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ABSTRACT

Communities represent important functional modules in networked systems. A key goal in preserving such
communities is understanding their robustness under perturbations. Previous research has studied the
impact of node removals and edge removals on the community structure. However, the impact of edge
additions on the robustness of the community structure is relatively unknown. Edge additions or false
positive edges may simulate measurement errors or external exceptional events that threaten the
functionality of networked systems. Here, we study the impact of edge additions on the community
structure using Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks. We show that, for a fixed
network size, the impact of edge additions is greater on networks with initially weak community structure
than on networks with strongly clustered structures. In addition, we find that the perception of the impact is
also dependent on the community detection algorithm used to uncover communities. In particular, we
found that modularity-based methods such as Leiden and Louvain are less affected than
information-theoretic and message passing-based methods such as Infomap and Label Propagation. Our
results demonstrate that edge addition can (a) significantly impact the community structure of networks
based on their initial conditions, and (b) the perception of the impact is dependent on the community
detection algorithm used. We describe limitations, open challenges, and how this methodology can inform
the design of resilient networked systems under edge additions.

1. INTRODUCTION

Many complex systems are usually represented by networks (Amaral and Ottino, 2004). Networks are
useful representations because they capture interactions among the elements of these complex systems and
aid us in understanding their structure and function (Newman, 2003). Networked representations have been
found useful in uncoupling a wide range of sources of complexity among different applications, including,
percolation (Albert et al., 2000), spreading processes (Newman et al., 2002), diffusion (Weng et al., 2013)
synchronization (Wang et al., 2007), signaling (Wang et al., 2012b), and game dynamics (Moriano and
Finke, 2012), among others. Among the most commonly studied properties of networks, the property of
community structure has emerged as key to understand and explain many aspects of complex systems.
Communities usually represent important functional modules in networked systems (Lancichinetti et al.,
2010).

Communities serve to capture a mesoscale representation of networks. Communities are abstractions that
group multiple nodes of the network that have similar properties. Nominally, this is done by grouping
nodes with a higher intra-community density than inter-community density. Communities have been found
to reflect important functional modules in different kinds of complex systems, including the brain (Sporns
and Betzel, 2016), society (Watts et al., 2002), and networked engineering systems (Leskovec et al., 2008).
Thus the development of methods to automatically uncover communities has been an active area of
research over the last few years (Fortunato and Hric, 2016).

The identification of communities within a networked system has been shown to be an important and open
challenge (Fortunato, 2010). Additionally, there is an increasing interest in understanding the limits of the
robustness of the identified community structure. This is because maintaining the functionality of
networked systems is heavily dependent on maintaining their community representation. In other words,
community structure affects the maintenance of their functional clusters (Wang et al., 2017). A robust
community structure should keep similar community assignments to nodes before and after perturbations.
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To that end, different perturbation mechanisms have been tested, most of which are based on node and edge
deletion (Amancio et al., 2015; Wang and Liu, 2018), and edge rewiring (Karrer et al., 2008). These
perturbation mechanisms are usually used as a proxy of unpredictable failures or attacks.

Here, we focus on understanding the limits of the robustness of community structure under the addition of
edges. Perturbing a network by adding new edges would be one way to simulate the measurement errors
for a real networked system where nodes are erroneously connected among themselves, but in reality are
not connected. In other words, the added edges could represent false positive edges (Borgatti et al., 2006;
Wang et al., 2012a). This has important implications, for instance, in social networks, where declared
contacts may, in fact, not represent real relationships (Choudhury et al., 2010). The addition of edges may
also simulate the impact of exceptional events on social communications networks, such as Twitter. During
exceptional events, a high volume of interactions is expected (Moriano et al., 2019). However, to the best
of our knowledge, the impact of exceptional events on the robustness of the community structure and its
implications has not yet been thoroughly studied.

