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Abstract—While there exist tools and techniques to discover,
identify, map, and analyze cyber physical components at higher
levels of the cyber space, there is a lack of capabilities to reach
down to the sensors at the bottom-most levels, such as levels 0 and
1 of the Purdue Enterprise Reference Model for cyber-physical
systems (CPS). Conventional information technology (IT)-based
tools reach as far as the network-side of programmable logic
controllers, but are inadequate to access and analyze the physical
side of the CPS infrastructure that directly interfaces with the
actual physical processes and systems. In this paper, we present
our research and development efforts aimed at addressing this
gap, by building a system called DEEP-CYBERIA (Deep Cyber-
Physical System Interrogation and Analysis) that incorporates
algorithms and interfaces aimed at uncovering sensors and
computing estimates of correlations among them.

Index Terms—sensors, correlations, machine learning, deep
learning, causality, programmable logic controllers, inference,

I. INTRODUCTION

In this paper, we identify a gap in capabilities in mapping
sensors of cyber-physical systems, and, to bridge the gap,
present our ongoing efforts in progressing the capabilities from
no knowledge to increasing levels of knowledge about sensors
at the bottom-most layers of a cyber-physical asset. Sensors
form a critical layer of many cyber-physical systems such as
water treatment plants, electric grids, and nuclear reactors.
In gaining an accurate and deep view of a cyber-physical
system, the challenge is to see beyond the network side of
the system to the side where sensors are connected. In the
layered architecture of cyber-physical system, relatively few
technologies exist to discover the bottom-most level, namely,
level-0. Level-0 is made of the sensors connecting the cyber
components of the cyber-physical system (CPS) to its physical
components. Our approach to addressing this goal is to develop
a new sensor data assimilation and inference engine called
DEEP-CYBERIA. Here, we present the motivating factors
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behind this level-0 inference system, describe the technical
approach, and present case study-based experimental results
to showcase the current capabilities of DEEP-CYBERIA. We
also outline additional ongoing and future work, especially
focused on generalizing the approach, software and hardware
test-beds to address the inference problem across multiple
other domains, ultimately aimed at achieving the goals in a
domain-agnostic fashion.

A. Background
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Fig. 1. The layers of industrial cyber-physical systems based on the Purdue
Reference Architecture Model

Figure 1 shows the Purdue Enterprise Reference Archi-
tecture Model (PERA) [1] in which various aspects of a
cyber-physical system are organized according as layers of
functionality. The bottom-most layer is that which directly
interfaces the rest of the cyber infrastructure to the controlled
features and sensed phenomena of the physical processes in
the cyber-physical system. In large, complex, and long-lived
installations, these sensors are designed to be accessed over
various controller protocols and are not directly accessible or
addressable. Probing, detecting, inferring, or otherwise manip-
ulating them individually is a difficult problem, especially in
a portable, system-oblivious manner.
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Note that this PERA model is specially designed for Op-
erational Technology (OT) networks of CPS across many
industries. This PERA model is distinct from the Information
Technology (IT) networks that are specific to the IT sector
that have entirely different applications and scope.

B. Motivation

There are several reasons why discovery, identification and
analysis of sensors is of great interest. Figure 2 illustrates some
of the salient reasons.

The following are some of the challenges associated with
sensors at level-0 of the PERA model.

• Lost documentation: Due to the age of the CPS, precise
documentation about the components, their interconnec-
tions, sensor types, etc. are either not maintained or lost
in the organization. Owing to the long operating lives of
the sensors, they may still be perfectly functional, and
may be expected to serve long after their documentation
is lost.

• Diagnosis: A malfunctioning CPS may need to be ana-
lyzed with precise information about actual sensor types
and their behaviors.

• Verification and audit: Although blueprints or other docu-
mentation may be available, the ground truth would need
to be independently discovered in order to serve as input
to independent audit and verification procedures.

• Detection of misconfiguration: Comparison of intended
versus actual behaviors needs to be performed on an
actual operating CPS. To help in the comparison, sensors
would need to be discovered and analyzed.

• Hard to access locations: Some CPS installations present
difficulties in taking stock or inventorying the sensor
installations, requiring remote, automated discovery and
verification.

• Triage: When incidents such as mishaps or natural disas-
ters occur, documented information is largely inadequate
and unreliable in taking stock of the status. Automated
discovery and identification would be necessary.

• Intelligence gathering: In addition to normal, civilian use
cases, there are many applications in the intelligence
space that rely on sensor discovery.

