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Abstract—Attention to cyber security of cyber-physical systems
(CPS) has led to the development of innovative cyber-resilient
methodologies to ensure early detection and mitigation of cyber
anomalies and threats. The concept of Digital Twin (DT) has
recently emerged as one of the approaches to achieve the objective
of resilience. In the approach using DT, a software-based live
model of a target CPS is used to continuously monitor, surveil
and verify the correctness of the target CPS operation. In this
paper, we empirically study the effectiveness of Recurrent Neural
Network (RNN)-based models as the basis of DT-based resilience.
We uncover the important characteristics of an RNN-based
solution with experimentation on a lab-scale Canal Lock CPS
emulator with live validations and attack scenarios. For the first
time, we demonstrate actual, real-time use of a RNN-based model
as a DT for performing live analysis on an operational CPS.
Based on the observed results, we highlight the importance of a
DT model’s training interval, prediction interval and CPS polling
interval in the process of anomaly detection. We uncover the
limitations in anomaly detection due to real-time synchronization
needs of the RNN-based DT. We highlight this uncovered tug of
war between synchronization and anomaly detection is inherent
in any complex CPS that is monitored and synchronized by
relying on the same sensor streams of ground truth for both
synchronization as well as anomaly detection.

Keywords—Digital Twin, Digital Twin Framework, Resilient
CPS, RNN models in CPS

I. INTRODUCTION

Cyber Physical Systems (CPS) play a crucial role in sustain-
ing and fulfilling our everyday needs as their application and
utilization can be found in several critical infrastructures such
as, energy generation/transmission/distribution, transportation,
water treatment plants, nuclear reactors and so on. These
systems are so critical that any degradation in their operations
may have serious implications on the safety, security and eco-
nomic stability of our society. The Department of Homeland
Security (DHS) rightly identifies sixteen such CPS-based crit-
ical infrastructures [1]. The critical nature of large-scale CPS
gives rise to variety of problems such as, device failures due to
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natural disasters, drifting sensors, misconfigured devices, and
cyber security threats. One of the methodologies conceived
to address the need of constant monitoring, surveillance and
verification of operational correctness is the concept of Digital
Twin (DT).

In one of the earliest works, Grieves et al. [2] define DT
as a digital informational construct about a physical system
that could be created as an entity of its own. This digital
information would be a “twin” of the information that was
embedded within the physical system itself and be linked with
the physical system through the entire life cycle of the system.
While Grieves et al. [2] discuss DT applicability over the entire
life-cycle of a system, our work focuses on its applicability in
live operation of CPS.

We use the concept of DT for monitoring, surveillance
and verification of the target CPS. The idea is that the DT
model, a perfect software-based replica of the real-life CPS,
would execute in perfect time synchrony with its physical
counterpart. This enables the living model that emulates the
verifiably correct operational behavior of target CPS to detect
any intentional or unintentional deviations of the target CPS
operational behavior. Such dynamic monitoring and determi-
nation of deviation is helpful to detect anomalous behavior at
its earliest occurrence.

Realizing such an accurate traditional simulation model that
emulates the behavior of a continuously evolving large-scale
industrial CPS system is challenging. This is because every
CPS has its own unique characteristics based on the com-
ponents used, logic applied and functionality realized. Thus,
development of a simulation model would require manual
tuning of the model parameters of every component model to
replicate the exact physical behavior. Further, changes in the
CPS due to hardware replacement or logic updates could alter
the component behaviors requiring manual tuning of model
parameters to reduce false alarms.