The contributions of this research are summarized as follows. First, we show the impact of adding random
edges on the robustness of the community structure of networks by controlling their size. We build on the
previous work of (Wang and Liu, 2018) that quantified the impact of removing edges on the robustness of
the community structure. By contrast, we systematically add edges to synthetically generated networks
conforming to power law degree distribution and community size using LFR network
benchmarks (Lancichinetti et al., 2008). We compare changes in the the robustness under different
community structure strengths, using state-of-the-art community detection algorithms. We observe that for
the addition of edges, the stronger the community structure is, the more robust also is the community
structure. These results also indicate that the degree of robustness of the community structure is dependent
on the specific community detection algorithm used. In particular, modularity-based algorithms (e.g.,
Leiden (Traag et al., 2019) and Louvain (Blondel et al., 2008)) smoothen the impact of the addition of
edges, while information-theoretic (e.g., Infomap (Rosvall and Bergstrom, 2008)) and message
passing-based (e.g., Label Propagation (Raghavan et al., 2007)) measures are heavily impacted by edge
additions. In addition, we show that variations of robustness when adding edges at different proportions are
negligible for Leiden and Louvain but not for Infomap and Label Propagation. This indicates that the
perception on the impact on the community structure is biased with respect to the nature of the community
detection algorithm applied.

The rest of this paper is organized as follows. In Sec. 2., we detail the experimental setup of this research,
including LFR network benchmarks, the network perturbation mechanism, community detection
algorithms, and the similarity measure we used to compare community structures. Detailed experimental
results are presented in Sec. 3.. This includes results using networks of fixed size. In Sec. 4., we discuss the
implications of our results, including their limitations. Finally, Sec. 5. presents concluding remarks and
areas for future research.

2. METHODS

In this section, we describe in detail the procedure to generate the synthetic network benchmarks (Sec. 2.1),
the procedure to perturb the generated networks (Sec. 2.2), the community detection algorithms we used
(Sec. 2.3), and the quantification of similarities in the community structure (Sec. 2.4).
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2.1 NETWORK BENCHMARKS

There are two options to compare the performance of community detection methods. We can use either
empirical networks with labeled information about community assignments (metadata groups) or synthetic
network benchmarks with known community memberships (ground truth). Among the former, previous
research has relied on networks such as the Zachary’s karate club (Zachary, 1977), the Lusseau’s
dolphins’s network (Lusseau, 2003), and the college football network (Girvan and Newman, 2002).
Despite the increasing availability of empirical networks with metadata groups, the work in (Hric et al.,
2014) shows that there is a mismatch between topological and metadata groups that is consistent among
various community detection methods. Among the latter, the predominant network generators include the
Girvan-Newman (GN) benchmark (Girvan and Newman, 2002) and the LFR benchmark introduced by
Lancichinetti et al. (Lancichinetti et al., 2008). The GN benchmark consists of 128 nodes clustered into 4
equal-sized communities. In the GN benchmark, nodes have approximately the same degree and the
number of edges within communities exceeds the number of edges across communities. The GN
benchmark, however generates networks with small sizes and does not exhibit common real-world network
topological properties such as power law degree distributions (Barabási and Albert, 1999; Newman, 2003)
and community size (Guimerà et al., 2003; Clauset et al., 2004) distributions. The LFR benchmark
introduces the ability to control the generation of networks with power law degree and community size
distributions commonly found in empirical networks (Lancichinetti et al., 2008). To do so, the LFR
benchmark allows control on the degree of membership of nodes to communities through the mixing
parameter µ. In particular, µ controls the fraction of node’s edges that are external to its assigned
community. Thus it becomes more challenging for community detection algorithms to correctly detect
communities with larger values of µ. In general, it is expected that for µ > 0.5, nodes have fewer
connections within the community than with the rest of the network (Yang et al., 2016). In our present
work, we use the LFR benchmark for the generation of synthetic networks with known community
membership (ground truth). We focus on undirected, unweighted networks represented by graphs. A graph
is denoted by G = (V, E), where V = {1, 2, . . . ,N} is the set of N nodes and E = {ei j | i, j ∈ V} is the set of
M edges. Let C = {c1, c2, . . . , cN} denotes a partition of graph G indicating the community membership of
each node. In other words, ci ans c j have the same value if both nodes i and j belong to the same
community. We focus on non-overlapping communities given that the majority of community detection
algorithms are designed for this type of networks. Table 1 shows the set of parameter values that we used in
the generation of the LFR benchmark networks.

