
Design Considerations for GPU-based Mixed Integer
Programming on Parallel Computing Platforms

Kalyan Perumalla
Maksudul Alam

perumallaks@ornl.gov
alamm@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

ABSTRACT
Mixed Integer Programming (MIP) is a powerful abstraction in
combinatorial optimization that finds real-life application across
many significant sectors. The recent proliferation of graphical pro-
cessing unit (GPU)-based accelerated computing architectures in
large-scale parallel computing or supercomputing presents new
opportunities as well as challenges in the advancement of MIP
solver technology to effectively use the new accelerated computing
platforms and scale to large parallel systems. Here, we recount the
conventional processor-based strategies and focus on configura-
tions where the most promising intersection lies between parallel
MIP solver approaches and the specific strengths of accelerated
parallel platforms. We note that the best potential lies in solving
problems whose individual matrix sizes (of the linear program re-
laxation) fit entirely within one accelerator’s memory and whose
branch-and-bound (or branch-and-cut) trees cannot be fully con-
tained within a small number of computational nodes. Additionally,
we identify ideal features of computational linear algebra support
on GPU accelerators that would help advance this direction of scal-
able parallel solution of MIP problems on GPU-based accelerated
computing architectures.

CCS CONCEPTS
•Mathematics of computing→Combinatorial optimization;
Solvers; Mathematical software performance; • Computing
methodologies;

KEYWORDS
Accelerated computing, Parallel Computing, Mixed Integer Pro-
gramming, Branch-and-Bound, Graphical Processing Units

ACM Reference Format:
Kalyan Perumalla and Maksudul Alam. 2021. Design Considerations for
GPU-based Mixed Integer Programming on Parallel Computing Platforms.
In 50th International Conference on Parallel Processing Workshop (ICPP Work-
shops ’21), August 9–12, 2021, Lemont, IL, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3458744.3473366

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
ICPP Workshops ’21, August 9–12, 2021, Lemont, IL, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8441-4/21/08. . . $15.00
https://doi.org/10.1145/3458744.3473366

1 OVERVIEW
Mixed Integer Programming (MIP) is a powerful abstraction in
combinatorial optimization that finds real-life application across
many significant sectors [4, 21, 26, 37]. While MIP solver technol-
ogy has seen remarkable advancements on conventional parallel
processing hardware, it has not experienced similar progress in the
latest accelerator-based parallel processing platforms. These latest
parallel machines gain an immense amount of computational ca-
pacity from the graphical processing unit (GPU)-based acceleration
for the most computationally intensive portions of the application.
GPU-based execution offers immense potential for gains in speed,
especially for linear algebra operations. More significantly, GPU-
based execution is the only way to tap the core computational
horsepower on many of the current parallel machines, making it
inevitable to address GPU-based execution for MIP. Yet, there is
inadequate amount of published literature on design considerations
for realizing MIP solvers on large GPU-based parallel machines, in
contrast to the large amount of literature and commerical/open-
source software available for MIP solvers on traditional CPU-based
architectures (such as SCIP[33, 34], BARON [18]). Here we attempt
to bridge this gap between computational insights in such parallel
platforms and the considerations in combinatorial optimization
techniques when applied to those platforms.

Unfortunately, the special characteristics and idiosyncrasies of
the GPU-based accelerated computingmake it non-trivial to port ex-
isting MIP solver designs, algorithms, and implementations directly
from CPU to GPU-based parallel execution. Important distinctions
such as the restrictive single-instruction-multiple-data or SIMD
style of execution of GPU (as opposed to the more general multiple-
instruction-multiple-data or MIMD style of execution of multiple
processor cores), and host-to-accelerator memory transfer costs
complicate the MIP solver adaption from CPU-based to GPU-based
execution. Compounding this problem is the difficulty of exploiting
sparsity of the input matrix structure for the MIP problem. The
problem of determining the most effective regimes for exterior-
point methods as opposed to interior-point methods also arises
more starkly in GPU-based computing because dense linear algebra
is much more efficient on GPUs, and sparse matrix computations
are generally not as efficient. There is the final challenge of finding
adequate mathematical software support by the vendors for accel-
erated computing platforms; the linear algebra routines offered on
those platforms are generally geared towards scientific computing
and are mismatched for the unique uses of MIP solvers involving
iterative updates, incremental updates and reuse of matrices being
solved for the MIP problem.

https://orcid.org/0000-0002-7458-0832
https://orcid.org/0000-0002-7458-0832
https://doi.org/10.1145/3458744.3473366
https://doi.org/10.1145/3458744.3473366

ICPP Workshops ’21, August 9–12, 2021, Lemont, IL, USA K. Perumalla and M. Alam

In the next section, a brief background is presented for mixed in-
teger programming and recent advancements in accelerator-based,
large-scale parallel computing, along with coverage of related work.
This is followed in Section 3 by an identification of different parallel
execution strategies for MIP solution over accelerated parallel com-
puting platforms. Key linear algebra support available on the GPU
platforms is listed in Section 4 with selected packages suitable for
MIP solvers. Section 5 captures important modes in which the linear
algebra support of the GPUs is utilized for parallel MIP solution.
The article is concluded in Section 6.

2 BACKGROUND
2.1 Mixed Integer Programming
Equation 1 shows the basic structure of a mixed integer program
(MIP).

Maximize cT x
such that Ax ≤ b,

where x = {xr ,xz },
xr ∈ R (reals), and
xz ∈ Z (integers).