Deep-learning algorithms are shown to accurately learn non-
linear function behaviors after significant training on CPS
data. For example, a successful application of artificial neural
networks [3] and recurrent neural network (RNN)-based [4]
networks for anomaly detection in water purification CPS,
under a wide-range of cyber attacks, can be found in the
literature. However, they used the neural network models on
collected data and not on the live system and hence, lack
the real-time dynamics of using RNN as DT during CPS
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operation.
In this paper, we develop an RNN model for an actual CPS

test-bed, validate its performance in real-time during the CPS
operation and evaluate the RNN model for such tasks. The
real time application of the RNN model is the novelty of our
work. We are not aware of any prior work that has applied
RNN models to verify the operational behavior of a live CPS.

a) Organization: We discuss the development of our
lab-scale canal lock CPS system emulator in Section II. In
Section III, we discuss the development of the RNN model
for the canal lock CPS. In Section IV, we validate the live
operation and evaluate the RNN-based DT with respect to the
canal lock CPS emulator in real-time and uncover the salient
observations of our empirical study. We summarize the work
and conclude in Section V.

b) Background and Related work: The concept of DT
primarily originated within the manufacturing sector’s Product
Lifecycle Management (PLM) in 2002 as Information Mirror-
ing, which tied the real and virtual spaces together [2]. As
the concept of digital twins originated with the manufacturing
sector, much of the literature has focused on the manufacturing
applications [2], [5]–[8]. The US National Aeronautics and
Space Administration (NASA) later adopted the PLM ap-
proach for its space systems development process [9]. Several
other works on DT concept and design can be found at [10],
[11] and [12]. Recently, software frameworks and relevant
constructs for realizing DT have been put forth by others [13].
In power systems, the online simulators (such as the online
version of DSA tools and PSS/E) that interact with SCADA
systems in real-time [14] are closer to our work. However,
while those rely on domain-specific simulations with a great
amount of customized engineering knowledge, we use general-
purpose RNN models as DT and our solution approach is
hence significantly more generic.

II. CPS EMULATION

To be able to experiment with a CPS in laboratory condi-
tions and evaluate the utilization of RNN models as a DT, we
developed a CPS emulation of Canal Lock CPS. In practice,
a Canal Lock CPS is used to raise and lower boats or ships
between stretches of water at different levels. The ship passes
through a series of watertight chambers [15]. The entry to
and exit from these chambers are controlled by gates as
illustrated in Figure 1. In this simplistic illustration, a ship
moves from a lower level to a higher level of water body by
first entering to chamber1 through gate1. Chamber1’s water
level is increased to some intermediary level for the ship to
cross over to chamber2 through gate2. Once the ship is in
chamber2, the water level in this chamber is increased from
the intermediary level to the higher water body level. At this
point, the ship exits the chamber3 and the Canal Lock CPS
through gate3. A similar sequence of steps in the reverse-order
is followed when the ship needs to travel from the higher-level
to the lower level of water body.

A. Canal Lock CPS Emulation Setup
The emulation of Canal Lock CPS was realized by using

four acrylic tanks, labeled T1, T2, T3, and T4, as illustrated

in Figure 1. The first tank T1 and the last tank T4 serve as
lower-level and upper-level water bodies of the physical Canal
Lock CPS, respectively. Tanks T2 and T3 act as the chamber1
and chamber2 of the Canal Lock CPS. Tanks T2 and T3 are
equipped with pumps P2 and P3, and valves V2 and V3,
respectively. The pumps are immersed in a reservoir, which
holds water to fill all the tanks. Valves V2 and V3 drain water
directly into the reservoir.

B. Hardware and Software

Each acrylic tank has the dimensions of 6 × 6 × 12
(length×width×height) inches3. Each tank is fitted with an
eTapeTM liquid level sensor [16], which is designed to convert
a resistance output of the liquid level sensor to a linear output
voltage between 0 to 5V DC. The Schneider Electric Erie VM
series PoptopTM series modulating valves [17] are used for
draining water from tanks T2 and T3, which takes control the
voltage of 0-10V DC. Two Diablo DC 3500 pumps [18] are
used to pump water from the reservoir into tanks T2 and T3,
and 5V DC supply is used to activate the pumps. The Allen-
Bradley Micrologix 1100 PLC with two extension slots are
used to maintain, control and emulate the Canal Lock CPS
operational behavior. The liquid level sensors are connected
to the analog input ports and the pumps are connected to the
output ports of the PLC. We used the RSLogix 1100 Micro
Starter Lite software to develop the ladder logic controller for
the CPS.