Table 1. Parameters of LFR benchmark networks.

Parameter Value
Number of nodes N 1000
Maximum degree kmax 0.1N
Maximum community size smax 0.1N
Average degree 〈k〉 10
Degree distribution exponent α -2
Community size distribution exponent β -1
Mixing coefficient µ [0.01, 0.5]
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2.2 NETWORK PERTURBATION

Here we focus on comparing networks that have the same number of nodes. We only perturb the generated
networks by adding edges. Edge addition refers to the addition of edges not present in the generated LFR
benchmark networks. In particular, we randomly add new edges by connecting two previously unconnected
nodes. Let G′ = (V, E′), where E′ = {e′i j | i, j ∈ V} is the perturbed network. The number of added edges
constitute up to |E′| = 10M random edges.

2.3 COMMUNITY DETECTION ALGORITHMS

Community detection is the task of assigning nodes to communities based on the similarity of their
topological properties (Fortunato, 2010). Community detection performs grouping of nodes inside the
same community if the nodes are highly connected among themselves (high intra-community density) but
loosely connected with nodes of other communities (low inter-community density). In this work, we use
state-of-the-art community detection algorithms that scale to networks containing up to millions of nodes.
We use their undirected, unweighted implementations to remain consistent with the generated LFR
network benchmarks. We use the lowest hierarchical level of communities returned by the algorithms.
Below is the list of the algorithms we used, in alphabetical order.

Infomap. The Infomap algorithm was proposed by Rosvall et al. (Rosvall and Bergstrom, 2008).
This algorithm is based on the principles of information theory. Infomap finds optimal communities
by maximizing an objective function called Minimum Description Length (Rosvall and Bergstrom,
2007). This is equivalent to finding a description of minimum information of a random walk on the
graph. The computational complexity of Infomap is O(M) (Delvenne et al., 2013). We use the
default parameters of the implementation at (A. Lancichinetti).

Label Propagation. The label propagation algorithm was proposed by Raghavan et al. (Raghavan
et al., 2007). Label propagation does not optimize a predefined objective function. Instead it relies
on an iterative process in which each node in the graph adopts the label that is more commonly found
among its neighbors (assigned uniquely at the beginning). The process stops when every node in the
graph has the most common label among its neighbors. The computational complexity of the label
propagation algorithm is O(M) (Raghavan et al., 2007). We use the default parameters of its publicly
available implementation (A. Lancichinetti).

Leiden. The Leiden algorithm was proposed by Traag et al. (Traag et al., 2019). This algorithm tries
to optimize a quality partition function defined either by Newman-Girvan (Newman and Girvan,
2004) or the Constant Potts Model (Traag et al., 2011). It requires three steps. First, the algorithm
moves nodes across communities aiming to optimize the partition. Secondly, the algorithm refines a
previously determined partition by splitting a community into multiple communities when they
become badly connected after node movements. Finally, the algorithm performs aggregation of the
network based on the redefined partition. These steps are repeated until no further improvements can
be made. The computational complexity of Leiden is O(N log N) (Traag et al., 2019). We use the
Newman-Girvan modularity function, a resolution parameter of 1.0, with 10 random starts, and 10
iterations per random start. We use the publicly available implementation of this algorithm (Traag,
2018).
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Louvain. The Louvain algorithm was proposed by Blondel et al. (Blondel et al., 2008). This
algorithm attempts to optimize the modularity of network partition as defined by
Newman-Girvan (Newman and Girvan, 2004). This procedure requires two steps. Fist, the algorithm
optimizes modularity locally based on each node assignment. Second, the algorithm aggregates
nodes in the same community to form super-nodes. These steps are repeated until a maximum of
modularity is achieved. The computational complexity of Louvain is O(N log N) (Xie and
Szymanski, 2011). We use 10 modularity maximization iterations (the default value) and use the
partition that produces the greatest modularity. We use a publicly available implementation of this
algorithm (A. Lancichinetti).

