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ABSTRACT

Synthetic networks are very useful in investigations of complex systems across the scientific spectrum,
such as cyber-infrastructures, social networks, internet, and epidemiological contact networks. Scale-free
networks are among the most common types of synthetic networks used for scientific investigation as
formal approximations to complex real-life networks, which are technically characterized as exhibiting a
power-law degree distribution. As real-life complex systems grow larger, generating networks that
sufficiently mimic reality becomes computationally expensive. To address this issue, we present the latest
results from efficiently scaled execution of our novel parallel algorithm for generating random scale-free
networks using the preferential-attachment model. The algorithm, named cuPPA, is custom-designed to
exploit multiple graphical processing units (GPUs) in distributed computing nodes. Our generator is useful
in the development, debugging, and testing phases of high-performance computing (HPC) applications that
use very large network data. During those phases, the overhead of moving actual network structure data
can be avoided by generating the surrogate network structure data on the fly. The speed of the algorithm is
sufficiently high to significantly reduce the computational overhead during the development phases of the
network application. Furthermore, our generator provides determinism for the reproducibility of the HPC
execution during development. Our algorithm generates extremely large scale-free networks of 4 trillion
edges in less than 8 minutes using 1008 NVIDIA Volta GPUs of the Summit supercomputer. To our
knowledge, this result represents the first achievement ever of graph network generation at this scale of
parallel execution with over thousand GPUs. Moreover, it is equally applicable to offline processing as well
as online stream processing – our algorithm is uniquely suitable for generating networks in a streaming
mode without the need for explicitly storing (writing to disk) the entire network, and is suitable for
targeting even larger scales with quadrillions of edges.

1. INTRODUCTION

Graph networks are prevalent in many complex systems, such as circuits, chemical compounds, protein
structures, biological networks, social networks, the Web, and XML documents. Recently, there has been
substantial interest in the study of a variety of synthetic (randomized) networks to serve as mathematical
models of complex systems. Various network theories, metrics, topologies, and mathematical models have
been proposed to understand the underlying properties and relationships of these systems.

Barabási and Albert [6] discovered a class of inhomogeneous networks, called scale-free networks,
characterized by a power-law degree distribution P(k) ∝ k−γ, where k represents the degree of a vertex and
γ is a constant. This class of network has multiple practical applications. For instance, the Barabasi-Albert
model is useful in evaluating many real-world networks such as the North American electric grid with high
reliability [7].

As these complex systems of today grow larger, the ability to generate progressively large random
networks becomes all the more important. It is well known that the structure of larger networks is
fundamentally different from that of small networks, and many patterns, such as communities, emerge only
in massive networks [11].

Complementing the trend of increasing scales of network graphs, we also witness the trend of dramatically
faster computing platforms, particularly based on accelerators called Graphical Processing Units (GPUs).
GPUs are a cost-effective, energy-efficient, and widely available parallel processing platform. They are
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highly parallel, multi-threaded, many-core processors that have greatly expanded beyond graphics
operations and are now widely used for general purpose computing.

A novel set of GPU-based algorithms called cuPPA for generating scale-free networks was recently
proposed by us [1, 2, 4]. In some of our previously largest experiments, cuPPA generated graphs of sizes
ranging up to 16 billion edges. In this report, we significantly increase this capability by reporting
additionally scaled algorithmic implementation and experiments taking the size from billions to trillions of
edges. We present the challenges and run times in generating graphs with trillions of edges.

An additional challenge arises when we consider whether the generated graph can include more than one
edge between a pair of nodes. Those graphs that contain no more than one edge between a pair of nodes are
called simple graphs. Those graphs that can have more than one edge between any pair of nodes are called
multi-graphs. The graphs generated by the previous algorithms were restricted to simple graphs. However,
the effort involved in assuring that a generated synthetic graph is in fact a simple graph can become large as
the graph size is increased. On the other hand, the probability of duplicate edges (that is, having more than
one edge between a pair of nodes) exponentially decreases [12] in scale-free networks with large number
(as in trillions) of edges. Checking for presence of duplicate edges (and eliminating or avoiding) to produce
simple graphs can take a significantly longer amount of time. As the number of duplicate edges is relatively
small in a scale-free network , one can instead use a graph that contains duplicate edges often called a multi
graph. For these reasons, here we also implement and evaluate an algorithm that generates multi graph.