C. Ladder Logic to emulate Canal Lock CPS

In Figure 2, we show the main loop of the ladder logic.
The CPS can be enabled remotely over a Modbus connection
from the Human-Machine Interface (HMI) or manually using
the RSLogix software as shown in the first rung from the top.

The second rung checks for the emergency conditions, in
presence of which the entire ladder logic would be deactivated.
In the third rung, we update the status of all the peripherals
namely, the sensors, pumps and valves. This subroutine only
updates the statuses by writing into predefined data fields. For
example, if pump P2 needs to be activated, its corresponding
data field will be latched.

In the fourth rung, we process the events. For example, if the
execution of third rung has set pump P2 status variable, then
this would initiate the logic to signal a relevant PLC output
port to actually turn on the pump P2. Similar conditions are
used to control valves V2 and V3. However, valve control must
be carefully regulated to control the undershoot or overshoot
during draining. To achieve this, we applied Proportional
Integral Derivative (PID) logic in the PLC. In the last rung
before ending the main ladder, the ladder logic checks and
executes a sequence of actions corresponding to up or down
scenarios.

The ladder logic of up and down scenarios update prede-
fined data fields, which are read after updating status in the
third rung and acting upon the servicing of the requested events
in the fourth rung. The upward and downward movements
of the ship through the Canal Lock CPS emulator were
realized by controlling the water levels of tanks T2 and T3,
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Fig. 1: Overview of the Canal Lock Case Study for RNN-based Live Modeling of CPS

corresponding to chamber1 and chamber2 of the physical
Canal Lock CPS. The corresponding opening and closing
operations of the gates, and the movement of ship from one
tank to another is accommodated by using a constant ten
second countdown timer. Based on where the ship arrives, the
direction of its travel is determined. Hence, the arrival of ship
at tank T1 suggests an up scenario or upward travel. Similarly,
the ship’s arrival at tank T4 suggests a down scenario or
downward travel. The ladder logic is used to perform sequence
of operations to emulate the Canal Lock CPS behavior for
upward and downward movements of the ships through the
canal and shown in Algorithm 1 and Algorithm 2, respectively.
The ladder logic implementation of these algorithms is used
by the PLC to control the water levels in the physical system
emulating the behavior of the physical Canal Lock CPS.

D. Verification of Canal Lock Cyber-Physical System

The Canal Lock CPS can perform up and down movements
of ships (two functions) and further, each function follows
a different set of actions based on the initial state of the
Canal Lock CPS. In this paper, we recognize these scenarios
with combination of a initial state and current operation
tuple. While the latter, current operation, is Up or Down
movements, the former variable initial state represents the
previous operation that was performed, whose end state is the
initial state of the current operation (Up or Down). Hence,
when the system operates continuously from a known physical
state, there are only four possible combinations of scenarios

Fig. 2: Main Loop of Ladder Logic Implementation

with two different initial states for each function provided by
the Canal Lock CPS.



4

Algorithm 1: Up Scenario

Data:

L1 Water level at T1 (constant)
L4 Water level at T4 (constant)
L2 Water level at T2
L3 Water level at T3
L3low Lowest expected water level at T3
G1 Gate between Tanks T1 and T2
G2 Gate between Tanks T2 and T3
G3 Gate between Tanks T3 and T4
P2 Pump in T2
V 2 Valve in T2
P3 Pump in T3
V 3 Valve in T3

1 Ship arrives at T1
2 Ensure all the gates G1, G2, and G3 are closed
3 Ensure L2 is at L1 using P2 and V 2
4 Open gate G1
5 Ship moves to T2
6 Close gate G1
7 Increase L2 to L3low = (L4− L1)/2 using P2
8 Ensure L3 is at L3low using P3 and V 3
9 Open gate G2

10 Ship moves to T3
11 Close gate G2
12 Increase L3 to L4
13 Open gate G3
14 Ship moves to T4
15 Close gate G3

Algorithm 2: Down Scenario

1 Ship arrives at T4
2 Ensure all the gates G1, G2, and G3 are closed
3 Ensure L3 is at L4 using P3 and V 2
4 Open gate G3
5 Ship moves to T3
6 Close gate G3
7 Decrease L3 to L3low = (L4− L1)/2 using V 3
8 Ensure L2 is at L3low using P2 and V 2
9 Open gate G2

