Distributions

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

To simplify the discussion and implementation, a task T i,j is
relabeled from two indices (i, j) to a single task number x denoted
by Qx, where x � i(i−1)

2 + j. Let cx be the computing cost of task
Qx, that is, cx � ci,j for the original task T i,j. A visual depiction of
the tasks is shown in Figure 4.

The relabeled task Qx can be converted to the original label
T i,j using the functions:

TASK_TO_IJ(x) � (i, j) ≡ ⌈−1 +
������
1 + 8x

√
2

⌉, x − i(i − 1)
2

().
(3)

3.2 Graphics Processing Units
Implementation of Intra and Inter Edge
Generation Kernels
The GPU implementation is achieved in terms of functions called
“kernels” that are launched from the CPU and executed on the
GPU. The kernels for the intra– and inter– groups are presented
in Algorithm 1. The kernels Kernel-Intra and Kernel-
Inter execute the edge generation tasks for intra edges and inter
edges, respectively.

Kernel-Intra uses the following parameters: a thread
identifier (tid), the number of GPU threads (NT), a group index
(i), a starting edge index (bstart), and an ending edge index
(bend) to process the task T i,i. As described in (Alam et al.,
2016), any task T i,i can be divided into an arbitrary number of
sub-tasks for the (ni2) potential edges. Here,
1≤ bstart ≤ bend ≤ (ni2) represent the starting and ending
potential edge candidate sequence of a sub-task. Next, the
sub-task is processed by NT concurrent GPU threads with �n
potential edge candidates processed per GPU thread. The
variables estart and eend denote the starting and ending
potential edge candidates of the sub-task for each individual
threads, respectively. Using a random number r ∈ (0, 1], the

skip length ℓ is computed in line 7. For computing the skip
length, the probability is computed in line 4 as per the CL
model formulation. The next selected edge x is computed in
line 7 and converted to edge (u, v) in line 9. In line 10, the edge
thus generated is represented by (u, v) ≡ (λi + u, λj + v) for the
whole graph.

Kernel-Inter uses the following parameters: the thread
identifier (tid), the number of GPU threads (NT), two group
indices (i, j), a starting edge index (bstart), and an ending edge
index (bend) to process the task T i,j. The task T i,i can be divided
into an arbitrary number of sub-tasks between 1 and ninj. Here, 1
≤ bstart ≤ bend ≤ ninj represent the range from starting to ending
edge indices of work for a sub-task. Similar to the intra kernel, the
sub-task is processed by NT concurrent GPU threads with �n
potential edges processed per GPU thread. The kernel is quite
similar to the kernel Kernel-Intra except for the probability
(p) calculation and edge conversion.

3.3 Scheduling the Graphics Processing
Units-Based Execution of Edge Generation
Tasks
With this task organization, the challenge in efficient network
generation becomes that of efficiently scheduling the bag of edge
generation tasks Q � {Qi} onto the GPU processing elements.
Note that each Qi is either an intra-edge generator or inter edge
generator, and the number of edges generated within each task is
not uniform.

A GPU consists of many streaming multiprocessors (SMs),
each of them consisting of multiple streaming processors (SP) or
cores on which GPU threads execute the application’s kernels.
GPU threads are organized in a two-level hierarchy of a grid of
blocks. A block consists of a specified number of GPU threads,
typically up to 1,024 threads. A grid consists of many blocks
typically up to 231 − 1 blocks. Each block is executed by one SM
and cannot be dynamically migrated to other SMs in the GPU.
When a block is executed on an SM, all the GPU threads within
the block are executed concurrently. A single SM can run several
concurrent blocks depending on the hardware resources
available.

To process the set of edge generation tasksQ we designed and
implemented the following three schemes to launch, schedule,
and execute the tasks on the GPU:

1. GPU Dynamic: Dynamic Asynchronous Kernel Launch
2. GPU Static: Static Kernel Launch, and
3. GPU Static LB: Static Kernel Launch with Load Balanced Cost

Partitioning.

3.3.1 Graphics Processing Units Dynamic: Dynamic
Asynchronous Kernel Launch
In the dynamic launch scheme, every individual task is launched
independently and asynchronously on the GPU and is allowed to
utilize the entire GPU resources to generate the edges assigned to
the task. As the edge generation tasks are arbitrarily divisible as
previously described (Alam et al., 2016), each edge generation

ALGORITHM 1 | GPU Kernels for Generating Edges using Edge Skipping.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 7379636

Alam and Perumalla GPU-Based Graph-Generation from Degree Distributions

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

task is divided into multiple blocks and threads. Algorithm 2
shows the dynamic launching scheme. The CPU code launches
the GPU kernels (line 6 and 9) based on type of the task (whether
it is an intra-edge or inter edge generator). To distribute the task
across multiple concurrent threads and blocks, we use a fixed
GPU threads, NT per block. The number of GPU blocks is then
determined by NB (line 5 and 8) based on the computational cost,
which in this case is assumed to be the expected number of edges
to be generated.