C. Approach

In the context of the preceding set of motivation and
challenges, we are addressing the sensor mapping problem
by developing a new system called DEEP-CYBERIA. Given
a cyber-physical system, DEEP-CYBERIA tackles the sensor
mapping problem as follows. Just as blood samples are drawn
and analyzed to diagnose a human body’s constitution and
health, we draw samples of network traffic from the CPS
and perform intelligent analysis to discover its sensors and
their correlations. Initial intelligence is obtained using pas-
sive techniques. Future work involves application of active
techniques to carefully probe and interact with the CPS for
gleaning enhanced knowledge.

DEEP-CYBERIA has the capability to ingest packet capture
(pcap) data or CPS historian data. DEEP-CYBERIA’s analysis
capabilities are currently tested with the Modbus protocol
and can be easily extended to other CPS protocols. For any
given target CPS, we iterate through the input data with
different data analyses procedures to uncover target CPS
specific characteristics. Some of the current capabilities are
listed below.

II. DISCOVERY AND ANALYSIS

Exploratory Indicators and Metrics
To aid in uncovering the underlying relations, we have devel-
oped and incorporated multiple indicators and metrics of the
inter-relations among the gleaned sensor streams. Our ideal
goal is to be able to deal with any CPS, without requiring deep
knowledge of its components, physical processes, physical
units, etc. This implies that we would need to glean and
generate categories and statistical measures in a general way.
The following are some of the explorator indicators and
metrics we have incorporated in DEEP-CYBERIA.

• Data Descriptors: We categorize the time-series data
from the sensors obtained from the CPS into different
categories such as constants, binary, ordinal and, con-
tinuous. This categorization allows us to broadly relate
input data streams in terms of their functionality and
also helps in filtering input data streams. For example,
constant data-streams are not needed for analyses that de-
termine causal relations. Additional pre-processing such
as smoothing can also be performed on the raw data.

• Auto-Correlation: In a continuously running CPS, we
intend to see repeating patterns in the input data streams.
Generally, these patterns reveal the periodicity of a given
data stream and their periodic correspondence to other
data streams.

• Cross-Correlations: Pearson’s cross-correlation reveals
the correlation between the data streams, which might
be helpful in relating certain cases. For example: voltage
on certain component like, valve can have direct corre-
spondence with the liquid level in the container. Hence, a
strong positive or negative correlation are usually related
and can be binned together to a sub-system or a container
in our example. We also use Kendall-Tau correlation,
in which the concordant and discordant pairs actually
determine the correlation between the any two input
data streams. This is helpful statistic to establish ordinal
association between two input data streams.

Dependency Graphs
Based on the domain-agnostic, exploratory indicators and
metrics automatically generated from the sensor data streams,
the next level of processing involves the reconstruction of
possible dependencies among the sensors as they originally
exist in the physical components and manifest in the cyber
components. The following are some of the relations thus
generated, in the form of graphs of dependencies (causal or
correlated in nature) among the sensors.
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Fig. 2. Motivating reasons behind discovery, identification and correlation-analysis of sensors in complex CPS installations

• Granger Causality: This metric is used to generate
directed causal graphs capturing the causality among sen-
sors, where individual nodes are time-series data streams
from the input. The core principle of behind Granger
causal relation [2] is that any data stream X causally
affects Y , if Y can be predicted above and beyond just
by using previous values of X . When we execute the
Granger causality procedure on all input data streams
picking two streams at once, we obtain a causal graph.

• Heuristic-based Causal Graphs: In this method we look
for specific events that result in drastic change in data
readings. For example: a binary signal changes its state
from 0 to 1 or a more concrete example would be when
voltage value shoots from its minimal to its maximum
value to activate an actuator like, a valve. From this
point in time, we look at the changes that every input
data stream undergoes before and after this event. If
we detect such changes in any input data stream, we
consider the detected event has a causal affect on that
input data stream. We than generate a graph based on
such information to obtain a causal graph.

Classification
In the classification module, we perform a training process on
a data model to classify the byte stream extracted directly
from the series of packet payload sequences into certain
categories. Here, the signatures of various data-streams as
they occur within the packets are learned. Anomalies can be
marked when the classifications predicted from the trained
model consistently and drastically differ from expectations.
Two supervised machine learning models are being used in
DEEP-CYBERIA, one based on random-forest and the other
based on convolutional neural networks (CNN).