(1)

This formulation can be transformed into an equivalent form
where the inequality of Ax ≤ b can be replaced with equality
(Ax̂ = b̂) with the introduction of variables y ≥ 0 to capture the
inequality slack. Also, upper and lower bounds, if any, on x are
implicit in Ax ≤ b.

Many parallel solvers have experienced success in solving this
formulation using a branch-and-bound approach that uses a di-
vide and conquer strategy by relaxing the integrality of xz ∈ Z

to make x ∈ R and solving the relaxed problem, which is a linear
programming problem without integer constraints. The linear pro-
gram, if integer-infeasible, can be used to partition the solution
space (for example, by branching on appropriate partitioning of
one or more xi ∈ xz), which splits the problem into two or more
sub-problems. The linear program relaxation provides an upper
bound on the objective value of the corresponding integer problem.
The branches create a tree of sub-problems that are accumulated
for systematic evaluation. This basic branch-and-bound procedure
is often enhanced with a range of variants such as branch-and-cut
using dynamic cut generation with various types of cuts. The issues
of branching, priming, variable value fixing, etc. have all been well
studied in the past few decades and published in the literature.

The corresponding branch-and-bound search tree for a MIP is
illustrated in Figure 1. All leaves in the tree are evaluated and
tagged as feasible, infeasible or pruned. Intermediate nodes are
tagged by their LP solutions and branching variables. Note that
some leaves might be tagged as active during search. However, by
the completion of the entire search, no nodes remain tagged as
active – all of them are converted to feasible, infeasible or pruned.

A consistent snapshot of the branch-and-bound tree is defined as
the set of leaves that preserves the optimal solution to the problem.
Two simple consistent snapshots are easy to obtain: (1) the root node
alone, and (2) the set of all leaves after the entire search. However,
even during search, snapshots can be obtained that are consistent,

Figure 1: Solution tree

even though the optimal value is not yet found. In a sequential
execution, a consistent snapshot is easy to obtain as follows. As
soon as a node is solved and its children, if any, are generated, the
active set is examined. The set of all leaf nodes from the active
set constitute a valid consistent snapshot. In a parallel/distributed
execution of branch-and-bound or branch-and-cut, a consistent
snapshot is non-trivial to obtain. The complexity in this case comes
from the fact that all processors need to synchronize with each
other to account for (a) nodes that are being evaluated, i.e., whose
LP relaxation is being computed, etc. (b) nodes that are in transit
across processors, in the absence of a centralized active set, i.e.,
when a distributed scheme for exchange of active set nodes is used.

2.2 Parallel Computing Advancements
Parallel MIP solution methods traditionally have been designed
and scaled on large parallel machines that were built with conven-
tional CPU architectures. In recent years, however, the increases
in computational capacity have been obtained not from increased
number of CPU cores but from the addition of GPU-based accel-
erators. High performance computing in general has come to be
dominated by GPUs so much so that GPUs are predominantly being
used for scaling in much of the supercomputing world. In fact, the
core computational capacity of seven of the top ten supercomputers
is powered by GPUs1. The rate of performance gains using GPUs
outpaces traditional CPUs by a wide margin. GPUs have become
the core to modern AI-capable supercomputers. Summit, the fastest
supercomputer in the USA (as of this writing) at the Oak Ridge
National Laboratory uses NVIDIA Tesla V100 GPUs to achieve 200
petaFLOPS performance. The upcoming Aurora supercomputer at
the Argonne National Laboratory is expected to have 1 exaFLOPS
performance using Intel Xe GPUs. Frontier, the successor to Summit
at the Oak Ridge National Laboratory is expected to deliver 1.5 ex-
aFLOPS using AMD’s Radeon Instinct GPUs. Lawrence Livermore
National Laboratory also announced the El Capitan supercomputer
to be launched in 2023 with 2 exaFLOPS using AMD’s Radeon In-
stinct GPUs. This trend in the supercomputing arena provides a
clear motivation for a focus on GPU-aware algorithms and packages
1http://top500.org

http://top500.org

Design Considerations for GPU-based Mixed Integer Programming on Parallel Computing Platforms ICPP Workshops ’21, August 9–12, 2021, Lemont, IL, USA

for wide range of scientific and mathematical problems. Further-
more, GPUs offer more energy efficient computing compared to
the CPU counterpart. These performance efficiencies become more
prominent as AI is increasingly added to the mix.

Given this background, it is clear that the immense scale of mod-
ern parallel machines can be effectively exploited for MIP solutions
only if the GPU accelerators are correctly utilized and incorpo-
rated into the MIP solution approaches. Tied to this is the way
the core computation in MIP solution is achieved, namely, linear
algebra operations used in linear program relaxations and related
computation.

2.3 Related Work
Linear programming solvers using an interior point method is the
preferred method for solving sparse problems, which are preva-
lent in real-world scenarios. GPU based implementations of in-
terior point methods have been proposed in [10, 17, 23]. Linear
programming problems using dense matrices are well suited for
the GPUs due to the nature of the GPU memory. Simplex and its
many variants are typically used to solve dense problems. GPU-
based implementation of Simplex algorithms have been discussed
in [14, 16, 19, 24, 28, 31].