The specific choice of NT and NB varies with the specific GPU
hardware being used. For instance, with the GPU used in our
experiments, the runtime performance profile from the NVIDIA
profiling tool nvprof shows the number of registers per kernel to
be 62. Among the choices for NT, 512 threads was observed to
provide the best performance, while 1,024 threads is the upper
limit considering the number of registers per kernel. The
hardware limits set by the graphics card provide up to 128
registers per thread, and the maximum number of registers
per block is 65536. This would imply that our kernel can be
executed with NT ≤ 1024 threads per block without exceeding the
hardware register limits. In practice, we found that the NT � 512
thread-execution achieves a slightly higher runtime performance
than the 1024-thread execution. For this reason, we set the
number of threads to 512. Similarly, we used a block size NB

of 20000. Although this setting can be varied by problem size, we
found experimentally that this value provides the best runtime
performance across different networks. However, clearly this
choice of block size will in general vary with the specific GPU
card, as it does for many GPU applications.

Note that, as multiple GPU kernels are launched
asynchronously by the CPU host, we need to synchronize the
GPU after a number of kernels (32 in our experiments) are
launched, to avoid any scheduling overhead. Between
synchronization points, multiple independent GPU streams are
used to avoid needless ordering among the kernels, so that the
GPU can execute all scheduled tasks whenever hardware
resources become available.

Although dynamic launching of kernels is simple to
implement and effective in many applications, there are
potential disadvantages in the context of graph generation.
One of the main problems is that, due to the non-uniformity
of work across tasks, the number of edges generated per thread
can be low, which makes the thread execution overhead high.
Another issue is that the distribution of computation cost across
the tasks can be skewed; moreover, the number of tasks can

become very high (as in the case of large values of Λ). Therefore,
the dynamic scheme can incur significant kernel launch and
scheduling overheads. For some of the tasks with a low number of
expected edges, the overhead of kernel launch is too high to offset
the computational gain from launching that task on the GPU.
Note that the problem is magnified when the Λ2

m is higher, as
observed later in the experimental evaluation.

3.3.2 Graphics Processing Units Static: Static Kernel
Launch
In this static kernel launching scheme, we use a predefined
number of blocks (NB) and threads per block (NT) rather than
computing those dynamically based on the task workload. This
approach is shown in Algorithm 3. There is only one kernel
launch call as shown in line 11 using a predefined set of values
for NB and NT. Based on the insight that better performance can
be achieved by assigning more work to each thread (Volkov,
2010), this scheme aims to allocate more work to every thread
by distributing the edge generation tasks evenly among the
threads and setting appropriate values of NB and NT. The τ
edge generation tasks are distributed evenly among the NB

GPU blocks. Therefore, each GPU block executes �τ � τ
NB

edge generation tasks (line 2). A GPU block denoted by bid
executes tasks from tstart to tend (line 3). Each edge generation
task is executed by the NT concurrent threads on the
GPU based on the type of the task (intra or inter) on lines 7
and 9.

A potential issue with the static kernel launch is that it does not
specifically account for the computational cost for the processing
and scheduling of the edge generation kernels. As the distribution
of the computational cost of the tasks can be potentially skewed,
the expected number of edges produced by each GPU block may
vary significantly. Therefore, some GPU blocks may take
significantly longer amounts of time compared to other GPU
blocks. Note that the GPU does not guarantee the concurrent
execution of all GPU blocks at the same moment on the GPU
device; rather, it executes a limited number of GPU blocks
concurrently based on the available number of SMs. Once one
GPU block finishes execution, it is replaced by another GPU
block on the SM. Therefore, to get around this issue, we use a
sufficiently large number of GPU blocksNB such that longer GPU
blocks can continue to execute on the GPU while shorter GPU
blocks finish execution on the GPU and be replaced by other
unprocessed blocks.

3.3.3 Graphics Processing Units Static LB: Static
Kernel Launch With Load Balancing
To address the problem of skewed distribution of computational
costs among the edge generation tasks, we designed another
algorithmic variant that starts with the static launch scheme
and adds the Uniform Cost Partitioning (UCP) approach
presented in our previous CPU-based generator (Alam et al.,
2016). In this case, the task boundaries (tstart and tend) are
determined using a uniform distribution of the computational
cost. Each block executes the tasks based on the task boundaries
and, therefore, each block has nearly the same expected
computational cost as other blocks.