The rest of the paper is organized as follows. Section 2. provides background material in terms of
preliminary information, notations, an outline of the network generation problem, and the base algorithms.
Section 3. covers the experimental study and performance results using cuPPA. Finally, Section 4.
concludes with a summary and an outline of future directions.

2. BACKGROUND

2.1 Preliminaries and Notations

In the rest of this report, we use the following notations. We denote a network G(V, E), where V and E are
the sets of vertices and edges, respectively, with m = |E| edges and n = |V | vertices labeled as
0, 1, 2, . . . , n − 1. For any (u, v) ∈ E, we say u and v are neighbors of each other. The set of all neighbors of
v ∈ V is denoted by N(v), that is, N(v) = {u ∈ V |(u, v) ∈ E}. The degree of v is dv = |N(v)|. If u and v are
neighbors, sometimes we say that u is connected to v and vice versa.

We develop parallel algorithms using the CUDA (Compute Unified Device Architecture) framework on the
GPU. A GPU contains multiple streaming multiprocessors (SMs). An SM is a group of core processors.
Each core processor executes only one thread at a time. All core processors can execute their corresponding
threads simultaneously. If some threads perform operations that have to wait for data fetches with high
latencies, those are put into the waiting state and other pending threads are executed. Based on this mode of
operation, GPUs increase throughput by keeping the processors busy. All thread management, including
the creation and scheduling of threads, is performed entirely in hardware with negligible time overhead for
launching work on the GPU. For these advantages, modern supercomputers, such as the Oak Ridge
Leadership Computing Facility’s Titan and Summit machines listed in the series of top supercomputers of
the world, are built using GPUs augmenting conventional central processing units (CPUs).
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We use abbreviations of units as K, M, B, and T to denote units of thousand, million, billion, and trillion,
respectively. For example, 2 B stands for two billion.

2.2 cuPPA: A Preferential Attachment–Based Generator

The preferential attachment model is a model for generating randomly evolved scale-free networks using a
preferential attachment mechanism. In this mechanism, a new vertex is added to the network and
connected to certain existing vertices that are chosen preferentially based on specific properties of the
vertices. In the most common method, preference is given to vertices with larger degrees: the higher the
degree of a vertex, the higher is the probability of choosing it. cuPPA uses this degree-based preferential
attachment mechanism. In the rest of the paper, by preferential attachment (PA) we mean degree-based
preferential attachment.

cuPPA uses an algorithm called the copy model [9, 10] to generate preferential attachment–based graphs.
The copy model works as follows. It starts with a small clique of d̂ vertices and, in every time step, a new
vertex t is added to the network to create d ≤ d̂ connections to existing vertices F`(t) for 1 ≤ ` ≤ d with
F`(t) < t. For each connection (t, F`(t)) from vertex t, the following steps are executed:

Step 1: First, a random vertex k ∈ [0, t − 1] is chosen with uniform probability.

Step 2: Then, F`(t) is determined as follows:

F`(t) = k with prob. p (Direct edge) (1)

= Fl(k) with prob. (1 − p) (Copy edge) (2)

where l is a random outgoing connection from vertex k.

We also denote F(t) = {F1(t), F2(t), . . . , Fd(t)} to be the set of outgoing vertices from vertex t.

cuPPA exploits a distributed memory-based algorithm [3, 5] to generate graphs on the GPU. Here, the set
of vertices V is partitioned into disjoint subsets of vertices and processed by concurrent GPU threads. The
algorithm works in two phases.

1. In the first phase of the algorithm (called Execute Copy Model), the copy model for all vertices is
executed in parallel (using all threads). This phase creates all the direct edges and some of the
“copy” edges. However, many copy edges might not be fully processed due to the dependencies. The
incomplete copy edges are put in a waiting queue.

2. In the second phase of the algorithm (called Resolve Incomplete Edges), the incomplete edges from
the waiting queue are resolved and the copy edges are finalized.

2.3 Graph Representation

We use one array of nd elements to represent and store the entire graph. Each vertex u connects to d
existing vertices. The neighbors of u are stored between the indices inclusive from ud to (u + 1)d − 1 that
represent the other end-point vertices. We call these indices the outgoing vertex list for vertex u. The initial
network consists of the d2 vertices from the start of the array, representing a clique of d nodes. For any
edge u, v where u > v and u, v > d, the edge is represented by storing v in one of the d items in the outgoing
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vertex list of u. Note that the graph’s edge set E contains exactly nd edges as defined by the
Barabási–Albert or the copy model. Any vertex with an index 0 ≤ i < nd of the array G denotes the (t
mod d)-th end-point of the vertex i

d .