To the best of our knowledge there is no general-purpose MIP
solver using GPU architectures. Ubiquity Generator (UG) frame-
work [34] is a generic framework for parallelizing a branch-and-
bound based MIP solver referred to as the base solver. It provides
interfaces with different MPI protocols and also includes implemen-
tations of ramp-up, dynamic load balancing, and check-pointing
and restarting mechanisms with a generic API. The base solver
maintains the branch-and-bound tree. UG employs a Supervisor-
Worker coordination mechanism for achieving parallelism with
these sub-trees. UG manages a small number of sub-problems for
load balancing. Solvers using UG have been developed for the non-
commercial SCIP solver (ParaSCIP (=ug[SCIP, MPI]), FiberSCIP
(=ug[SCIP, Pthreads]), the commercial Xpress solver (ParaXpress
(=ug[Xpress, MPI]), and FiberXpress (=ug[Xpress, Pthreads]) [32].
ParaSCIP has successfully been used to solve 14 previously un-
solved instances from MIPLIB2003 and MIPLIB2010. UG has been
developed mostly with SCIP in mind. The largest-scale computation
conducted with ParaSCIP uses up to 80, 000 cores on TITAN at the
Oak Ridge National Laboratory [33]. Note that these implementa-
tions have been focused on traditional CPU-based architectures.
Initial attempts at porting CPU-based MIP solvers such as Gurobi
to GPUs were abandoned because of the mismatch between SIMD
style of execution of the GPUs and the existing code base for CPUs.
However, they were aimed at realizing much of the branch-and-cut
functionality on the GPU, which is not the best strategy, as will be
described in the next section.

An early implementation of branch-and-bound for the knapsack
problem was presented in [19]. An implementation of the branch-
and-bound for the flow-shop problem on the GPU was presented in
[5]. Another implementation of branch-and-bound version of the
flow-shop problem was presented in [36]. Gmys et al. presented a
pure GPU implementation of branch-and-bound algorithm in [13].
The key principle of their approach is the use of an Integer Vector
Matrix (IVM) representation of the branch-and-bound problem tree

rather than the linked list used in previous implementations. The
IVM representation is well-suited for the GPU programming due
to its memory structure.

3 PARALLEL EXECUTION STRATEGIES
Given the preceding background, there are different strategies pos-
sible for using the GPU-based large-scale parallel computing plat-
forms for MIP, which include the following.

(1) Entirely GPU-based execution: The branch-and-cut tree is
entirely stored and manipulated on the GPUs. Each branch-
and-bound node is also solved on the GPU. This reduces
needless transfers of data from CPU to GPU and back. It
also can be fast if direct GPU to GPU communication is sup-
ported over the network by the parallel system architecture.
However, this is one of the most challenging schemes to
implement efficiently because of the difficulty of storing and
manipulating very large trees on the GPU and fitting them
within the limited confines of GPU memory. This approach
also ignores the conventional CPU’s processing power that is
offered in combination with most GPU-based platforms. The
single-instruction-multiple-data (SIMD) style of program-
ming for GPUs also makes an entirely GPU-only solution
less favorable; some of the open-source or commercial MIP
solvers have indeed attempted and discounted GPU-only
solution because of its faring poorly compared to the best
CPU-based solvers.

(2) CPU-orchestration of GPU execution: The branch-and-cut
tree is stored in the CPUmainmemory, while the GPU is used
only as an accelerator for the computation of each branch-
and-cut node which represents a linear program relaxation.
This has the advantage of exploiting the large main memory
of the CPU while also being efficient in tree handling, net-
work communication, load distribution and similar functions
that have been well understood and implemented in conven-
tional parallel mixed integer programming (SCIP and UG).
This allows the use of native and portable message passing
interface-based parallel branch-and-cut orchestration across
nodes.

(3) Hybrid CPU and GPU-based execution: In this mode, both
the CPU and GPU architectures are employed for the heavy
linear program relaxation solutions and other operations
such as primal heuristics and cut generation. This mode
is useful on modern architectures in which the CPUs com-
prise of many processor cores in addition to multiple GPUs
serving as accelerators to the application running on the
processor cores. The strength of this approach is the ease
of implementing advanced heuristics such as probing, cut
generation, column generation, etc. while also exploiting the
concurrency offered by the many-core CPU architectures as
well as the immense linear algebra efficiencies offered by the
multi-GPU architectures.

(4) Big-MIP execution: In this strategy, the parallel machine is
used as a bigger machine that can solve matrix sizes that
cannot fit within a single node’s memory. As in Earth-scale
climate simulations, the matrix sizes can be so large that it
is not possible to store the entire matrix on a single node,

ICPP Workshops ’21, August 9–12, 2021, Lemont, IL, USA K. Perumalla and M. Alam

and hence it is not possible to execute even a single branch-
and-cut node (LP relaxation) on a single node. However, the
basic matrix of the MIP problem could span many nodes;
each LP relaxation itself, therefore, operates as a parallel
matrix operation that spans multiple node in a distributed
manner. In this strategy, one processor can act as the orches-
trator of the serial branch-and-cut algorith, but each linear
program relaxation is executed as a parallel job that utilizes
the GPUs distributed across the parallel machine to perform
each linear algebra operation (of the Simplex or its variants
for the linear program solution of a branch-and-cut node) in
a distributed manner. This is in contrast to the previously
mentioned modes in which each LP relaxation fits entirely
within one CPU or GPU’s memory and hence the linear al-
gebra operations on that relaxation are entirely contained
within one machine. This is a useful mode for solving very
large problems that have never been attempted before; how-
ever, the implementation can be very complex due to the
need to not only store distributed branch-and-cut tree but
also a distributed matrix across many nodes.