10 Ship moves to T2
11 Close gate G2
12 Decrease L2 to L1
13 Open gate G1
14 Ship moves to T1
15 Close gate G1

The combination of scenarios includes: (1) up followed by
up (Up-Up), (2) up followed by down (Up-Down), (3) down
followed by down (Down-Down), and (4) down followed by
up (Down-Up). The water levels in tanks T1, T2, T3 and T4
are identified as L1, L2, L3 and L4, respectively. L1 and L4
represent the lower-level water body and upper-level water
body of the canal system, respectively, and remain constant.
The water levels are measured in inches. However, due to PLC

limitations, water levels are transmitted between the PLC and
DT as integers with 2 decimal precision (x100). We visualize
this data using the raw numbers communicated from the PLC.

1) Up-Up Scenario: The plot in Figure 3a shows the
variation of water levels in real-time for the Up-Up scenario,
where the initial state of the water levels L2 and L3 are at
L3low and L4, respectively, when the up scenario starts. As
seen in Figure 3a, the water level L2 drops from its previous
state (L3low) to L1 water level which allows the ship to move
across gate G1 in some constant time (ten seconds). After the
ship moves to tank T2, the water level L2 is increased from
L1 to L3low and the ship waits in tank T2 as the water level
L3 decreases from its previous high position of L4. After the
water level L3 drops to L3low, then the ship moves from tank
T2 to tank T3 across gate G2, as seen from Figure 3a at around
240 seconds. Then the water level L3 increases from L3low to
L4 at which point the ship moves from tanks T3 to T4, thus
exits the Canal Lock CPS.

2) Up-Down Scenario: The plot in Figure 3b shows the
variation of water levels in real-time for the Up-Down sce-
nario, where the initial state of water levels L2 and L3 are at
L3low and L4, respectively, when the up scenario starts (same
as Up-Up scenario). As seen in Figure 3b, the water level L3
is already at L4, so the ship easily transits from tanks T4 to T3
through gate G3. Once the ship is in tank T3, the water level
starts to decrease from L4 to L3low from 50 to 120 seconds.
When the water level L3 reaches L3low, the ship transits from
tanks T3 to T2 through gate G2 at around 130 seconds. Then,
the water level L2 that is previously at L3low decreases to L1
at around 200 seconds, which is point the ship transits from
tanks T2 to T1 through gate G1.

3) Down-Down Scenario: The plot in Figure 3c shows
the variation of water levels in real-time for the Down-Down
scenario, where the initial state of water levels L2 and L3 are
at L1 and L3low, respectively, when the down scenario starts.
As seen in Figure 3c, the water level in tank T3 increases from
L3low to L4 at around 50 seconds enabling the movement of
ship to move from tanks T4 to T3 across gate G3. Then, the
water level L3 slowly reduces from L4 to L3low, which is
also followed by increasing in the water level L2 from L1 to
L3low. At around 150 seconds, the ship transits from tanks T3
to T2 across gate G2, as seen in Figure 3c. Then, the water
level L2 recedes from L3low to L1, thus allowing the ship to
exit tank T2 and arrive at tank T1 at around 270 seconds.

4) Down-Up Scenario: The plot in Figure 3d shows the
variation of water levels in real-time for the Down-Up sce-
nario, where the initial state of water levels L2 and L3 are at L1
and L3low, respectively, when the down scenario starts. This
is by far the fastest running scenario because the initial state
of water levels allow quick transition and the filling process
for the tanks in our setup is faster than the draining process.
As seen in Figure 3d, the ship transits from tanks T1 to T2
through gate G1 since the water levels of both tanks are at
the water level L1. At around 60 seconds, the water level L2
starts increasing to reach L3low and at around 90 seconds, the
ship transits from tanks T2 to T3 through gate G2. Following
this, the water level L3 increases from L3low to L4 allowing
the ship to reach its destination or tank T4 through gate G3
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(a) Up-Up Scenario
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(b) Up-Down Scenario
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(c) Down-Down Scenario
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(d) Down-Up Scenario

Fig. 3: Illustration of Canal Lock CPS emulation using level sensor values for all possible operation scenarios

at around 120 seconds.