2.4 SIMILARITY OF COMMUNITY STRUCTURE

Let C′ = {c′1, c
′
2, . . . , c

′
N} be the partition of the graph G′ obtained by a community detection algorithm. We

quantify the similarity between the ground truth partition C and the detected partition C′ using the
normalized mutual information (NMI) (Danon et al., 2005), normalized by the arithmetic mean. We use the
scikit-learn implementation of NMI. This measure of similarity borrows information-theoretic
ideas (Vinh et al., 2010) and has been used extensively when comparing community detection algorithms
performance (Lancichinetti and Fortunato, 2009). More formally, let the Shannon entropy of C be
H(C) = −

∑
c P(c) log P(c), where P(c) is the probability that a randomly selected node is assigned to the

community c. Similarly, let the Shannon entropy of C′ be H(C′) = −
∑

c′ P(c′) log P(c′) and
H(C,C′) = −

∑
c
∑

c′ P(c, c′) log P(c, c′), where P(c, c′) is the joint probability that a randomly selected
node is assigned to the community c by C and to the community c′ by C′. The mutual information of C and
C′ relies on the entropies of C and C′ and is defined as I(C,C′) = H(C) + H(C′) − H(C,C′). This results in
the following equation.

I(C,C′) =
∑

c

∑
c′

P(c, c′) log
P(c, c′)

P(c)P(c′)

The mutual information between C and C′ quantifies the overlap between C and C′. More precisely, it
represents how much we learn about C from knowing C′ (and vice versa). To obtain a normalized value
between 0 and 1, we use the definition of the NMI (Danon et al., 2005) as

NMI(C,C′) =
2I(C,C′)
√

H(C)H(C′)
. (1)

Perfectly similar partitions produce NMI values of unity, while perfectly dissimilar partitions produce NMI
values equal to zero.

3. RESULTS

Here we present our results on the robustness of the community structure under the random addition of
edges. We quantify the impact of random edge addition on the robustness of the community structure by
computing the similarity of the partitions C and C′. In the subsequent figures, each data point represents
statistics computed over 20 realizations of random edge additions.

In this work we focus on the impact of adding random edges to the community structure of networks of
fixed size (Sec. 3.). We show that the magnitude and rate of the impact depends (1) on the strength of the

5



initial community structure (captured through the mixing parameter µ) and (2) the algorithm used for
community detection.

Constant Network Size

To investigate how the random addition of edges impacts the community structure, we compute the NMI
for different values of added edges. Note that we repeat the same procedure varying the value of the mixing
parameter µ. We focus on LFR benchmark networks of size N = 1000 (following the remaining parameter
values in Table 1).

We find that, for a fixed network size, the magnitude and speed of the impact depends on µ and the
community detection algorithm. With respect to µ, the lower the value, the more robust is the community
structure (and vice versa). With respect to the community detection method, both information theory-based
(Infomap) and message passing-based (Label Propagation) algorithms are less robust to the random
addition of edges than their counterpart based on modularity optimization (Leiden and Louvain).

Fig. 1 shows the effect of µ and the community detection algorithm on the robustness measured through the
average NMI. Regarding µ, networks with stronger community structure (lower values of µ) have a slower
decay in the NMI, i.e., it is necessary to add more edges in order to reduce the NMI to a similar value to
one of a network with a higher value of µ. Regarding community detection algorithms, Infomap and Label
Propagation show a sharp decrease in the robustness at lower values of added edges. In particular, when
added 3 and 2 times the number of original edges respectively, the NMI tends to 0, i.e., highly dissimilar
communities. This is not the case for Leiden and Infomap that with about 10 times the number of edges
added still show traits of similar partitions depending on the value of µ.