III. CASE STUDIES: ANALYSIS IN ACTION

We have applied the statistical procedures listed in Section II
on time-series data from CPS of different scale. Some are of
lab-scale like, the simplistic water-cascade CPS system that
is configured to emulate operations of real-life CPS systems,
while others are of campus scale like High-Flux Isotope
Reactor. As a case study, to demonstrate the efficacy of the
DEEP-CYBERIA statistical toolset, we use the canal-lock CPS
emulation realized using our lab-scale water-cascade CPS.

A. A CPS Testbed for DEEP-CYBERIA

Figure 3 illustrates a physical canal lock in which a ship
moves from a lower level to a higher level of water body by
first entering to chamber1 through gate1. Chamber1’s water
level is increased to some intermediary level for the ship to
cross over to chamber2 through gate2. Once the ship is in
chamber 2, the water level in this chamber is increased from
the intermediary level to the higher water body level. At this
point, the ship exits the chamber3 and the Canal Lock CPS
through gate3. A similar sequence of steps in the reverse-order
is followed when the ship needs to travel from the higher-level
to the lower level of water body.

The emulation of Canal Lock CPS was realized by using
four acrylic tanks, labeled T1, T2, T3, and T4, as illustrated
in Figure 3. The first tank T1 and the last tank T4 serve as
lower-level and upper-level water bodies of the physical Canal
Lock CPS, respectively. Tanks T2 and T3 act as the chamber1
and chamber2 of the Canal Lock CPS. Tanks T2 and T3 are
equipped with pumps P2 and P3, and valves V2 and V3,
respectively. The pumps are immersed in a reservoir, which
holds water to fill all the tanks. Valves V2 and V3 drain water
directly into the reservoir. The Allen-Bradley Micrologix 1100
PLC with two extension slots are used to maintain, control and
emulate the Canal Lock CPS operational behavior.
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Fig. 3. DEEP-CYBERIA case study using a water cascade CPS to emulate physical canal lock behavior. The Ethernet packets are captured from live-network,
filtered for Modbus protocol payload and used as input for our DEEP-CYBERIA analyses tools. The data-descriptor, auto-correlation, cross-correlation, deep-
learning training and validation and causal graph outputs are shown.

For the analyses the water cascade system was configured
to continuously emulate the UP scenario and Down scenario,
where the ship in Figure 3 moves from left-to-right and right-
to-left, respectively. During this period the input data was
collected. The input data for our analyses were the packet
captures of the Modbus traffic. These captures are directly fed
to our DEEP-CYBERIA analyses routines.

B. DEEP-CYBERIA Analyses in Action

Data Descriptors: Each data stream from the input are
identified into categories specified in Section II. This data is
visualized using the CRviz [3] tool, which provides highly
flexible viewpoints of the CPS data-sets. One such example
is from the PLC point of view, which displays different
PLCs, whose components can be viewed by clicking on
the corresponding icon, the interface itself is exploratory by
design. We also have integrated this with the database NIC,
PLC and other vendors, which are detected and populated in
CRviz visualization tool.

Auto-correlation: The auto-correlation graph in Figure 3
show the existence of periodic cycles in the target CPS. The
red and black lines in the auto-correlation figure correspond to
the level-sensor values of the tanks T2 and T3, respectively. As
seen the signal pattern of both these level-sensors consistently
repeat because of continuous emulation of UP and DOWN
scenarios. With this graph, we can definitely say that the CPS
is a periodic process and repeats after every 350 seconds.

Cross-correlation: We compute cross-correlation values
across different input data-streams. The relations between

voltages on valves and the level-sensor values have relatively
strong correlation. The valve voltage is usually at its minimum
value but shoots up suddenly and reduces slowly with its rate
of decrease almost equivalent to the out-flow of water. Hence,
there exists a strong correlation between the valve voltages
and the level-sensor values. When provided with data-stream
with two signals having strong correlation with each other, we
might be able to associate them to be part of one sub-system,
like we associated the level-sensor and valve-voltage to a Tank
in this case study.

Classification: The training and validation errors as the
model is trained with input data from the network is shown in
Figure 3. The abscissa shows the number of epochs, which is
the number of times the input is reexamined while learning.
The ordinate is the percentage of the input for which the model
incorrectly predicts the label. We used the trained model to
detect the categories of the Modbus payloads extracted from
new packet captures and used these labels for further analyses.

Causality Graphs: The data comprised three binary signals
namely, the statuses of Gates (G1, G2 and G3), they are 0
when the gate is closed and 1, when the gate is open. The
causality graph was constructed using the transition of these
signals as events. The causality graph shown in Figure 3
correctly identifies that gate ”G2” the center one affects
the valve voltages and water levels of tanks T2 and T3.
Similarly, causal relations shown by all other relations can
be correctly reasoned. With this graph, we are able to identify
the association between different data points in the Modbus
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payload of an Ethernet packet capture.