III. RNN AS THE DIGITAL TWIN

In this section, we discuss the details of our RNN-based DT
models, their training process, and live validation results.

A. Training Data

The data was collected at a rate of one set of readings per
0.5 seconds from the PLC. To emulate a Canal Lock CPS,
we collected the data for the variables listed below. The plots
corresponding to these fourteen variables is shown in Figure 1.
(a) Water levels L1, L2, L3, L4 in tanks T1, T2, T3 and T4,

in inches (float values between 0-10 inches)
(b) Gates G1, G2, G3 between tanks T1 and T2, T2 and T3,

and T3 and T4, respectively (0 - Closed, 1 - Opened)
(c) Status of pumps P2 and P3 of tanks T2 and T3 (0 - OFF

and 1 - ON)
(d) Valves V2 and V3 of tanks T2 and T3 (0 - OFF and 1-

ON)
(e) Control voltages Vv2 and Vv3 on valves V2 and V3, in

Volts (float values between 0 – 10 V)
(f) Direction D indicates the up or down scenario (0 –

DOWN and 1 – UP)

B. RNN Model

We trained the model using all fourteen collected features.
We used 140 (14 × 10) units resulting in an RNN model

Fig. 4: Unrolled RNN Model

learning parameters of 21,700 ((14 features + 140 units) × 140
+ 140 bias). This RNN layer is followed by a fully-connected
dense layer with 140 inputs, and two outputs, which learns
(280 weights + 2 bias) parameters. In total, the whole network
learns 21,982 (21,700 + 282) variables. The two predicted
outputs were the expected water levels L2’ and L3’.

In Figure 4, we show the unrolled RNN model that works
on a time sequence of inputs. In addition to the two feature
outputs generated for every input, the RNN layer also gen-
erates the state data that is passed to the next sequence of
RNN computation. In our model, we used 140 units, which
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correspond to ten previous states, to compute the current state.
This state information is passed through a dense layer to
predict two output values namely, water levels of tanks T2 (L2)
and T3 (L3). The input data collected was normalized to range
between 0 and 1, using the minimum and maximum values
of the collected features. The same minimum and maximum
values were used to re-scale the predicted values back to Canal
Lock CPS emulator relevant values.

A mean-square-error loss along with an Adam [19] opti-
mizer was used to learn a total of 21,982 parameters. The
models recorded are based on the best loss value observed
across different epochs. The maximum number of epochs to
run was set to 100. We applied the early stopping option
in Keras library which terminated the training ahead of 100
epochs when repeatedly consistent loss values were observed.
All the trained models had loss less than 0.1 percent.

C. Test Models

As mentioned previously, four different scenarios of execu-
tions namely, Up-Up, Up-Down, Down-Down and Down-Up,
are possible in our Canal Lock CPS. To find the minimal set
of data that are required to build an RNN model that would
efficiently predict the Canal Lock CPS variables (water levels
L2 and L3) during the up and down scenarios, we created two
RNN models.While the first model (RNN Model-1) uses data
from all the possible scenarios of Canal Lock CPS, the second
model (RNN Model-2) uses data from Up-Down (Figure 3b)
and Down-Up (Figure 3d) scenarios only. However, both these
scenarios together capture the transition dynamics of water
movements between the two water levels in both tanks T2
and T3. Since the transition dynamics between water levels
remains the same across scenarios, the hypothesis of the RNN
Model-2 is that only the data from the Up-Down and Down-
Up scenarios are sufficient to predict the water level transition
dynamics across all possible scenarios of the Canal Lock CPS
emulator.

RNN Model-1 and RNN Model-2 are trained to predict the
very next point (L2′0.5, L3′0.5), 5 polling points ahead (L2′2.5,
L3′2.5) and 10 polling points ahead (L2′5.0, L3′5.0), which are
approximately 0.5, 2.5 and 5.0 seconds in future, respectively.