Considering all the current architectural factors in large GPU-
based accelerated high performance computing platforms, we can
choose the most effective strategy that has the most potential for
effective scaling and efficient use of the GPU architectures. With
the CPU and GPU memory sizes, interconnection network speeds,
and the strengths of GPU-based linear algebra, it is clear that the
strategy (2) or (3) are the most effective designs for gainful MIP
solver implementations. Of the two, the least complex implemen-
tation is (2), namely, CPU-orchestration of GPU execution. GPU
memory sizes have now reached 80GB at the time of this writing,
which would only stand to increase even further in future. This
amount of memory is sufficient to represent most MIPLIB prob-
lems entirely within a single GPU’s memory. At the same time, the
branch-and-cut trees are known to grow to such large sizes that the
large capacity of CPU memory (which can be an order of magni-
tude greater in size, relative to GPU memory size) would be needed
to hold the tree as it is being evaluated. High performance mes-
sage passing interface implementations can be effectively tapped
to perform inter-processor communication and synchronization
for branch-and-cut tree handling even while the tree nodes are
processed. GPU linear algebra routines are currently in a well devel-
oped state to allow very fast operation on any tree node’s evaluation
(of linear program relaxation). Sparse matrix solvers are, unfortu-
nately, not as efficient on the GPUs, which may require strategy
(3), namely, Hybrid CPU and GPU-base execution. With that strat-
egy, sparse matrix computations (at least the set up stages) can be
delegated to the multi-core processors which can be efficient for
that purpose.

4 LINEAR SOLVERS ON GPU
In this section, we discuss the currently available linear algebra sup-
port with the latest GPU technology and how they can be utilized in
the parallel GPU-based MIP solver code. Additionally, we describe
features that would ideally complement the supported routines by
adding functionality suitable for incremental updates to the matrix
by the parallel MIP solver.

Linear solver usingmatrix factorization techniques such as Cholesky,
LU, and QR decomposition is one of the most important computing
routines for many scientific computing problems. Parallel process-
ing of linear solvers on the GPU is a challenging problem due to
high data dependency and irregular memory accesses.

4.1 Software Packages for Dense Matrices
There are multiple algorithms and software packages for dense lin-
ear algebra that can run on GPUs [1, 11, 25]. Some of these libraries
provide basic BLAS functionality, such as NVIDIA’s cuBLAS2, AMD’s
rocBLAS3, and Intel’s MKL4. Some other packages provide a more
comprehensive set of BLAS and LAPACK routines. MAGMA5, is
one of the prominent ones among them. It is an open source library
that provides most BLAS kernels and LAPACK routines using hy-
brid CPU-GPU algorithms. The performance of the routines for the
MAGMA dense matrrix solvers is very promising that can achieve
approximately 80 percent of the GPU’s theoretical peak perfor-
mance [35]. NVIDIA’s cuSOLVER6 and AMD’s rocSOLVER7 also
provide a few GPU-based LAPACK algorithms.

Generally speaking, accelerators were used to provide high per-
formance compute-intensive BLAS routines. However, the devel-
opment of GPU-only (accelerators-only) dense linear algebra algo-
rithms were avoided in the past due to the fact that (1) accelerators
were not well-suited for latency-sensitive tasks (such as factor-
ization), and (2) hybrid algorithms were much faster, due to the
fact that the CPU outperforms the GPU in such tasks. However,
the recent advances in accelerators have opened the door for fully
accelerators-based algorithms [3].

4.2 Software Packages for Sparse Matrices
Most of the packages support dense matrices for the factorization.
However, there exist a few works targeting parallel sparse factor-
ization using SIMD architecture. For instance, SuperLU_MT8 is the
multi-threaded parallel version of the LU decomposition in the CPU.
KLU [9] is another implementation, which is specially optimized
for circuit simulation. The KLU algorithm has been parallelized on
multi-core architecture by exploiting the column-level parallelism
[7].

A few sparse matrix LU factorization methods have also been
realized on the GPU [8, 12, 22] by first converting the sparse matri-
ces into many dense sub-matrices (blocks) and then solving them
by dense matrix LU factorization. However, such a strategy may
not work well for many real-world matrices, which hardly have
dense sub-matrices. For example, circuit matrices are so sparse that
BLAS-based methods are usually inefficient. As alternatives, paral-
lel algorithms for LU decomposition on GPU have been explored
[29], [6]. He et. al proposed a hybrid right-looking sparse LU factor-
ization on the GPU, called GLU (GLU1.0) [15], which has later been
revisited [20, 27]. There are publicly available software packages

2https://developer.nvidia.com/cublas
3https://rocsolver.readthedocs.io/en/latest/api_lapackfunc.html
4https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-
toolkit.html
5https://icl.cs.utk.edu/projectsfiles/magma/doxygen/index.html
6https://docs.nvidia.com/cuda/cusolver/index.html
7https://github.com/ROCmSoftwarePlatform/rocSOLVER
8https://portal.nersc.gov/project/sparse/superlu/

https://developer.nvidia.com/cublas
https://rocsolver.readthedocs.io/en/latest/api_lapackfunc.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html
https://icl.cs.utk.edu/projectsfiles/magma/doxygen/index.html
https://docs.nvidia.com/cuda/cusolver/index.html
https://github.com/ROCmSoftwarePlatform/rocSOLVER
https://portal.nersc.gov/project/sparse/superlu/

Design Considerations for GPU-based Mixed Integer Programming on Parallel Computing Platforms ICPP Workshops ’21, August 9–12, 2021, Lemont, IL, USA

that support sparse matrix computation, such as cuSPARSE9, SuiteS-
parse (TAMU)10, and rocSPARSE11. Note that many of the packages
do not provide full support of routines required for sparse linear
algebra computations. The LU solver in the libraries, such as cuS-
PARSE and rocSPARSE supplied by GPU manufacturers, provides
relatively incomplete solver solutions. On the other hand MAGMA
provides full support for sparse linear solvers. An up-to-date list of
freely available software maintained by Dongarra et al is found at
the Netlib website12, which also includes sections on sparse direct
solvers.

