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Abstract—Internet of Things (IoT) is becoming more pervasive
in many installations, including homes, manufacturing plants,
and industrial facilities of all kinds. The data that IoT produces
is a reflection of usual behavior such as daily routines and
scheduled tasks, but also from unexpected behavior due to
unintentional or undesirable abnormalities. Here, we focus on
achieving coordinated intelligence about normal and abnormal
phenomena from multiple sensors that are geographically co-
located in close proximity, monitoring and controlling a set of
co-located devices. Given a set of co-located sensors, we seek
an intelligent approach that would automatically determine the
“normal” patterns of behaviors among the correlated sensors.
After normal behavior is extracted, later monitoring should
detect any deviant variations over time. An example application is
an entry monitoring and alert system for facilities such as nuclear
reactors, where badge readers, door locks, lights, weight trackers
and other co-located sensors at the entry point are collectively
tracked. To address this problem, we identify the possible solution
approach that can be used to solve its different variants. The
implemented model is developed as a combination of rules and
Markov Chain methods.

Index Terms—IoT, Markov Chain, sensors, abnormality detec-
tion, security, pattern detection

I. INTRODUCTION

We live in an era of automation present in buildings, homes,
and facilities, where even the tiniest things are inter-connected
and communicate each other through network protocols. Re-
cent poll results show that the number of internet connected
devices will grow exponentially in the next year and it is
estimated by 2020 to rich 50.1 billions [9]. These devices have
various functionalists and capabilities such as face detection
cameras for door lock/unlock and mechanism to open when
the user is recognized. Or, if someone is coming to walk the
dog at the same time each day we can program the home
automation system to unlock the front door for them, and
lock it up again when they are done. We can also check our
security systems status, whether the lights are on, whether the
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doors are locked, what the current temperature of the home
is and so on. And we even ask the intelligent virtual assistant
turn off the lights, brew a coffee or turn on the car. These
are closely located sensors that monitor the same space from
and for different or identical aspects. They communicate with
each other and have capability of making decisions based on
the collective co-location in some capacity. We call them co-
located sensors. Examples include (a) human body attached
sensors that measure glucose level and accordingly adjust
insulin, or (b) in home environments, motion sensors in the
house that detect unexpected movements, lock the door and
send emergency messages. Our current focus in this paper is
on (physical) access-controlled spaces in the context where
there is a mechanism that determines who enters that space
and what privileges that person is allowed to perform in that
space or interact with the devices.

A. Coordinated intelligence

In conventional individual sensors, data is received by each
sensor from its own sensor stream and decisions are based
on that data. In co-located sensors, a real-time processing
unit receives data from multiple sensors and decisions are
made based on the reasoning from all sensors. This shared
intelligence that emerges from the collaboration, collective
efforts, and competition of many individual sensors and
appears in consensual decision making is called collective
intelligence [3]. One of the types of collective intelligence
is coordinated intelligence, because collective actions or tasks
require different amounts of coordination depending on the
complexity of the task [12]. The coordination enables the
system to function in a much more intelligent way and make
more timely and more precise decisions.

B. Contributions

Our research is focused on addressing the aforementioned
problem of achieving collective co-located intelligence, with
little or no a priori user-specified definition of normal and
abnormal behaviors.

The contributions of this work are summarized as follows:

• We provide a definition of the coordinated intelligence
approach.



• Security monitoring for co-located sensors problem is
formulated as a problem of Markov Chain definition and
analysis;

• We adapt the Markov Chain model to realize monitoring
within and across sensors with the aim of automatically
capturing normal behaviors as well as detecting abnormal
behaviors;

• We present results from implementation of the analysis,
and the simulation results verify effectiveness of the
proposed approach.

C. Organization

The rest of the paper is organized as follows. The for-
mulation of the colocated intelligence problem is provided
in Section II. In Section III, our proposed solution including
algorithm design, results using and discussion are presented.
Related work is covered in Section IV, while Section V
concludes the paper and identifies future work directions.

II. PROBLEM STATEMENT

A. Formulation

Co-located in a shared physical space, a set of sensors
S = {S1, S2, .., Sn} measure different parameters over time
T = {t1, .., tk}, as illustrated in Figure 1. Each sensor is
associated with an event stream that represents list of events
generated by the sensor and each sensor has a finite number of
possible discrete event outcomes E1, E2, ..., El. List of events
for sensor S1 would be such as S1 = {E11, .., E1l}, where
each event Eij = (vij , tij) is associated with a value vj at
time tj . Event in this context represent state of the sensor and
each sensor has discrete states.

The objective is to (a) identify event patterns of behavior
for each sensor and across sensors via automated process to
generate a characterization of temporal patterns and relative
orderings, and (b) detect and identify deviations from the
characterized event behavioral patterns to signal abnormal
behavior dynamically.