IV. DIGITAL TWIN EVALUATION

A. Live Validation

To validate the developed models, we executed a continuous
sequence of functional scenarios (Up-Down-Down-Up-Up)
back-to-back, starting with the end of an initial UP scenario
whose data was not recorded. As this validation scenario
ran on the PA, we collected the data from the PLC using
Modbus over Ethernet, and this data is used for live prediction.
In between every polling interval, the data read from PLC
was input to six models (RNN Model-1 and RNN Model-2)
predicting L2 and L3 values for 0.5, 2.5 and 5.0 seconds ahead
of time. The delay between individual polling was less than
0.5 seconds.

Figure 5a, Figure 5b and Figure 5c show RNN Model-1’s
performance in predicting L2 and L3 values expected in 0.5,
2.5 and 5.0 seconds in the future. In each of these plots, the

observed L2 and L3 values from the PLC are compared against
the predicted values. The points within each plot hold a one-
to-one correspondence of the predicted value to what actually
was observed when real time catches up to the predicted time.
There exists a close correspondence between the predicted and
observed points as seen from the Figure 5a. However, this
closeness of match slightly deteriorates when the prediction
time increases from 0.5 to 5.0 seconds. These distortions are
more pronounced during the sudden, rapid transitions in water
level, which occurs due to the active pump filling the tanks.

Similarly, Figure 6a, Figure 6b and Figure 6c show
RNN Model-2’s performance in predicting L2 and L3 values
expected in 0.5, 2.5 and 5.0 seconds in future. With the
minimal set of data used for training in the RNN model-2, it is
interesting to note that we are able to observe good results for
next point predictions. However, they slightly deteriorate as the
prediction time increases from 0.5 seconds to 5.0 seconds. The
RNN Model-2 captures the dynamics of draining and filling
of tanks very well. However, its predictions are relatively
deteriorate in the flat regions; this is more pronounced when
the prediction time is 2.5 and 5.0 seconds.

B. Anomaly Detection in Canal Lock CPS
1) Algorithm: We employ a simplistic difference-based

method to visually segregate outliers and hence, evaluate the
ability to detect anomalies using DT. The anomaly detection
pseudo-code is shown in Algorithm 3. The PLC value (γ)
read is compared with the previously predicted value (ρ). The
difference between γ and ρ captures deviations with respect
to DT predictions in real-time. To compute the difference
between the predicted and actual values whose prediction time
is more than the polling interval (0.5 seconds), we initially wait
for n polling intervals to reach the prediction time interval
before calculating the differences. The difference is calculated
by negating the previously predicted value from the new
reading from the PLC. If the difference is positive, then the
value read from the PLC is greater than the model predicted
value and the reverse is true if the difference is negative. The
idea here is that the observed values are expected to be closer
to the expected values and hence, the difference should be
close to zero. Anything contrary to this rule would qualify as
an outlier indicating an attack or a false positive.

2) Attack Scenarios: To evaluate the anomaly detection
capability using the DT, we tested it in the Up-Down and
Down-Down scenarios. The normal functioning of the Up-
Down scenario is shown in Figure 3b, where the water levels
in both tank T2 and tank T3 drop from their initial levels
to accomplish the movement of the ship from tanks T4 to
T1. The Down-Down scenario also accomplishes the same
movement of ship from tanks T4 to T1, but it starts with a
different initial state. Due to this change in the initial state,
water is pumped in both the tanks before draining, as shown in
Figure 3c. An attack on the CPS was realized by introducing
an unexpected inflow of water in tank T2 while it is in the
process of being drained. This abnormal inflow creates an
unexpected and abrupt increase in the water level in tank
T2, and this deviation from the expected behavior result in
significant outliers suggesting anomaly.
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(a) 0.5 second ahead predictions
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(b) 2.5 seconds ahead predictions
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(c) 5.0 seconds ahead predictions

Fig. 5: Live validation performed using RNN Model-1 on the operational Canal Lock CPS emulator results in predicting
expected L2 and L3 values for different prediction intervals. The predictions closely correspond to the real time observations.
The larger interval predictions are slightly erroneous during sudden increase in the water levels due to the pump activity.
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(a) 0.5 second ahead predictions
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(b) 2.5 seconds ahead predictions
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(c) 5.0 seconds ahead predictions

Fig. 6: Live validation performed using RNN Model-2 on the operational Canal Lock CPS emulator results in predicting
expected L2 and L3 values for different prediction intervals. In addition to the erroneous predictions during pump activity as
seen with RNN Model-2, they also deteriorate with larger prediction intervals especially in the regions where the water levels
are relatively constant.