ALGORITHM 2 | Dynamic Kernel Launch.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 7379637

Alam and Perumalla GPU-Based Graph-Generation from Degree Distributions

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

4 PERFORMANCE STUDY

In this section, we present an evaluation of our generator and its
performance by an experimental study and analysis, in terms of
speed of generation and the quality of the output degree
distribution. The evaluation is performed using a range of
real-world input degree distributions. For the purposes of time
analysis, assuming a streaming mode of usage of the graphs, the
memory I/O time to write the graph is not included.

4.1 Hardware and Software
All experiments are executed on a computer consisting of Intel(R)
Xeon(R) Silver 4110 CPU with a 2.1 GHz clock speed and 256 GB
system memory. The machine also incorporates an NVIDIA
Tesla V100 GPU with 16 GB memory. The operating system is
Ubuntu 20.04 LTS. All software on this machine was compiled
with GNU gcc 7.4.0 with optimization flags -O3. The CUDA
compilation tools V11 were used for the GPU code along with the
nvcc compiler.

4.2 Input Degree Distribution
For the purposes of testing our algorithms, we used degree
distributions from publicly available real-world networks
(Boldi and Vigna, 2004; Boldi et al., 2008; Kwak et al., 2010).
The networks and their original and coarsened measures are
listed in Table 1 (degree distribution coarsening will be discussed
in the following subsections). The networks vary in the number of
vertices, edges, and the number of unique degrees. The number of

vertices vary from 1.98 million (Hollywood) to 1.07 billion (EU-
2015), and the number of edges vary from 49 million
(LiveJournal) to 69 billion (FB-Current). Similarly, the sizes of
the degree distributions also vary widely. Importantly, the ratio Λ2

m
has significant bearing on the GPU-based generation because it
determines the amount of variation of workload among the tasks.
The lower the ratio, the more uniform the workload distribution,
the greater the load balance, and the lower the divergence among
GPU threads, as will be seen later in the runtime performance
variation for the networks.

4.3 Generating NetworksWith Original Input
Degree Distribution
Table 2 shows the time taken for the generation of the networks
from the test network degree distributions shown in Table 1. The
time taken using a single CPU core is compared with the time
taken using each of our three algorithmic variants on the GPU. It
is observed that the GPU execution is faster than CPU execution
across the board. The time varies due to the size of the network
and the efficiency of the algorithm.

For a more uniform evaluation, the performance is normalized
using the metric of millions of events generated on average per
second, shown in Figure 5. The largest generation rate is seen in
the case of FB-Current network, followed by the Friendster
network. Both these networks have a low value of Λ2

m , which
translates to a large amount of concurrency across tasks. In other
words, the number of edges to be generated in each task is so large
that the overheads associated with thread launches and task
assignment are greatly amortized across the tasks.

4.4 Degree Distribution Coarsening
Since the value of Λ2

m has a strong bearing on the runtime
performance, the original input degree distribution needs to be
filtered into another equivalent degree distribution that preserves
the quality and shape of the distribution that has fewer bins and
hence increases the value of Λ2

m .
For this purpose, we designed a degree distribution coarsening

method shown in Algorithm 4. This method is based on an
intuitive approach as follows.

In large-scale networks, as the number of vertices gets larger,
the number of unique degrees also becomes larger. This

TABLE 1 | Original and coarsened input degree distributions of the test networks.

Network Original Coarsened

Name Vertices n Edges m Λ Λ2

m Λ* Λ*2

m

LiveJournal 4,889,483 49,520,700 1,877 0.0711 1,788 0.0646
Hollywood 1,977,070 113,906,622 5,361 0.2523 3,775 0.1251
Twitter 40,603,079 1,153,360,000 14,844 0.1910 12,876 0.1437

Friendster 65,608,366 1,806,065,000 3,148 0.0055 2,608 0.0038
WebGraph 445,394,551 3,140,069,461 26,890 0.2303 16,018 0.0817
UK-Union 127,980,140 4,462,300,000 39,826 0.3554 23,191 0.1205
EU-2015 1,070,557,254 45,896,130,800 71,218 0.1105 27,723 0.0167
FB-Current 721,094,633 69,014,500,000 4,999 0.0004 4,999 0.0004

ALGORITHM 3 | Static Kernel Launch.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 7379638

Alam and Perumalla GPU-Based Graph-Generation from Degree Distributions

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

increases the number groups, Λ. However, we notice from the
test networks that there are many unique degrees that are
relatively close together, that is, di and di+1 differ only by
very small amounts (for example, di+1 � di + 1). When di is
relatively large (such as di � 1,000, it is clear that they can be
practically considered equal. However, without any
adjustments, the GPU algorithm will consider them as two
distinct groups and spend increased amount of computational
time in generating many inter edges and correspondingly fewer
intra edges. Because intra edge generation is much faster than
inter edge generation, and since the number of tasks grows
quadratically with the number of groups, the needless
distinction between di and di+1 when they are quantitatively
close creates a significant runtime overhead. Therefore, in our
coarsening method, we coalesce groups whose degrees are
numerically close to each other.