4.3 Special Considerations for Matrix Updates
In the GPU-accelerated methods presented thus far, computation is
mainly performed via a single matrix operation at a time. Rennich,
Stosic and Davis presented an approach to allow each GPU to work
with many matrix operations at the same time [30]. Their approach
batches together many small matrix updates in factorization that
can be fit in the GPU memory. In general, packages that support
batch matrix operation with a large number of small matrices (i.e.
MAGMA) are desirable to take the full advantages of modern GPUs
which have increased amount of high-bandwidth memory and
thousands of SIMD cores offering a large amount of concurrency.

Note that our focus in this article is on MIP, although there are
other related efforts on non-linear programming, which brings its
own considerations and challenges that are qualitatively different
from MIP’s.

Given that an instance of Ax = b has been solved (either im-
plicitly or explicitly), there are three ways in which it needs to be
reused in solving slightly updated versions (rank-1 updates) of that
matrix: (1) the solution to the linear relaxation based on iterative
exterior-point methods will need re-solves when variables enter
and leave the basis, (2) cuts, which essentially are extra constraints,
are generated and added to the matrix after a linear program relax-
ation has been solved, and (3) the matrix used for a parent node
of the branch-and-cut can be reused for its children, with minor
updates such as new bounds added for a subset variables.

One of the issues in accommodating such linear algebra updates
is in eliminating or minimizing the data transfer latency and over-
head between the host (CPU memory) and device (GPU memory).
Another issue is the reuse of a previous solution as a starting point
in iterative matrix factorization algorithms. Special algorithms and
techniques are employed to avoid or reduce the number of such
memory transfers and updates. In one such attempt, a modified
product form of inverse was used in [28] and extended in [31].
Similar algorithmic techniques need to be considered for iterative
decomposition methods.

5 USAGE MODES OF LINEAR ALGEBRA
The MIP solver operates on the branch-and-cut tree and launches
the solution of the linear program relaxations (and other steps
such as cut generation) as kernels that execute on the GPU. In this
process, we identify three modes in which linear algebra manifests

9https://docs.nvidia.com/cuda/cusparse/index.html
10https://people.engr.tamu.edu/davis/suitesparse.html
11https://github.com/ROCmSoftwarePlatform/rocSPARSE
12 http://www.netlib.org/utk/people/JackDongarra/la-sw.html

in the branch-and-cut solution process of parallel MIP solution: (1)
iterative solution of the matrix corresponding to a linear program
relaxation for a given branch-and-cut tree node, (2) modification
and reuse of the matrix across generated cuts, (3) restoration and
reuse of the matrix across tree nodes.

5.1 Iterative Solution of Linear Program
Relaxation

In the first, linear algebra is used in the Simplex-based iterative so-
lution (or one of its variants) of a branch-and-cut tree node, which
is a sub-problem solved with linear program relaxation. There are
several methods that have been employed over the years to opti-
mize the solver on various computational architectures, problem
variants, algorithmic variants (primal, dual, primal-dual, etc.). At
the core, exterior point methods will involve modifications to the
basic original matrix in the form of updates to entering and leav-
ing basic variables. The net result of solution in each iteration is
a feasible set of values assigned to the basic variables. Therefore,
the GPU linear algebra will be exercised in this portion with rank-1
updates and resolving the updated matrix repeatedly with no data
transfer from host to device or vice versa.

5.2 Incorporation of Generated Cuts
In the second mode of computation in which linear algebra is used,
the matrix is updated with the incorporation of one or more cuts
that are dynamically generated and added temporarily to the ma-
trix for a particular tree node. We are not aware of any GPU-based
cut generator published in the literature. Until GPU-based cut gen-
erators are developed, the cut generation can be assumed to be
performed on the CPU, which will require the latest copy of the
matrix (of the current branch-and-cut node) to be copied from the
device to the host. After the generated cuts, if any, are transferred
from host to device, they need to be incorporated into the device
matrix before the linear algebra is again invoked on the GPU.

5.3 Reuse across Tree Nodes
In the third mode of computation in which linear algebra is used,
the matrix is reused across the solution of different nodes of the
branch-and-cut tree. Given two or more branch-and-cut nodes with
a common ancestor that is only a few levels above them in the tree,
it is possible to reuse the matrix across the nodes in solving their
relaxations. Since it is cost-effective to minimize the number of
transfers of the (potentially large) matrix between host and device
memories, a GPU-based parallel MIP solver must strive to reuse the
matrix on the GPU across as many branch-and-cut nodes as possible.
This may warrant the use of a GPU-specific scheduling policy that
picks the next node to evaluate from the branch-and-cut tree. It
also influences how the tree nodes are exchanged and distributed
across processors when the tree load is balanced dynamically. Thus,
the design of a GPU-based MIP solver would entail choosing a
branching scheme, a node evaluation ordering scheme, and so on
that are qualitatively different from a traditional CPU-based solver’s
schemes.

https://docs.nvidia.com/cuda/cusparse/index.html
https://people.engr.tamu.edu/davis/suitesparse.html
https://github.com/ROCmSoftwarePlatform/rocSPARSE
http://www.netlib.org/utk/people/JackDongarra/la-sw.html