Algorithm 3: Anomaly detection algorithm

Data:

γ Data read from PLC
ρ Next point data predicted using γ
δ Difference between γ and ρ
ε End of validation
n number of points ahead in future

1 for i in range(1:n) do
2 γi ← read PLC
3 ρi ← predict using γ0
4 end
5 for j in range(n:ε) do
6 γj ← read PLC
7 δj = γi − ρ(j−n)
8 ρj ← predict using γi
9 end

3) Anomaly Detection in Up-Down Attack Scenario: The
effects of the attack in the L2 values in the Up-Down scenario
and their corresponding predictions using RNN Model-1 and
RNN Model-2 are shown in Figure 7a and Figure 7b, respec-
tively. In these plots, the predicted values of L2′0.5, L2′2.5 and
L2′5.0 are placed alongside the L2 value used to predict them.
Thus, L2′5.0 appears to lead L2′2.5, which leads L2′0.5 to almost

overlap with the L2 value read from the PLC.
A spike representing an abrupt increase in L2 while tank T2

is draining is seen in both Figure 7a and Figure 7b. These are
the due to the presence of outliers in the difference dataset.
Further, the predictions from different models appear almost
similar to each other. This can be expected as the attack is
happening during transition, where both models deliver good
predictions. In Figure 7c, we plot the difference between L2
and its corresponding predictions (Algorithm 3), showing an
unexpected sharp spike at the time of attack. However, such
spikes are very narrow because the RNN models predict based
on recently received ground truth values. As the RNN model
predictions are based on the recently read values, hence the
predictions quickly catch up with the L2 trends after the attack.
They differ only during the time of attack or during sudden
abrupt state changes in the system.

4) Anomaly Detection in Down-Down Attack Scenario:
This attack on the tank T2 in the Down-Down scenario is
similar to the of Up-Down scenario. However in the Down-
Down scenario, the fast filling of tank T2 precedes its draining.
In the Figure 8a and Figure 8b, we show the L2 (PLC and
prediction) trends and the corresponding differences based on
Algorithm 3, respectively, for the Down-Down attack scenario.

As seen in Figure 8b, the legitimate behavior tank T2 water
level raising results in the significant outliers in predictions
with larger prediction interval (2.5 and 5.0 second) resulting
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(a) The L2 values are compared with RNN
Model-1 L2 predictions
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(b) The L2 values compared with RNN
Model-2 L2 predictions

0 50 100 150 200 250
Time in seconds

−20

0

20

40

60

80

L2
(P
LC

) -
 L
2(

Pr
ed

ict
io
n)

L2-L2pred(0.5) L2-L2pred(2.5) L2-L2pred(5.0)

(c) Anomaly estimation using live PLC val-
ues and the RNN Model-2 predictions

Fig. 7: Attack on Tank T2 in the Up-Down scenario of Canal Lock CPS emulation, results in abrupt changes in L2 sensor
values. The L2 values are compared with the 0.5, 2.5, 5.0 seconds RNN Model predictions. The difference algorithm 3 is used
to determine anomalies.
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(a) The L2 values compared with RNN Model-2 L2
predictions
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(b) Anomaly estimation using live PLC values and the
RNN Model-2 predictions

Fig. 8: Attack on Tank T2 in the Down-Down scenario of Canal Lock CPS emulation, results in abrupt changes in L2 sensor
values. The L2 values are compared with the 0.5, 2.5, 5.0 seconds RNN Model-2 predictions. The difference algorithm 3 is
used to determine anomalies.

in false-positives.