Quantitatively, we define a tolerance δ such that di and di+1 are
coalesced when di+1≤ (1 + δ)di, where a specific value of δ is chosen for
a given network, 0 < δ ≤ 1 (for EU-2015, δ � 0.02, for example). The
coalesced groups (di, ni) and (di+1, ni+1) are replaced by a composite
group (di, ni), where di � xyz and ni � xyz. Note that, after
coalescing, the groups are shifted left and reduced in number by
one, that is, (di, ni) is replaced by (di, ni), and (di+1, ni+1) is
removed from the distribution.

At the lower end of the degree distribution, the distinction
between the degrees would be important to preserve, even if

they are relatively close together. Therefore, we define a lower
threshold dcut below which we do not alter the degree
distribution. In other words, all di ≤ dcut of the original
input distribution are preserved unmodified in the
coarsened input distribution.

In Figure 6, the original input degree distributions are
compared with the coarsened input distribution by plotting
the number of vertices for each degree contained in the
distribution. The plots show a close match of the
distribution even while reducing the number of groups
and increasing the group sizes. In Table 1, the number of

TABLE 2 | Network generation time for original input degree distributions.

1 CPU core GPU runtime (s) CPU-GPU

Network Runtime (s) Static Static LB Dynamic Transfer (s)

LiveJournal 2.00 0.03 0.03 3.50 0.150
Hollywood 5.26 0.20 0.21 29.42 0.154
Twitter 48.76 1.35 1.44 232.68 0.151
Friendster 66.61 0.14 0.15 11.41 0.155
WebGraph 136.04 4.36 4.63 841.12 0.151
UK-Union 217.01 8.88 9.46 1,880.50 0.151
EU-2015 1,855.98 34.07 35.88 4,030.49 0.156
FB-Current 2,518.03 1.37 1.36 30.60 0.150

FIGURE 5 | Speed of generation (million edges generated per second) for the original input distributions.

ALGORITHM 4 | Input Degree Distribution Coarsening Algorithm.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 7379639

Alam and Perumalla GPU-Based Graph-Generation from Degree Distributions

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

groups, Λ, of the original input distribution is compared with
the reduced number of groups, Λ*, after coarsening the
distribution. For networks such as UK-Union and EU-
2015, the improvement in the smoothness is significant.
This is evident both in the reduction in the number of
groups from Λ to Λ*, and corresponding reduction from Λ2

m
to Λ*2

m . Because the number of tasks increases as the square of
the number of groups, the reductions from coarsening results
in significantly fewer and more uniformly loaded tasks for
execution on the GPU threads. This in turn results in
reduction in the overheads for thread launch and also

reduces the unevenness in the amount of work per task as
shown in Figure 7.

4.5 Generating Networks With Coarsened
Input Degree Distribution
Table 3 shows the time taken for the generation of the
networks from the test input degree distributions of Table 1
after applying the coarsening algorithm on them. Compared to
the time taken with the original input distributions, the time
taken with the coarsened input distributions is significantly

FIGURE 6 | Comparison of the original input degree distributions and coarsened input degree distributions.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 73796310

Alam and Perumalla GPU-Based Graph-Generation from Degree Distributions

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

reduced for some networks. On the CPU, the time is largely
unchanged, but the time on the GPU is significantly reduced.
This is particularly pronounced for EU-2015 in which the

coarsening significantly reduced the number of groups from
71,218 to 27,723 even while maintaining roughly the same
distribution as seen in Figure 6. Similarly, for UK-Union, the

FIGURE 7 | Million edges generated per second for the coarsened distribution.

TABLE 3 | Network generation time from coarsened input degree distribution.

1 CPU core GPU runtime (s) CPU-GPU

Network Runtime (s) Static Static LB Dynamic Transfer (s)

LiveJournal 2.01 0.02 0.03 3.21 0.154
Hollywood 4.85 0.12 0.12 14.20 0.153
Twitter 47.32 1.08 1.14 177.29 0.156
Friendster 66.28 0.12 0.12 6.97 0.151
WebGraph 120.11 1.93 2.02 380.90 0.152
UK-Union 184.26 3.50 3.71 645.57 0.156
EU-2015 1,707.34 8.49 8.69 1,030.88 0.154
FB-Current 2,518.03 1.37 1.36 30.60 0.156

FIGURE 8 | Factor of improvement in run time using coarsened versus original distribution.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 73796311

Alam and Perumalla GPU-Based Graph-Generation from Degree Distributions

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

number of groups is reduced by coarsening from 39,826 groups
to 23,191.