Fig. 1. Illustration of multi-sensor sensor streams

Sensor behavior patterns represent both within and across
sensors: state changes can span over time within one sensor,
and state changes across sensors over some time period. These
are illustrated in Figure 2.

Consider the following example. In an office facility that
enforces an authentication policy to enter the facility, there

Fig. 2. Illustration of event behavior within sensor and across sensors

are three sensors that are measuring different parameters over
time: (1) a sensor for checking authentication privileges if the
individual is allowed to enter or not, (2) door lock sensor that
unlocks if the user have the credentials to enter the office, and
(3) a light sensor that activates when the user is passing by.
This scenario is illustrated on Figure 3 (left side diagram),
where sensors are continuously measuring and streaming the
data readings.

A list of constraints can be used when designing the
solutions with respect to number of sensors and type of sensors
and states.

B. Definition on normal and abnormal behavior

The challenge is to determine what is the normal behavior
and, based on that, detect abnormal behavior. Both behaviors
depend on situations where sensors are applied and used.
To be applicable to a range of installations, we define the
normal behavior in an application-agnostic way. A database
of sensor data traces is taken as input that captures behavior
and relations among sensors which are tagged as “normal
behavior” by domain expert. For instance, the expected normal
behavior of the sensors is that the door sensor is activated
after the authentication is approved and the light sensor is
then activated after the approved authentication and the door
is unlocked, illustrated on Figure 3.

Abnormal behavior is defined as any violation or deviation
from the normal. For example, with the badge sensor system
of Figure 3, abnormal behavior includes:

1) sensor do not activate in the expected dependency order
within each sensor stream; for example, “door open”
should be followed by “door close”;

2) sensor stream behavior due to “unusual” user actions;
for example a user scanning the access badge to enter,
which turns the badge sensor turns “green”, and the door
opens but the user decides not to enter the space;

3) multiple users enter the space without scanning the
badge.

4) the light sensor is activated even before door was un-
locked

In some situations, abnormal behavior may also arise from
reasons that are not alarming per se. Some of the known



Fig. 3. Example of sensor data stream readings - normal patterns (left) and anomaly behavior (right)

reasons are battery leakage, device (e.g., light bulb) mal-
functions, or losses in network connectivity, which are not
necessarily indicators of abnormal behavior. This situation and
other situations caused by transmission errors or node failure
(or sophisticated attacks that use cross-layer fuzzy logic rules
methods) are not considered in this work.

III. OUR SOLUTION APPROACH

A. Algorithm development: Kensor

Our solution approach is designed considering the following
assumptions: 1) we know the number of sensors; 2) we know
the finite set of discrete time interval action events; 3) user
behavior is deterministic; With this in view, we develop an
algorithm, named Kensor (for ”knowledge”-oriented smart
sensor), based on a Markov Chain modeling approach that
is not only domain-agnostic but also captures correlations
of events among all the sensors. The set of all possible
outcomes is considered the sample space. In our case, it is
finite, from which each subset of a sample space is defined
to be an event. We describe a sequence of possible events in
which the probability of each event depends only on the state
attained in the previous event. In case of the determining the
event patterns across sensors Kensor approach is the create
aggregated event state that is a representation of a snapshots
of the states across sensors. For instance if we considerate
time tk aggregated event would be [E12, E22, E32] where
E12 = (v12, t1k).

We represent this as a graph where nodes are events (sensor
individual or aggregated) and edges are relations between
events. The edge weights represent the total number of tran-
sition from one event to another in different time interval
and these number of transitions as a fraction represents the
transition probabilities.

We used visual evaluation metrics for event nodes, relations
between events and transitional probability between them.

B. Dataset

We consider a scenario of an access-controlled environment
with intelligent entry monitoring mechanism. This environ-
ment has three sensors to monitor an access area that includes
a badge authentication device, a door locker and a light sensor.

Badge sensor has three states they are green, blue, and yellow,
the door sensor has two states open and closed, and light
sensor has two states on and off.

The datasets are of two types:

1) Normal behavior is simulated using a Multinomial dis-
crete probability distribution and domain expert knowl-
edge to establish a normal controlled events and relations
(see Figure 4), and

2) Abnormal activities are simulated dynamically using
a set of rules that violates the normal behavior (see
Figure 5).

Normality: The scenario for normal behavior of entering
the access-controlled area is represented as follows. Suppose
there are two events (t1, E1) and (t2, E2), where time t1 < t2
and it is normal for event E1 to appear before event w2. One
example is shown in Figure 4, which represents the flow of
events: when the badge reader is green, the door opens, and
when the door opens, the person walks towards the room, and
the light turns on. When the badge reader is yellow or red,
the door is closed and light turns off after a timeout period.