IV. GENERALIZING THE TEST-BED

A major challenge in achieving the goals of inference is to
carry the algorithms from one system to another. However, it
is extremely difficult, time-consuming, and expensive to build
a surrogate system for every type of application. The test-
beds described in Section III were assembled with a signif-
icant amount of effort and domain-level expertise; from this
exercise, it became clear that building such test-beds for the
purpose of creating the inference system is nearly impractical
for every target CPS domain or application. For example,
when we tried to retarget and retrain DEEP-CYBERIA on a
subsystem of a nuclear isotope generation facility at our lab,
it became clear that it is impractical to assemble a surrogate
hardware test-bed that replicates both physical and cyber parts
of that facility, just for the purposes of training and validating
our inference algorithms and engine.

It became clear that it is highly desirable to have a test-bed
that can be configured to serve as a surrogate for any CPS
such that it can drive the development of DEEP-CYBERIA.
Instead of building a new hardware prototype for each case, it
is effective to have a hardware test-bed that can accept sensor
inputs that are extracted from any desired installation and,
using those inputs, drive a network of actual PLCs that will
behave almost exactly as though the PLCs were installed in
the original system of interest.

In essence, the idea of this generalized test-bed is as follows.
The cyber component of the CPS of interest is conceptually
separated from the physical component of that CPS by dis-
entangling them at the level 0-1, which is the actual sensor
device readings that are perceived on the wires by the PLCs’
sensor input ports. It is relatively easy to duplicate the PLC and
communication network part of the CPS than duplicating the
physical part. However, the physical part is indistinguishable
from the streams of sensor input values themselves that are
received by the PLCs. Therefore, if we can ”cut” the system at
that boundary, we would essentially have a way to instantiate
a generalized test-bed that has reusable and retargetable cyber
component. This cyber component would then consist of
custom-driven sensor drivers, actual PLCs, actual networks,
actual data historians and actual analyzers and controllers. This
offers the best of both worlds: the decoupling of the physical
component from its sensor observations while not losing the
high fidelity of cyber component needed for accurate analysis.

A generalized test-bed of this kind also offers additional,
novel benefits: it makes it possible to perform repeatable
experiments in which the physical component behaviors can
be repeatedly studied across multiple runs, making it possible
to debug, test, refine, and enhance the sensor inference systems
such as our DEEP-CYBERIA system.

We are currently in the process of assembling such a
generalized test-bed system. The hardware for this test-bed
includes (a) a range of representative PLCs, (b) daughter
boards to convert any given sensor value to a signal on the
inputs of the PLCs, (c) Raspberry PI devices to drive their

attached daughter boards, and (d) software to convert historian
data of sensor value streams into accurately timed, translated,
converted, and triggered inputs at the PLC inputs via the
daughter boards.

V. SUMMARY AND FUTURE WORK

In advancing the state-of-the-art in CPS intelligence, DEEP-
CYBERIA is moving beyond traditional cyber-surface inter-
rogation to deep sensor interrogation and beyond. DEEP-
CYBERIA focuses on the development of a broadly applicable,
novel capability to deepen understanding of a target cyber-
physical assets. Starting with the data from the network packet
capture files or data dumps from CPS historians, DEEP-
CYBERIA strives to illuminate the topological, functional and
behavioral specifics of a target CPS.

We have developed and incorporated multiple statistical,
machine-learning and domain-specific heuristic-based tools
into DEEP-CYBERIA to help in this direction. Our efforts
are aimed at developing a network discovery capability (both
passive and active) to enhance discovering, monitoring, and
diagnosing the identity of cyber-physical system (CPS) com-
ponents. The interrogation and analysis capabilities are in-
tended to advance the state-of-the-art by going beyond the
internet/network-level probing and inference by inferring sen-
sor elements behind network-addressable controllers at the
level-0 in the Purdue Model of Control Hierarchy [4].

Based on discovered sensor elements, analysis capabilities
are targeted to uncover inter-dependencies among sensors with
respect to cyber and physical process interactions, triggers,
and after-effects. Analysis capabilities are aimed at building
the foundation for sophisticated forensic features that reach
beyond basic data-based inference. In addition to small CPS
test-beds, as a complex case study, the experimental network
of the Cold Source portion of the High Flux Isotope Reactor
(HFIR) facility at ORNL is being exercised with the DEEP-
CYBERIA implementation.
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