The factor of improvement in generation time when moving
from the original input distributions to the coarsened input
distributions is shown in Figure 8. It is seen that the run time is
largely unaffected on the CPU because the single-core
execution is largely insensitive to the workload variation
among the tasks; the large amount of CPU caching capacity
works well to smooth out most such variations in the working
set of the application. However, the gains are most prominent

on the GPU, especially for those distributions that exhibit wide
variance among the task workloads. As expected, the largest
gains are observed for the EU-2015 network, and the next best
is observed for the UK-Union and WebGraph data sets. The
speed is nearly doubled in the case of Hollywood and nearly
quadrupled in the case of EU-2015. Also, speed is more than
doubled forWebGraph and UK-Union. However, in the others,
coarsening does not lead to any appreciable reductions in Λ and
consequently does not appreciably improve the
generation time.

FIGURE 9 | Validating the output degree distribution from coarsened input distributions by comparison with that from original input distributions.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 73796312

Alam and Perumalla GPU-Based Graph-Generation from Degree Distributions

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

In Figure 9, the output degree distributions of the generated
networks are compared between the original and coarsened
inputs to validate the output degree distribution. The output
distributions show very close match between the output
networks generated from the original input distributions and
the output networks generated from the coarsened input
distributions. The closeness of the distributions of the
generated networks to the input distributions have been
quantitatively verified using the Kullback-Leibler (K-L)
divergence metric (also called relative entropy). For example,
in the case of the Twitter network, the difference is 0.11% and in
the case of the UK-Union network, the difference is 0.24%.
These are taken as acceptable differences due to the randomness
of the generated networks. These are documented in our
previous work with CPU-based algorithms (Alam and Khan,
2015; Alam et al., 2016).

4.6 Graphics Processing Units Performance
Metrics
In this section, we measure the performance of the GPU kernels
for network generation. The performance metrics was collected
using the native NVIDIA Profiler (nvprof) using various
performance metrics. The summary of the results is presented
in Table 4. For this profile, we use the static version of the
algorithm, executed with 512 threads per block. The number of
blocks is set to 20,000, which delivers the highest performance.
The profiles are collected for the smallest and largest networks,
namely, LiveJournal and FB-Current, respectively.

The registers/thread, which is the number of registers used
by each kernel executing within one thread, is determined to be
62, which allows our kernel to have 100% theoretical
occupancy. Theoretical occupancy is the number of threads
in a warp that were executed compared to the maximum
number of threads that could be executed. Although our
kernels can be launched with 100% occupancy, we use a
lower level of 50% theoretical occupancy, which gives better
runtime performance due to other caching effects–this is in
line with the insight in the literature on other applications that
a lower level of occupancy can increase runtime performance
to an extent (Volkov, 2010). Our achieved occupancy (45.70%
for the large network) comes close to the theoretical

occupancy. The streaming multiprocessor (SM) efficiency,
which is the percentage of time the SM is busy doing
application’s work, as opposed to scheduling and blocking
operations, is very high at 99.6%. Branch efficiency is also
observed to be very high (96.48%) on a small network, and
fairly high (89.60%) on the largest network.

5 SUMMARY AND FUTURE WORK

We presented a novel GPU-based algorithm for generating large
random networks that conform to desired degree distributions
provided as input. To our knowledge, this is the first algorithm
designed, implemented, and evaluated on GPUs for degree
distribution-defined network generation. Three algorithmic
variants are presented for execution on the GPU based on the
different scheduling strategies for mapping the generation tasks
to GPU threads. The algorithms have been implemented on a
modern NVIDIA GPU and a detailed performance study has
been performed using the degree distributions of a range of test
networks containing millions to billions of edges. The effect of
task size in terms of the number of edges to be generated is
observed to have significant bearing on the performance for some
test networks. To further improve the performance of the
generator on the SIMT architectures of GPUs, a distribution
coarsening method has been designed and implemented, which
retains the sizes and quality of the input distributions while
generating similar output distributions at an increased rate.
The overall network generation rates observed from our
performance study exceeds 50 billion edges generation per
second, which is among the fastest generation rates reported
in the literature using a single desktop computer.

Modern workstations commonly offer more than one GPU
connected to the same system. Our algorithm can be extended to
exploit the multi-GPU systems by scheduling the tasks across
multiple GPUs, which we intend to explore in future work.
Similarly, many modern high performance parallel computing
systems offer multiple interconnected machines, each containing
one or more GPUs. The approach presented here could be
extended to such distributed cluster of GPUs for increased
scale and speed of network generation.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: Webgraph, https://webgraph.di.unimi.it.