ICPP Workshops ’21, August 9–12, 2021, Lemont, IL, USA K. Perumalla and M. Alam

5.4 Sparse versus Dense Matrices
A critical consideration in using the GPUs is the nature of the
matrix being solved in the MIP. Sparse matrix computation on the
GPUs is not as efficient as dense matrix computation. Therefore,
it would be necessary to create two distinct code paths, one for
invoking spare matrix algebra and another for dense matrix algebra,
when the branch-and-cut orchestrator invokes the GPU in the
accelerated parallel MIP solver. While many CPU-based solvers
operate, by default, on matrix inputs that are stored in sparse matrix
format, this cannot be universally fixed for GPU-based execution.
In fact, the code must handle user-provided inputs differently, based
on whether the input matrix happens to be dense or sparse; this
decision needs to be made at runtime, depending on the exact
problem input by the user. Therefore, for the highest efficiency,
two different MIP solver versions would need to be written: one
specially built for sparse MIP problems and the other for dense MIP
problems. Alternatively, a super-MIP solver for GPUs would need
to be written which dynamically takes different code paths based
on the input matrix characteristics.

5.5 Concurrent Solutions for Small Problems
In modern GPUs, the memory capacity has increased sufficiently to
consider housing and solving multiple branch-and-cut nodes con-
currently on the same GPU. Thus, for relatively small MIP problem
sizes (such as those in which the matrix takes much less than tens
of gigabytes of memory), it is conceivable (and potentially more ef-
ficient) to solve multiple nodes at a time. For example, if the matrix
size fits in 1GB of memory; then, dozens of branch-and-cut nodes
could be solved simultaneously by the GPU that has 64GB or more
amount of memory. However, the linear algebra services on the
GPU must support concurrent launches of multiple sub-problems
on the same GPU. Such as support is offered on the NVIDIA GPUs
with the concept of streams, such that multiple concurrent streams
can be created and launched at a given time on the same GPU.

A batch routine executes the same operation on many indepen-
dent matrices in a parallel fashion to take advantage of the GPU
hardware resources. In the context of linear algebra, a batch routine
applies some BLAS or LAPACK operation to a large number of
small independent matrices. MAGMA provides support for batch
operations on many of the BLAS and LAPACK operations [2].

In order to use this mode, there are two ways in which the execu-
tion can be structured. In one approach the same MPI rank (process
mapped to a processor core) can make asynchronous launches of
the linear program relaxation solver for each small problem, and
collect the results when they terminate asynchronously on the GPU.
This corresponds to a batch-style of processing of linear algebra
calls. However, this mode is complex to implement due to the com-
plexity of the solver method for linear program relaxation (such as
Simplex, Dual-Simplex, etc.).

The other approach is to initiate multiple ranks per processor
core so that there is little modification needed to the basic parallel
engine which assumes a serial loop of work on linear program
relaxation. However, this modemay not be supported on all systems
because the runtime may limit the number of MPI ranks to be at
most one per physical processor core.

6 SUMMARY
Mixed integer linear programs are an important class of optimiza-
tion problems. Their high computational cost for solution demands
the use of parallel computing platforms.While modern parallel com-
puting platforms have started using GPUs as the new foundation
blocks for scaling to large configurations, few MIP solvers exist that
can effectively exploit those GPU-based platforms. Due to funda-
mental mismatches between traditional CPU-based execution and
newer GPU-based execution,MIP solver designs need to be revisited
to adapt and target scaling to large GPU-based high-performance
parallel systems. We presented the strategies and design consid-
erations behind such an evolution of the MIP technologies, and
identified some of the promising strategies. We also highlighted
key considerations at the implementation level, namely, at the level
of linear algebra services offered by GPU platforms and the way
their usage appears in MIP solver procedures. It remains to be seen
how the next generation of MIP solvers scale to this new class of
parallelism offered by modern supercomputers and how they can
provide the next leap for MIP solutions.

ACKNOWLEDGEMENTS
This manuscript has been authored by UT-Battelle, LLC under Con-
tract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
The United States Government retains and the publisher, by accept-
ing the article for publication, acknowledges that the United States
Government retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to
these results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

ABOUT THE AUTHORS
KALYAN PERUMALLA is a Distinguished Research Staff Member
at the Oak Ridge National Laboratory in the Computer Science and
Mathematics Division.
MAKSUDUL ALAM is a Research Staff Member at the Oak Ridge
National Laboratory in the Computer Science and Mathematics
Division.

REFERENCES
[1] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra. 2018.

Analysis and Design Techniques towards High-Performance and Energy-Efficient
Dense Linear Solvers on GPUs. IEEE Transactions on Parallel and Distributed
Systems 29, 12 (dec 2018), 2700–2712. https://doi.org/10.1109/tpds.2018.2842785

[2] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra. 2018.
Optimizing GPU Kernels for Irregular Batch Workloads: A Case Study for
Cholesky Factorization. In 2018 IEEE High Performance extreme Computing Con-
ference (HPEC). IEEE. https://doi.org/10.1109/hpec.2018.8547576

[3] Ahmad Abdelfattah, Stanimire Tomov, and Jack Dongarra. 2019. Progressive
Optimization of Batched LU Factorization on GPUs. (sep 2019). https://doi.org/
10.1109/HPEC.2019.8916270

[4] Pietro Belotti, Christian Kirches, Sven Leyffer, Jeff Linderoth, James Luedtke, and
Ashutosh Mahajan. 2013. Mixed-integer nonlinear optimization. Acta Numerica
22 (apr 2013), 1–131. https://doi.org/10.1017/s0962492913000032

[5] Imen Chakroun, Nordine Melab, Mohand Mezmaz, and Daniel Tuyttens. 2013.
Combining multi-core and GPU computing for solving combinatorial optimiza-
tion problems. J. Parallel and Distrib. Comput. 73, 12 (2013), 1563–1577.