Fig. 4. Normal behavior of sensor streams

Abnormality: Abnormal behavior is created to introduce a
number of unusual scenarios into the dataset. A set of rules
that violate normal expected behavior is used. For example,
one rule is the door is closed when the badge light is green
and when the light is on, this is illustrated in Figure 5.



Fig. 5. Abnormal behavior of sensor streams. Marked with red is a scenario
the door was open with out successful badge authentication and light is off.

C. Results

The access-controlled environment presented earlier has
installation with three types of sensors: a badge authentication
device, door lock/unlock mechanism, and light sensor activa-
tion. These sensors are operational all the time and generate
event streams whenever any user action activates or interacts
with them. We applied Kensor to the normal data set to
represent the normal baseline behavior. Although, transitional
probabilities can change over time it shows the number and
type of expected events and relations between them, shown
on Figure 6. For the same scenario, the normal behavior

Fig. 6. Normal pattern behavior of single sensor badge authentication

aggregated across sensors at a given time is shown on Figure 7.
From both figures we can observe that the flow of event

Fig. 7. Normal pattern behavior of aggregated multi-sensor badge reader,
door and light activation aggregated states

transition follows the normal previously defined scenario.
To evaluate the proposed Kensor algorithm for capturing the

abnormal behavior we performed the following analysis:
1) Comparison between normal graph and graph at time td;
2) Comparison over time between graph at time td and tk;

The following abnormal behaviors are introduced to test
detection:

• Abnormality 1 The badge authentication recognizes the
ID but the door does not open.

• Abnormality 2 The door opens but lights do not turn on.
• Abnormality 3 After positive authentication, the sensors

does not turn to idle (yellow) state.
• Abnormality 4 Authentication is positive, and the lights

are on, but the door does not open.
We experiment with the aforementioned types of abnormal

state changes. In a scenario with ten events of Abnormality 1,
the graph of results is shown in Figure 8.

Fig. 8. Aggregated multi-sensor behavior with one abnormal state

Another scenario we have is by introducing Abnormalities
2, 3, and 4, the graph that presents this is shown on Figure 9.

Fig. 9. Aggregated multi-sensor behavior with three abnormal states

If we take a screen shot at time td of the sensor states
we should see a graph as presented on Figure 7 the normal
behavior, while if it looks different than that something like the
graph on Figure 8 we can notice that, there are new nodes and
based on that to determine what happened and which previous



state was the initiator and how often that new state transition
occurred. We can go back or forward at time and observe the
changes in state and relations between sensors. This is graph
change over time is represented on Figure 10 and Figure 11.

Fig. 10. Aggregated multi-sensor behavior for period of [t0 : t50] time
stamps

Fig. 11. Aggregated multi-sensor behavior for period of [t51 : t100] time
stamps

To evaluate the solution we used transitional matrix com-
parison and visual graph inspection.

D. Discussion

With this approach we are tying to approach this problem
in an application agnostic manner. The algorithm is applicable
to similar problems of identifying abnormal behavior when
given baseline of normal behavior. So for any given event
data set we can represent graph of aggregated states and
relations at certain time and over time period. But to determine
the abnormalities is necessary to have baseline that represent
the normal behavior. For our example we used controlled
simulated behavior with rules to ensure the normality, but for
real world cases and deployment we need data set such as
building telemetry data already collect for LEED certification
such as entry/exit, occupancy, activity type, etc. Abnormality
detection and characterization has been tested at multi-sensor
streams level. Our approach determines the difference between
two Kensor graphs using the following modes: 1) Static mode
of comparison - baseline with certain time; and 2) Dynamic
streaming mode of detecting and tracking changes in the graph
over time. Both of these approaches consider graph change de-
tection such as node additions, node deletions, edge additions,
edge deletions, edge weight changes as metrics for evaluating
abnormal behavior compared with the known normal behavior.
If a new node and edge is added or removed compared with

the baseline, it is considered unexpected behavior. Similarly,
changes to edge weights compared to the normal require
specification of user-desired thresholds on tolerable versus
abnormal deviation. We are planing to have statistical analysis
to justify the evaluation metrics and show only the difference
between graphs in the next development phase.

IV. RELATED WORK

Related work in the literature is reviewed here under two
criteria: 1) co-located sensors and 2) multi-sensor pattern
detection methods.

Identification of relations among sensor streams in home
settings [4] has been studied using Allen’s rules and associ-
ation mining algorithms to identify temporal relations among
sensors. Detection of frequent patterns by considering con-
nectivity among sensors has been studied in IoT environments
[1] in which they represented the problem as a graph; their
method incrementally detects frequent sub-graph patterns by
using frequent sub-graph pattern information generated in
prior windows of a sliding window. An intelligent air quality
system was developed [13] in indoor settings using the k-
nearest neighbour classification algorithm. Anomaly detection
in smart home settings using temporal relationship analyses
and such as likelihood of an event occurrence given another
event occurrence has been previously explored using proba-
bilistic models for implementation was proposed by [5]. This
problem has been addressed in personal health monitoring
systems such as human activity detection for health monitoring
that includes wearable sensors is presented by [6]. Also,
identifying the abnormal behavior such as malware from
normal was presented by [11]. Our approach is different from
the preceding approaches in the sense that we consider event
pattern changes not only within a single sensor stream but also
across all sensors at a certain time stamp.