AUTHOR CONTRIBUTIONS

MAandKP equally contributed to the technical development andwrite
up. KP provided the oversight, motivation, and development structure.

TABLE 4 | Performance metrics of the kernels using the NVIDIA Profiler nvprof.

Metrics Smallest graph Largest graph
(LiveJournal) (FB-current)

Registers/thread 62 62
Theoretical occupancy 50.00% 50.00%
Achieved occupancy 39.19% 45.70%
SM efficiency 99.66% 99.65%
Branch efficiency 96.48% 89.60%
Warp execution efficiency 89.55% 77.18%

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 73796313

Alam and Perumalla GPU-Based Graph-Generation from Degree Distributions

https://webgraph.di.unimi.it
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

REFERENCES

Alam,M. (2016).HPC-basedParallelAlgorithms ForGeneratingRandomNetworksAnd
Some Other Network Analysis Problems. Ph.D. thesis. Salt Lake City: Virginia Tech.

Alam, M., Khan, M., and Marathe, M. V. (2013). “Distributed-memory Parallel
Algorithms for Generating Massive Scale-free Networks Using Preferential
Attachment Model,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (ACM), Denver,
Colorado, 1–12. doi:10.1145/2503210.2503291

Alam, M., and Khan, M. (2015). Parallel Algorithms for Generating Random
Networks with Given Degree Sequences. Int. J. Parallel Prog. Springer 45,
109–127. doi:10.1007/s10766-015-0389-y

Alam, M., Khan, M., Vullikanti, A., and Marathe, M. (2016). “An Efficient and Scalable
Algorithmic Method for Generating Large-Scale Random Graphs,” in SC16:
International Conference for High Performance Computing, Networking,
Storage and Analysis, Salt Lake City, Utah (Salt Lake City, Utah: IEEE), 32:1–32:
12. doi:10.1109/sc.2016.31

Alam, M., and Perumalla, K. S. (2017a). Generating Billion-Edge Scale-free Networks in
Seconds: Performance Study of a Novel GPU-Based Preferential Attachment Model.
OakRidgeNational Laboratory. Tech. Rep.ORNL/TM-2017/486. doi:10.2172/1399438

Alam, M., and Perumalla, K. S. (2017b). “GPU-based Parallel Algorithm for
Generating Massive Scale-free Networks Using the Preferential Attachment
Model,” in IEEE International Conference on Big Data (Big Data), Boston, MA,
USA (IEEE), 3302–3311. doi:10.1109/bigdata.2017.8258315

Alam, M., Perumalla, K. S., and Sanders, P. (2019). Novel Parallel Algorithms for
Fast Multi-GPU-Based Generation of Massive Scale-free Networks. Data Sci.
Eng. 4, 61–75. doi:10.1007/s41019-019-0088-6

Albert, R., Jeong, H., and Barabási, A.-L. (2000). Error and Attack Tolerance of
Complex Networks. Nature 406, 378–382. doi:10.1038/35019019

Azadbakht, K., Bezirgiannis, N., de Boer, F. S., and Aliakbary, S. (2016). “A High-
Level and Scalable Approach for Generating Scale-free Graphs Using Active
Objects,” in Proceedings of the 31st Annual ACM Symposium on Applied
Computing - SAC, Pisa, Italy (ACM Press). doi:10.1145/2851613.2851722

Baraba´si, A.-L., and Albert, R. (1999). Emergence of Scaling in RandomNetworks.
Science 286, 509–512. doi:10.1126/science.286.5439.509

Batagelj, V., and Brandes, U. (2005). Efficient Generation of Large Random
Networks. Phys. Rev. E. 71, 036113. doi:10.1103/physreve.71.036113

Boldi, P., Santini, M., and Vigna, S. (2008). A Large Time-Aware Web Graph.
SIGIR Forum 42, 33–38. doi:10.1145/1480506.1480511

Boldi, P., and Vigna, S. (2004). “The Webgraph Framework I: Compression
Techniques,” in International World Wide Web Conference(ACM), New
York, NY USA, 595–601. doi:10.1145/988672.988752

Carlson, J. M., andDoyle, J. (1999). Highly Optimized Tolerance: AMechanism for Power
Laws in Designed Systems. Phys. Rev. E. 60, 1412–1427. doi:10.1103/physreve.60.1412

Chakrabarti, D., Zhan, Y., and Faloutsos, C. (2004). “R-mat: A Recursive Model for
Graph Mining,” in SIAM International Conference on Data Mining, Lake
Buena Vista, Florida, 442–446. doi:10.1137/1.9781611972740.43

Chung, F., and Lu, L. (2002b). Connected Components in Random Graphs with
Given Expected Degree Sequences. Ann. Combinatorics 6, 125–145.
doi:10.1007/pl00012580

Chung, F., and Lu, L. (2002a). The Average Distances in Random Graphs with
Given Expected Degrees. Proc. Natl. Acad. Sci.National Academy of Sciences of
the United States of America 99, 15879–15882. doi:10.1073/pnas.252631999

Erdős, P., andRényi,A. (1960).On the Evolution of RandomGraphs. London: Publications
of the Mathematical Institute of the Hungarian Academy of Sciences 4, 17–61.