2.4 Parallel and Distributed Implementation

For parallel execution, the graph vertices are allocated to computing nodes using a block partitioning
scheme. One rank is spawned per computing node (that is, one rank per Q GPUs of each node), with R
ranks across R nodes. The total number of GPUs used is P = QR. The number of vertices assigned to each
GPU is given by ∆N = d nd

QRe (except for the last GPU, which has fewer). The GPU numbered q in rank r,
0 ≤ q < Q of rank 0 ≤ r < R, is assigned vertices [I, I + ∆N), where I = Q × r × ∆N.

On the Summit supercomputer, there are six GPUs per computing node (that is, Q = 6). For an experiment
using P = 1008 GPUs, we launch an MPI run with R = P

Q = 1008
6 = 168 ranks, one rank per node. Within

each rank, we initiate asynchronous launches of one kernel invocation per GPU. After all kernels are
launched, their completion is synchronized on the CPU. Using our cuPPA-Hash multi-GPU algorithm [4],
we process the block of nodes assigned to each GPU in parallel. At the end of this parallel execution across
all the GPUs, a cudaDeviceSynchronize() operation is performed to serve as a barrier for all GPUs
within a computing node. After the GPUs are synchronized, a MPI_Barrier() operation is performed to
synchronize all MPI ranks to mark the completion of the graph generation.

Note that the number of edges being processed at any given time within the GPU memory is smaller than
the total number of vertices assigned to that GPU. Based on the hardware capabilities of the GPU (for
example, the number of CUDA threads), the number is varied. This number is optimized based on
experimental observations [4] to use 512 threads.

3. EXPERIMENTAL RESULTS

In this section, we evaluate our algorithm and its performance by experimental analysis. We demonstrate
the accuracy of our algorithm by showing that our algorithm produces very large networks with power law
degree distribution as desired. We also compare the run time of our algorithm against other sequential and
parallel algorithms.

3.1 Hardware and Software

We used the Summit machine that offers a few thousand compute nodes containing a mixture of CPUs and
GPUs. Each node contains two IBM POWER9 processors (two CPU sockets) and six NVIDIA Volta V100
accelerators (six GPUs) connected by high speed NVLINK connections. Each node has 512 GB of DDR4
memory for use by the CPUs, 96 GB of High Bandwidth Memory (HBM2) for use by the GPUs, and
1.6TB of non-volatile memory. We used C/C++ and CUDA for programming the algorithm on CPU and
GPU respectively. The CUDA Compilation Tools V11 were used for the GPU code along with nvcc
compiler.
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3.2 Degree Distribution

We generated three big networks of 1 trillion edges, 2 trillion edges, and 4 trillion edges by executing the
generation algorithm on 252, 504, and 1008 GPUs respectively. The degree distributions of these networks
are shown in Figure 1 in a log-log scale. The number of nodes is set to 2 billion (n = 2B) vertices and
d = 500, 1000, 2000 for 252, 504, and 1008 GPUs respectively. All the vertices are stored in the GPU
memory. Note that, using a 32-bit node identifier, all the GPU memory banks operate near their full
capacity of 16 GB memory for each of the three different configurations.

Figure 1. Validation of scale-free property (straight lines in log-log scale degree distributions) of the
generated networks for n = 2B, d = 500, 1000, 2000

The distribution is heavy-tailed, which is a distinct feature of the power-law networks. The exponent γ of
the power-law degree distribution is measured to be 2.7. This supports the fact that for the finite average
degree of a scale-free network, the exponent should be 2 < γ < ∞ [8]. We also examined the degree
distribution of the generated simple graphs and multigraphs. Based on the examination, we found that the
degree distribution of simple and multigraphs for each configuration are quite similar in nature.

3.3 Graph Generation Time

Next we examined the time required to generate simple graphs and multigraphs with trillions of edges. The
run times of the experiments are summarized in Table 1. At the fullest GPU memory capacity, the run time
for multigraph is almost the similar for all three graph sizes. However, the time required for generating
simple graph requires a heavy computational load of checking for duplicates, which affects the graph
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generation time. For larger graph sizes and larger d, the effect on run time is more pronounced.