[6] Xiaoming Chen, Ling Ren, YuWang, and Huazhong Yang. 2015. GPU-Accelerated
Sparse LU Factorization for Circuit Simulation with Performance Modeling. IEEE

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://www.ornl.gov
https://csmd.ornl.gov
https://csmd.ornl.gov
https://www.ornl.gov
https://www.ornl.gov
https://csmd.ornl.gov
https://csmd.ornl.gov
https://doi.org/10.1109/tpds.2018.2842785
https://doi.org/10.1109/hpec.2018.8547576
https://doi.org/10.1109/HPEC.2019.8916270
https://doi.org/10.1109/HPEC.2019.8916270
https://doi.org/10.1017/s0962492913000032

Design Considerations for GPU-based Mixed Integer Programming on Parallel Computing Platforms ICPP Workshops ’21, August 9–12, 2021, Lemont, IL, USA

Transactions on Parallel and Distributed Systems 26, 3 (mar 2015), 786–795. Issue
3. https://doi.org/10.1109/tpds.2014.2312199

[7] Xiaoming Chen, Yu Wang, and Huazhong Yang. 2013. NICSLU: An adaptive
sparse matrix solver for parallel circuit simulation. IEEE transactions on computer-
aided design of integrated circuits and systems 32, 2 (2013), 261–274.

[8] D Yu Chenhan, Weichung Wang, et al. 2011. A CPU–GPU hybrid approach for
the unsymmetric multifrontal method. Parallel Comput. 37, 12 (2011), 759–770.

[9] Timothy A Davis and Ekanathan Palamadai Natarajan. 2010. Algorithm 907:
KLU, a direct sparse solver for circuit simulation problems. ACM Transactions on
Mathematical Software (TOMS) 37, 3 (2010), 1–17.

[10] Nicolai Fog Gade-Nielsen. 2014. Interior point methods on GPU with application
to model predictive control. (2014).

[11] N. Galoppo, N.K. Govindaraju, M. Henson, and D. Manocha. 2005. LU-GPU:
Efficient Algorithms for Solving Dense Linear Systems on Graphics Hardware.
In ACM/IEEE SC 2005 Conference (SC'05). IEEE. https://doi.org/10.1109/sc.2005.42

[12] Thomas George, Vaibhav Saxena, Anshul Gupta, Amik Singh, and Anamitra R
Choudhury. 2011. Multifrontal factorization of sparse SPD matrices on GPUs.
In 2011 IEEE International Parallel & Distributed Processing Symposium. IEEE,
372–383.

[13] Jan Gmys, MohandMezmaz, NouredineMelab, and Daniel Tuyttens. 2016. A GPU-
based Branch-and-Bound algorithm using Integer–Vector–Matrix data structure.
Parallel Comput. 59 (2016), 119–139.

[14] Amit Gurung and Rajarshi Ray. 2019. Simultaneous solving of batched linear
programs on a GPU. In Proceedings of the 2019 acm/spec international conference
on performance engineering. 59–66.

[15] Kai He, Sheldon X-D Tan, Hai Wang, and Guoyong Shi. 2015. GPU-accelerated
parallel sparse LU factorization method for fast circuit analysis. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 24, 3 (2015), 1140–1150.

[16] Lili He, Hongtao Bai, Yu Jiang, Dantong Ouyang, and Shanshan Jiang. 2018.
Revised simplex algorithm for linear programming on GPUs with CUDA. Multi-
media Tools and Applications 77, 22 (apr 2018), 30035–30050. https://doi.org/10.
1007/s11042-018-5947-z

[17] Jin Hyuk Jung and DIANNE P OâĂŹLeary. 2008. Implementing an interior point
method for linear programs on a CPU-GPU system. Electronic Transactions on
Numerical Analysis 28, 174-189 (2008), 37.

[18] Mustafa Kılınç and NV Sahinidis. 2014. Solving MINLPs with BARON. In MINLP
Workshop, Pittsburgh http://http://minlp. cheme. cmu. edu/2014/papers/kilinc. pdf.

[19] Mohamed Esseghir Lalami, Didier El-Baz, and Vincent Boyer. 2011. Multi GPU
Implementation of the Simplex Algorithm. (sep 2011). https://doi.org/10.1109/
HPCC.2011.32

[20] Wai-Kong Lee, Ramachandra Achar, and Michel S Nakhla. 2018. Dynamic GPU
parallel sparse LU factorization for fast circuit simulation. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 26, 11 (2018), 2518–2529.

[21] JT Linderoth and TK Ralphs. 2004. Noncommercial Software for Mixed-Integer
Linear Programming. (2004).

[22] Robert F Lucas, Gene Wagenbreth, Dan M Davis, and Roger Grimes. 2010. Mul-
tifrontal computations on GPUs and their multi-core hosts. In International
Conference on High Performance Computing for Computational Science. Springer,
71–82.

[23] Marco Maggioni. 2016. Sparse convex optimization on GPUs. Ph.D. Dissertation.
University of Illinois at Chicago.

[24] Xavier Meyer, Paul Albuquerque, and Bastien Chopard. 2011. A multi-GPU
implementation and performance model for the standard simplex method. In
Proceedings of the 1st International Symposium and 10th Balkan Conference on
Operational Research. 312–319.