C. Observations

a) Several Time-Intervals: Three different time-intervals
can be observed in the live DT operation. They are (a)
Training-Interval the time-interval between consecutive points
of the real time data used for training (b) Prediction-Interval,
is a point in time in future at which the model predicts values,
it could be next point or some point in distant future and
(c)Polling-Interval the time interval between two consecutively
polled data points from the PLC of the target CPS during live
operation.

The Training-Interval limits the precision with which the
model can detect anomalous behavior. Hence, the time-series
data used for RNN model training must ensure that this time-
interval should be lesser than the distortion representative with
lowest time-interval. Hence, DT’s ability can be limited to or
expanded to many sensor variables by changing this time-
interval. Further, in our experiments and training we have
considered a constant value of 0.5 seconds for the Training-
Interval. However in practice the data collected for training
by polling the PLC is based on the turn around time to obtain

values from the PLC, which we observed not to be constant
value but a period itself. We also observed that such variance
of this period becomes larger when polling is performed back
to back without any collector induced delay. The Prediction-
Interval can provide next-point of predictions or distant-future
(several points) predictions. The distant-future predictions are
more sensitive to sudden input changes and hence are good
for anomaly detection. However, their sensitivity is also a
source for false-positives. The Polling-Interval should at least
be equal to Training-Interval. A lower time-interval than
Training-Interval should be able to better detect an anomalous
activity. However, a lower Polling-Interval will also increase
the DT load on PLC.

b) Synchronization effects on Anomaly Detection: The
DT’s capability to predict accurately is limited by the Polling-
Interval at which point a newly read point from the PLC
resets the model. We refer to this as the synchronization
point, where the DT time-lines are synchronized with the
target CPS time-line. Unlike simulations the RNN model
predictions are based-off the value it just read and hence, its
capability to detect the anomaly is limited to this Polling-
Interval. Beyond this period, if the next read point falls
within the awareness of the learned system than predictions
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are sensible. However, if the input does not fall under the
learned system state-space the predictions could be random.
In the attack cases that we discussed, the post-attack state
falls within the learned RNN-model and hence the post-attack
predictions are reflective of system behavior after the attack,
as seen in Figure 7c and Figure 8b. Hence, this leads to a
situation where if the synchronization-period is very small, the
anomalous events might just appear as jitter and if its too large
than we can completely miss the anomalous event altogether.
The predictions with varying Prediction-Intervals could help
in such cases. Alternatively, the use of simulations that are not
tightly bound by the synchronization needs might be able to
detect the anomalous behavior better.

c) Emergent Behaviors with Simulations: A well trained
RNN models would serve as a good DT with limited capabil-
ities. While RNN model might be able to detect deviations
from normal behavior, it will not be able able to predict
the future emergent behaviors of the CPS behavior. Unlike
the RNN models, the emergent behaviors can predicted using
simulations. We are currently investigating the utilization of
RNN-models with simulation models as a part of our future
work.

V. SUMMARY AND CONCLUSION

In the research presented in this paper, we emulated the
Canal Lock CPS behavior physically within our laboratory
by using an actual PLC that is used in an industrial setup
along with several sensors, pumps and valves. Within our
controlled CPS setup, we identified all the possible Canal
Lock CPS operational scenarios. From the Canal Lock CPS
emulation data, we trained a set of RNN Models to use
them as the core of a DT, and performed live validation of
the system to evaluate our RNN models. We devised attacks
on the Canal Lock CPS emulation system and evaluated
DT concept for anomaly detection capability using a simple
difference-based algorithm. The work performed in this paper
has been summarized in Figure 1. In our salient observations,
we highlighted the importance of tuning prediction intervals
used in the RNN models and the polling intervals used to
obtain real-time values from the PLC, for better anomaly
detection and to reduce false positives. We also highlighted
that even though RNN model predictions follow the PLC time-
series values, they would not be able to capture the emergent
behaviors of the complex system, for which simulations are
needed. In future, we intend to evaluate the possibility of
using module-specific RNN models, combining RNN models
with discrete event simulation models, and extend our work
to evaluate the RNN-based models on a large scale real-life
CPS.
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