We also identify the possible solution approaches to solve
this problem and organize them in categories as presented in
Table I. Logic and probabilistic methods are based on expert
knowledge for development. Data-based methods are driven by
the data streams. While hybrid methods are a combination of
both, they use data-driven and logic-based methods to identify
patterns in the data. Our algorithm belongs to this category as
we use a Markov Chain model which is a data-driven method,
and we also use temporal logic-based rules for sensor event
stream aggregation.

V. CONCLUSION AND FUTURE WORK

In emerging cyber-physical systems, the numbers and types
of sensors that are co-located in close geographical proximity
offer opportunities to create increased amount of coordinated
intelligence. Here, we focused on defining the problem of
generating coordinated intelligence from co-located sensors,
and applied it to an entry monitoring system in an access-
controlled area. The problem is formulated as (1) converting
“normal data” into assimilated patterns that are derived auto-
matically, and (2) detecting and identifying deviations from
the derived normal patterns, to be characterized as “abnormal



TABLE I
OVERVIEW OF SOLUTION APPROACHES

Types Methods Techniques Language
and
algorithms

Logic-
based

Probabilistic,
Logical rules

Finite automata,
Markov models

Python, Java

Inductive-logic
programming

First-order predi-
cate calculus

PROGOL

Complex Event
Processing

Event calc. [7] OnProM,
ISEQ, Esper

Temporal logic Hierarchical
lang. [8]

Allen’, TSKR
rules

Data-
based

Association Frequent/sequential
pattern mining,
Fuzzy rules [5]

Apriori,
SPADE,
PrefixSpan

Relationship Correlation, Cau-
sation [1]

Correlation,
Granger

Similarity Clustering, Clas-
sification [2]

Naive Bayes,
DBScan

Hybrid Temporal logic
and Association

Temporal
relations between
events and
association [4]

Expert rules
and Apriori
algorithm

Association and
similarity

Temporal associ-
ation rules and
clustering [10]

Hierarchical
clustering and
association

events”. As one of the effective solutions, we used a Markov
Chain-based modeling approach names Kensor to create a
graph of aggregate state transitions that characterize normal
operation, and identify deviations of the graphs of abnormal
operation from the graphs of normal operation. Initial experi-
ments have shown the ability to digest normal behaviors from
sensor streams in an application-agnostic fashion, and then
also detect aberrations in entry access behaviors in subsequent
feeds of sensor streams.

Although multi-sensor fusion in the co-located context ap-
pears simple at first, it is clear that there are many complexities
that arise when we consider more variants of abnormalities,
such as temporal ordering, overlapping spans across events,
and so on. In the future, the problem offers a range of
additional directions to extend the work at the intersection
of time series analysis, temporal logic, graph analytics and
statistics.

ACKNOWLEDGMENT

Research sponsored by the Laboratory Directed Research
and Development Program of Oak Ridge National Laboratory,
managed by UT-Battelle, LLC, for the U. S. Department of
Energy.

REFERENCES

[1] Kyoungsoo Bok, Jaeyun Jeong, Dojin Choi, and Jaesoo Yoo. Detecting
incremental frequent subgraph patterns in iot environments. Sensors,
18(11):4020, 2018.

[2] Stefan Dernbach, Barnan Das, Narayanan C Krishnan, Brian L Thomas,
and Diane J Cook. Simple and complex activity recognition through
smart phones. In 2012 Eighth International Conference on Intelligent
Environments, pages 214–221. IEEE, 2012.

[3] Wikipedia Collective intelligence.
[4] Vikramaditya Jakkula and Diane J Cook. Mining sensor data in smart

environment for temporal activity prediction. Poster session at the ACM
SIGKDD, San Jose, CA, 2007.

[5] Vikramaditya Jakkula and Diane J Cook. Anomaly detection using
temporal data mining in a smart home environment. Methods of
information in medicine, 47(01):70–75, 2008.

[6] Muhammad Usman Shahid Khan, Assad Abbas, Mazhar Ali, Muham-
mad Jawad, Samee U Khan, Keqin Li, and Albert Y Zomaya. On the
correlation of sensor location and human activity recognition in body
area networks (bans). IEEE Systems Journal, 12(1):82–91, 2018.

[7] Michael Körber, Nikolaus Glombiewski, Andreas Morgen, and Bernhard
Seeger. Tpstream: low-latency and high-throughput temporal pattern
matching on event streams. Distributed and Parallel Databases, pages
1–52, 2019.
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