Fig. 2 shows the effect of µ and the community detection algorithm on the robustness variation measured
through the standard deviation of the NMI. In particular, for Infomap and Label Propagation, networks
with stronger communities (lower values of µ) tend to have higher variability than their counterpart.
Interestingly, for Leiden and Louvain, the variation is about one order of magnitude lower than that for
Infomap and Label Propagation. For Leiden and Louvain, the variations do not show an increasing or
decreasing pattern with respect to µ.

4. DISCUSSION

Here, we study the impact of the random addition of edges on the robustness of the community structure of
networks. We quantify the robustness of the community structure by computing the NMI between the
partition of the original network (ground truth) and the partition found by four different community
detection algorithms, namely, Infomap, Label Propagation, Leiden, and Louvain. To accomplish this, we
use LFR benchmark networks as proxies of network substrates and then add random edges that did not
exist in the original networks. We add a number of edges proportional to the original number of edges. We
find that, for a fixed size network, the robustness of the community structure depends on the strength of the
community structure of the original network and the community detection method used.

These results suggest that the robustness of a network against the random addition of edges depends
heavily on the strength of the initial partition. First, we find that stronger community partitions tend to be
more robust when adding random edges. Second, we find that the choice of the community detection
algorithm has an impact in both the severity and the rate of decrease of the robustness. Infomap and Label
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Figure 1. Variation in the NMI as a function of the number of added edges.
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Propagation tend to sharply decrease their robustness, indicating that they hardly resemble the original
partition when there is an increasing amount of noise added to the system. Leiden and Louvain are found to
be more robust under the increasing number of added edges even when the initial partition is not very well
defined.

The scripts used in this work will be made available for reproducibility purposes.

To the best of our knowledge, the results from this research show for the first time a systematic evidence on
the impact of random addition of edges on the robustness of the community structure.

The following are some of the limitations of our study.

Emphasis on LFR network benchmarks: We use LFR network benchmarks as a substrate and then
add random edges. LFR network benchmarks allow the generation of networks with both power law
degree and community size distributions. We acknowledge that although having both power law
degree and community size distributions are desirable properties, they many not fully resemble all
the properties found in empirical networks (Newman, 2003). Additional stochastic network
generators that include embedded community structure may be helpful in addressing similar
questions as in this work by focusing on additional network properties (Funke and Becker, 2019).

Constant average degree: In our experiments, we keep constant the average degree of the nodes
〈k〉. We acknowledge, however, that the density of the initial connections may influence the task of
community detection, making it even harder for some algorithms. Further studies on this matter can
be implemented on top of our proposed methodology.

Random addition of edges: We add non-existing edges randomly. We smooth the impact of this
strategy by running multiple realizations of the same task. However, we notice that the strategy of
adding random edges can be targeted to emphasize the addition of certain types of edges, such as
inter-community or intra-community edges. This may have a completely different impact on the
robustness of the community structure.

5. CONCLUSION

In this research, we have shown that the process of adding edges to a defined community structure has an
impact its robustness. To ascertain this fact in experiments, we use LFR network benchmarks and show
that the degree at which the robustness is affected depends heavily on the strength of the initial partition,
controlled by the mixing parameter µ. Moreover, among different community detection methods, the
impact at which the robustness is affected depends on the community detection algorithm employed. We
have shown that the perception is more susceptible for Infomap and Label Propagation than for Leiden and
Louvain.

Future work in this area includes studying the impact of the addition of edges to networks generated with
different average degrees. Additional work includes the study of the robustness of the community detection
under different stochastic block models besides LFR network benchmark and empirical networks.
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