Table 1. Generation Time of Big Graphs

Graph Size Number of GPUs
Generation Time

(Seconds)
Million Edges

per Second per GPU

Simple Graph Multigraph Simple Graph Multigraph

1 trillion edges 252 29.42 2.42 134.88 1641.27
2 trillion edges 504 89.85 2.46 44.17 1616.23
4 trillion edges 1008 426.68 2.41 9.30 1649.96

We also investigated the time taken by each GPU in generating the networks for each configuration. These
are shown in Figures 2, 3, and 4.

Simple Graph versus Multigraph: Note that generating a simple graph (by finding and eliminating
duplicate edges) requires significantly more time than generating a multigraph (without checking for
duplicate edges). This time effect is reflected among all GPUs. However, for generating a simple graph, the
first GPU (with rank 0) requires significantly more time than other GPUs. This is due to the fact that, in
preferential attachment, earlier vertices have fewer number of vertices to choose unique d edges and
therefore require more frequent execution of the copy model due to more probable collisions. This
phenomenon was experimentally observed in our earlier work as well [5].
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Figure 2. Distribution of run time in different GPU ranks for n = 2B, d = 500, and 252 GPUs (only
the first 50 GPUs are shown)

Note that there is a processing cost for the verification (and elimination) for every edge in a batch of edges
generated within each GPU. A verification kernel is executed on all the edges generated such that exactly d
unique edges remain at the end of the kernel. Using a binary search tree to aid in searching and detecting
duplication, the computational cost is kept low. For a batch of h edges generated in each vertex, there are
O(h log d) comparison operations with the binary tree, since h ≥ d edges are consulted against d edges.
This constitutes a (relatively) fixed cost in the computational time of simple graph, which is added to the
time to generate the multigraph. This difference in times is observed in Figures 2, 3, and 4.
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Figure 3. Distribution of run time in different GPU ranks for n = 2B, d = 1000, and 504 GPUs (only
the first 50 GPUs are shown)
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Figure 4. Distribution of run time in different GPU ranks for n = 2B, d = 2000, and 1008 GPUs (only
the first 50 GPUs are shown)

3.4 Strong Scaling

In this experiment we examine the strong scaling performance of cuPPA for generating graphs with
trillions of edges. In strong scaling experiments, the size of the problem is fixed while more hardware
resources are added to reap parallel processing performance.

Here, we fixed the number of nodes at 2 billion and degree at 500 (n = 2B, d = 500) for generating one
trillion edges (1T). Note that 252 is the minimum number of GPUs needed to generate 1T edges using
32-bit vertex identifiers. We then increased the number of GPUs to 504 and 1008 for the experiment, to
observe the speed increase in generation. As 252 is the minimum number of GPUs required to generate
trillion edges, we used it as a baseline to generate the (relative) strong scaling plot shown in Figure 5.
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Figure 5. Relative speedup of cuPPA for generating Simple and Multigraph for n = 2B and d = 500
with varying number of GPUs

The relative speedup of generating multigraph is nearly close to the optimal level. When the number of
GPUs is increased by a factor of 4, we achieved a speed increase by a factor of 3.65, which is 91% of the
optimal value. However, the corresponding relative speedup for generating a simple graph is 1.95, which is
approximately 49% of optimal value.

4. CONCLUSION

Synthetic graph networks of large sizes are useful for experiment-based understanding in applications such
as scalable social networks. Here, we report one of the largest results in GPU-based parallel and distributed
implementations of synthetic graph network generation using our cuPPA algorithm. Graph networks
conforming to scale-free properties are generated with trillions of edges by executing our GPU-based
algorithm on 1008 GPUs of a supercomputer. Our implementation is based on MPI-based communication
for the distributed part of the execution, and uses CUDA for the multi-GPU parallel execution. Block
partitioning of graph vertices is used across ranks and across GPUs within each rank. The issue of
resolving the presence of parallel edges is addressed by resolving multigraph to simple graph during edge
generation at runtime. A performance study of the run time and scaling is presented using scaled execution
performed on the Summit supercomputer with over one thousand GPUs. Additional future work involves
the development of a hybrid CPU-GPU execution in order to utilize unused cores of multi-core CPUs of
the computing platform. Finally, our work can be extended to convert our internal, GPU-based graph
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representation to other popular network formats for usability. In-place processing needs to be explored
with graph algorithms that utilize the large scale-free network generated by our algorithm that stores the
entire network in a distributed fashion across GPU memories.
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