Faloutsos, M., Faloutsos, P., and Faloutsos, C. (1999). On Power-Law Relationships
of the Internet Topology. SIGCOMM Comput. Commun. Rev. ACM Press 29,
251–262. doi:10.1145/316194.316229

Frank, O., and Strauss, D. (1986). Markov Graphs. J. Am. Stat. Assoc. 81, 832–842.
doi:10.1080/01621459.1986.10478342

Funke, D., Lamm, S., Meyer, U., Penschuck, M., Sanders, P., Schulz, C., et al. (2019).
Communication-Free Massively Distributed Graph Generation. J. Parallel.
Distrib. Comput. 131, 200–217. doi:10.1016/j.jpdc.2019.03.011

Girvan, M., and Newman, M. E. J. (2002). Community Structure in Social and Biological
Networks. Proc. Natl. Acad. Sci. 99, 7821–7826. doi:10.1073/pnas.122653799

Holland, P. W., Laskey, K. B., and Leinhardt, S. (1983). Stochastic Blockmodels:
First Steps. Social Networks 5, 109–137. doi:10.1016/0378-8733(83)90021-7

Kepner, J., Samsi, S., Arcand, W., Bestor, D., Bergeron, B., Davis, T., et al. (2018).
“Design, Generation, and Validation of Extreme Scale Power-Law Graphs,” in
IEEE International Parallel and Distributed Processing SymposiumWorkshops
(IPDPSW), Vancouver, BC, 279–286. doi:10.1016/0378-8733(83)90021-7

Kwak, H., Lee, C., Park, H., and Moon, S. (2010). “What Is Twitter, a Social
Network or a News media,” in International World Wide Web Conference
Committee, Raleigh, North Carolina, USA, 1–10. doi:10.1145/1772690.1772751

Leis, V., Kemper, A., and Neumann, T. (2013). “The Adaptive Radix Tree: Artful
Indexing for Main-Memory Databases,” in IEEE International Conference on Data
Engineering, Brisbane, Australia (IEEE), 38–49. doi:10.1109/ICDE.2013.6544812

Leskovec, J. (2008).Dynamics of Large Networks. Ph.D. thesis. Pittsburgh: Carnegie
Mellon University.

Leskovec, J., and Faloutsos, C. (2007). “Scalable Modeling of Real Graphs Using
Kronecker Multiplication,” in International Conference on Machine Learning,
Corvalis, Oregon, USA, 497–504. doi:10.1145/1273496.1273559

Leskovec, J. (2010). Kronecker Graphs: An Approach to Modeling Networks.
J. Machine Learn. Res. 11, 985–1042. doi:10.5555/1756006.1756039

Meyer, U., and Penschuck, M. (2016). “Generating Massive Scale-free Networks under
Resource Constraints,” in Proceedings of the Eighteenth Workshop on Algorithm
Engineering and Experiments (ALENEX), Arlington, Virginia, USA. Society for
Industrial and Applied Mathematics. doi:10.1137/1.9781611974317.4

Miller, J. C., and Hagberg, A. (2011). Efficient Generation of Networks with Given
Expected Degrees,” in International Workshop on Algorithms and Models for
the Web-Graph, Springer, Berlin, Heidelberg. 6732. LNCS, 115–126.

Nobari, S., Lu, X., Karras, P., and Bressan, S. (2011). Fast Random Graph Generation.
Int. Conf. Extending Database Tech. 331, 331–342. doi:10.1145/1951365.1951406

Penschuck, M., Brandes, U., Hamann, M., Lamm, S., Meyer, U., Safro, I., et al.
(2020). Recent Advances in Scalable Network Generation. CoRR arXiv.
Available at: https://arxiv.org/abs/2003.00736.