[25] Branko Lj Mrdakovic, Milan M Kostic, Dragan I Olcan, and Branko M Kolundzija.
2017. Acceleration of in-core LU-decomposition of dense MoM matrix by parallel
usage of multiple GPUs. In 2017 IEEE International Conference on Microwaves,
Antennas, Communications and Electronic Systems (COMCAS). IEEE, 1–4.

[26] James Ostrowski, Miguel F. Anjos, and Anthony Vannelli. 2012. Tight Mixed
Integer Linear Programming Formulations for the Unit Commitment Problem.
IEEE Transactions on Power Systems 27, 1 (feb 2012), 39–46. https://doi.org/10.
1109/tpwrs.2011.2162008

[27] Shaoyi Peng and Sheldon X.-D. Tan. 2020. GLU3.0: Fast GPU-based Parallel
Sparse LU Factorization for Circuit Simulation. IEEE Design & Test 37, 3 (jun
2020), 78–90. https://doi.org/10.1109/mdat.2020.2974910

[28] Nikolaos Ploskas and Nikolaos Samaras. 2015. Efficient GPU-based implementa-
tions of simplex type algorithms. Appl. Math. Comput. 250 (jan 2015), 552–570.
https://doi.org/10.1016/j.amc.2014.10.096

[29] Ling Ren, Xiaoming Chen, Yu Wang, Chenxi Zhang, and Huazhong Yang. 2012.
Sparse LU factorization for parallel circuit simulation on GPU. In Proceedings of
the 49th Annual Design Automation Conference. 1125–1130.

[30] Steven C Rennich, Darko Stosic, and Timothy A Davis. 2016. Accelerating sparse
Cholesky factorization on GPUs. Parallel Comput. 59 (2016), 140–150.

[31] Usman Ali Shah, Suhail Yousaf, Iftikhar Ahmad, Safi Ur Rehman, and Muham-
mad Ovais Ahmad. 2020. Accelerating Revised SimplexMethod Using GPU-Based
Basis Update. IEEE Access 8 (2020), 52121–52138. https://doi.org/10.1109/access.
2020.2980309

[32] Yuji Shinano, Tobias Achterberg, Timo Berthold, StefanHeinz, and Thorsten Koch.
2012. ParaSCIP: a parallel extension of SCIP. In Competence in High Performance
Computing 2010, Christian Bischof, Heinz-Gerd Hegering, Wolfgang Nagel, and
Gabriel Wittum (Eds.). 135 – 148. https://doi.org/10.1007/978-3-642-24025-6_12

[33] Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, Thorsten Koch,
and Michael Winkler. 2016. Solving Open MIP Instances with ParaSCIP on
Supercomputers Using up to 80,000 Cores. In 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE. https://doi.org/10.1109/ipdps.
2016.56

[34] Y. Shinano, M. Higaki, and R. Hirabayashi. 1995. A generalized utility for parallel
branch and bound algorithms. In Proceedings.Seventh IEEE Symposium on Parallel
and Distributed Processing. IEEE Comput. Soc. Press. https://doi.org/10.1109/spdp.
1995.530710

[35] Stanimire Tomov, Rajib Nath, Hatem Ltaief, and Jack Dongarra. 2010. Dense
linear algebra solvers for multicore with GPU accelerators. In 2010 IEEE Interna-
tional Symposium on Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW). IEEE. https://doi.org/10.1109/ipdpsw.2010.5470941

[36] Trong-Tuan Vu and Bilel Derbel. 2016. Parallel Branch-and-Bound in multi-core
multi-CPU multi-GPU heterogeneous environments. Future Generation Computer
Systems 56 (2016), 95–109.

[37] Laurence A Wolsey and George L Nemhauser. 1999. Integer and combinatorial
optimization. Vol. 55. John Wiley & Sons.

https://doi.org/10.1109/tpds.2014.2312199
https://doi.org/10.1109/sc.2005.42
https://doi.org/10.1007/s11042-018-5947-z
https://doi.org/10.1007/s11042-018-5947-z
https://doi.org/10.1109/HPCC.2011.32
https://doi.org/10.1109/HPCC.2011.32
https://doi.org/10.1109/tpwrs.2011.2162008
https://doi.org/10.1109/tpwrs.2011.2162008
https://doi.org/10.1109/mdat.2020.2974910
https://doi.org/10.1016/j.amc.2014.10.096
https://doi.org/10.1109/access.2020.2980309
https://doi.org/10.1109/access.2020.2980309
https://doi.org/10.1007/978-3-642-24025-6_12
https://doi.org/10.1109/ipdps.2016.56
https://doi.org/10.1109/ipdps.2016.56
https://doi.org/10.1109/spdp.1995.530710
https://doi.org/10.1109/spdp.1995.530710
https://doi.org/10.1109/ipdpsw.2010.5470941

	Abstract
	1 Overview
	2 Background
	2.1 Mixed Integer Programming
	2.2 Parallel Computing Advancements
	2.3 Related Work

	3 Parallel Execution Strategies
	4 Linear Solvers on GPU
	4.1 Software Packages for Dense Matrices
	4.2 Software Packages for Sparse Matrices
	4.3 Special Considerations for Matrix Updates

	5 Usage Modes of Linear Algebra
	5.1 Iterative Solution of Linear Program Relaxation
	5.2 Incorporation of Generated Cuts
	5.3 Reuse across Tree Nodes
	5.4 Sparse versus Dense Matrices
	5.5 Concurrent Solutions for Small Problems

	6 Summary
	References