Pinar, A., Seshadhri, C., and Kolda, T. G. (2012). “The Similarity between
Stochastic Kronecker and Chung-Lu Graph Models,” in SIAM
International Conference on Data Mining, Anaheim, California, USA,
1071–1082. doi:10.1137/1.9781611972825.92

Robins, G., Pattison, P., Kalish, Y., and Lusher, D. (2007). An Introduction to
Exponential RandomGraph (P*) Models for Social Networks. Soc. Networks 29,
173–191. doi:10.1016/j.socnet.2006.08.002

Sanders, P., and Schulz, C. (2016). Scalable Generation of Scale-free Graphs. Inf.
Process. Lett. 116, 489–491. doi:10.1016/j.ipl.2016.02.004

Shang, Y. (2010). Groupies in Random Bipartite Graphs. Appl. Anal. Discrete M. 4,
278–283. doi:10.2298/AADM100605021S

Siganos, G., Faloutsos, M., Faloutsos, P., and Faloutsos, C. (2003). Power Laws and
the As-Level Internet Topology. Ieee/acm Trans. Networking 11, 514–524.
doi:10.1109/TNET.2003.815300

Volkov, V. (2010). “Better Performance at Lower Occupancy,” in Proceedings of
the GPU technology conference (GTC). San Jose, CA, September 22, 2010, 16.

Watts, D. J., and Strogatz, S. H. (1998). Collective Dynamics of ’small-World’
Networks. Nature 393, 440–442. doi:10.1038/30918

Yang, J., and Leskovec, J. (2015). Defining and EvaluatingNetwork Communities Based
on Ground-Truth. Knowl Inf. Syst. 42, 181–213. doi:10.1007/s10115-013-0693-z

Yoo, A., and Henderson, K. (2010). Parallel Generation of Massive Scale-free
Graphs. CoRR arXiv. Available at: http://arxiv.org/abs/1003.3684.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Alam and Perumalla. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 73796314

Alam and Perumalla GPU-Based Graph-Generation from Degree Distributions

https://doi.org/10.1145/2503210.2503291
https://doi.org/10.1007/s10766-015-0389-y
https://doi.org/10.1109/sc.2016.31
https://doi.org/10.2172/1399438
https://doi.org/10.1109/bigdata.2017.8258315
https://doi.org/10.1007/s41019-019-0088-6
https://doi.org/10.1038/35019019
https://doi.org/10.1145/2851613.2851722
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1103/physreve.71.036113
https://doi.org/10.1145/1480506.1480511
https://doi.org/10.1145/988672.988752
https://doi.org/10.1103/physreve.60.1412
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1007/pl00012580
https://doi.org/10.1073/pnas.252631999
https://doi.org/10.1145/316194.316229
https://doi.org/10.1080/01621459.1986.10478342
https://doi.org/10.1016/j.jpdc.2019.03.011
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1145/1273496.1273559
https://doi.org/10.5555/1756006.1756039
https://doi.org/10.1137/1.9781611974317.4
https://doi.org/10.1145/1951365.1951406
https://arxiv.org/abs/2003.00736
https://doi.org/10.1137/1.9781611972825.92
https://doi.org/10.1016/j.socnet.2006.08.002
https://doi.org/10.1016/j.ipl.2016.02.004
https://doi.org/10.2298/AADM100605021S
https://doi.org/10.1109/TNET.2003.815300
https://doi.org/10.1038/30918
https://doi.org/10.1007/s10115-013-0693-z
http://arxiv.org/abs/1003.3684
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Fast GPU-Based Generation of Large Graph Networks From Degree Distributions
	1 Introduction
	1.1 Motivation
	1.2 Efficient Algorithms for Graph Generation
	1.3 Graphics Processing Units-Based Network Generation
	1.4 Contributions and Organization
	Our Main Contributions Are Summarized Below

	2 Theory and Algorithmic Approach
	2.1 Problem and Solution Approach
	2.2 Vertex Labels
	2.3 Intra Edge Generation
	2.4 Inter Edge Generation

	3 Graphics Processing Units-Based Design and Implementation
	3.1 Task Definition and Identification
	3.2 Graphics Processing Units Implementation of Intra and Inter Edge Generation Kernels
	3.3 Scheduling the Graphics Processing Units-Based Execution of Edge Generation Tasks
	3.3.1 Graphics Processing Units Dynamic: Dynamic Asynchronous Kernel Launch
	3.3.2 Graphics Processing Units Static: Static Kernel Launch
	3.3.3 Graphics Processing Units Static LB: Static Kernel Launch With Load Balancing

	4 Performance Study
	4.1 Hardware and Software
	4.2 Input Degree Distribution
	4.3 Generating Networks With Original Input Degree Distribution
	4.4 Degree Distribution Coarsening
	4.5 Generating Networks With Coarsened Input Degree Distribution
	4.6 Graphics Processing Units Performance Metrics

	5 Summary and Future Work
	Data Availability Statement
	Author Contributions
	References

