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Abstract—Large parallel machines generally offer the best
parallel performance with “native execution” that is achieved
using codes developed with the optimized compilers, commu-
nication libraries, and runtimes offered on the machines. In
this paper, we report and analyze performance results from
native execution of deep learning on a leadership-class high-
performance computing (HPC) system. Using our new code
called DEEPEX, we present a study of the parallel speed up
and convergence rates of learning achieved with native parallel
execution. In the trade-off between computational parallelism
and synchronized convergence, we first focus on maximizing
parallelism while still obtaining convergence. Scaling results are
reported from execution on up to 15,000 GPUs using two scientific
data sets from atom microscopy and protein folding applications,
and also using the popular ImageNet data set. In terms of
the traditional measure of parallel speed up, excellent scaling
is observed up to 12,000 GPUs. Additionally, accounting for
convergence rates of deep learning accuracy or error, a deep
learning-specific metric called “learning speed up” is also tracked.
The performance results indicate the need to evaluate parallel
deep learning execution in terms of learning speed up, and point
to additional directions for improved exploitation of high-end
HPC systems.

Keywords-Deep Learning, Massively Parallel Systems, Parallel
Speedup, Learning Speedup

I. INTRODUCTION

Deep Learning (DL) has been successfully applied in com-
mercial applications and is now being evaluated in other
domains such as scientific computing. Parallel execution of
deep learning is important when dealing with large data sets
and individual datum sizes. In some challenging scientific
applications, such as in material sciences and biology, the
image volumes are large. Image sizes to learn from can also
be large. Traditional small-scale execution using desktops or
small clusters are ineffective to ensure analysis of real-world
data sets and desired execution speeds. Deep learning codes
need to utilize larger parallel computing platforms to make
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learning feasible on the newer applications. In this paper,
we advance this direction towards effective parallel execu-
tion of deep learning codes on massively parallel machines
containing thousands of graphical processing units (GPUs).
We specifically focus on the runtime dynamics and efficiency
considerations in delivering efficient parallel execution of deep
learning on the latest heterogeneous architectures of massively
parallel supercomputing platforms. Towards this, we study the
execution of our parallel deep learning code on the Summit
supercomputer hosted at the Oak Ridge Leadership Computing
Facility.

Summit is based on a CPU-GPU hybrid architecture and
utilizes many GPUs to achieve an extremely large number of
floating point operations. The GPU-accelerated architecture
of Summit is well-suited to the problem of deep learning
because GPU-based execution has been originally instrumental
in enabling great leaps in deep learning. While GPUs had been
known to perform extremely well on naturally parallel tasks,
their adoption for training deep learning networks has been
symbiotic, resulting in a phenomenal success of both GPUs
and deep learning. Furthermore, several high-performance
computing systems realized the computational capabilities and
energy savings provided by GPUs and became early adopters
of GPUs for addressing large-scale computational science and
engineering problems. These powerful platforms of the new
generation bring with them an interesting set of advantages
and technical challenges.

A. Native Execution

Traditionally, HPC systems executed large-scale scientific
computing codes that were developed and tuned over a long
period of time (sometimes over several years) to obtain the best
runtime performance of the scientific application or the library.
The programs are specifically developed to suit the hardware
and software of the HPC system. Codes are compiled and
linked with the vendor-supplied libraries for both computation
and communication services. There is only a thin (or nearly
non-existent) layer that mediates between the application and
the hardware. Sometimes also called (nearly) bare-metal ex-
ecution, native execution is one in which the program runs
directly on the machine hardware and operating system, rather
than inside virtual machines, containers, jails, or sandboxes. In
the case of deep learning on our target supercomputer, native
execution would entail the learner running with no additional
software layers (such as hypervisor or container interface)



between the program and the hardware (CPU, GPU, and the
network).

The native execution approach to HPC continues to date
for many applications. However, the arrival of deep learning
(or machine learning or artificial intelligence, in general) to
computing has resulted in a major shift in the popular approach
to HPC execution.

The changes to HPC execution brought in by the success
of deep learning networks have been so overwhelming that
the adoption of the new methodology has been relatively
abrupt. The influence of rapidly developed deep learning codes
has been so great that the execution mode on the largest
computing systems has moved away from native executions
to container-based executions, in order to rapidly cater to
the urgent needs of executing popular deep learning libraries
that depend on many third-party modules. Each third-party
module presents its own challenges relating to compatibility
and software restrictions. While this porting process solves
the execution of deep learning networks on large systems, im-
portant runtime performance effects such as degraded device
utilization or slow parallel convergence cannot be easily diag-
nosed and fixed. Further, backward compatibility is also rarely
guaranteed by third-party libraries. The continual disruptions
from backward incompatibilities and porting problems are
generally unacceptable for scientific computing codes that are
intended for long periods of usage. While scientific simulations
are the mainstay of high performance computing systems, a
large set of new deep learning-based solutions are currently
being sought across scientific domains to address fundamental
inefficiencies in large-scale/high-speed scientific experiments.
They are also being championed to provide new innovative
modalities of integrated simulation intelligently guided (on
demand, sometimes in real time) by deep learning-driven
workflows to expedite the process of scientific innovation.

To exploit the benefits of native HPC execution for deep
learning, we developed a new deep learning library called
DEEPEX. DEEPEX can be executed in a standalone mode
or integrated into other native HPC application using its
callable Application Programming Interface (API) for parallel
execution.

B. Organization

In Section II, we introduce the software architecture of
DEEPEX, our deep learning software library, which is used
for runtime performance and scaling evaluation of benchmark
applications in this paper. This is followed by Section III
containing a discussion on the system-level details of the HPC
platform and implementation. In Section IV, we introduce the
benchmark applications, the datasets, and the deep learning
networks used for performance evaluation. It is followed by
a performance evaluation in Section V, where the runtime
performance and the scaling behavior on various benchmarks
are evaluated. We conclude the paper in Section VII with a
summary and a brief overview of our future work.

II. SOFTWARE ARCHITECTURE

We based DEEPEX on NVIDIA’s CUDNN library, which
is the common denominator of many extant deep learning
libraries. Currently, we are able to build any given convo-
lutional neural network (CNN) and convolutional variational
autoencoder (CVAE). The salient data structures of DEEPEX
software are illustrated in Figure 1. For CNN, DEEPEX
incorporates internal support for implementations of LeNet,
AlexNet, VGGNet, and ResNet50, in addition to a customized
CVAE network developed for a scientific application. We
applied these implementations on two real life scientific prob-
lems. One arises from material sciences and it deals with
simulated atom microscopy data generated by a multi-slice
algorithm. The second is from the field of biological sciences
using data from molecular dynamics-based protein folding
simulations.

We optimized the performance of deep learning training for
single-node execution before performing parallel computing
evaluations. DEEPEX was developed to efficiently utilize the
GPU compute power by minimizing the transfer of data
between the host memory and the device memory. This is
achieved by overlapping the reading of data with computation,
and by caching in memory the data read from files. Also, the
parallel software is coded in such a way that software overhead
does not creep into the execution of CNN or CVAE in the
parallel runs, as compared to single-node runs.

Fig. 1. DEEPEX software elements

a) Asynchronous Data Transfers: The input data was
converted from the application’s formats (JPEG, PNG, HDF5,
etc.) to a standard single-precision NCHW (N-number of
images, C-channels, H-height, W-width) format. We realized
this using a CuData class object, which uses helper functions
to move data from host memory to device memory. CUDA
streams were used for each such object to realize asynchronous
data transfers between main and device memories. Further,
the data transfers between the host and device memories were
also minimized. Only the input batch data is copied from host
memory to device memory at the beginning of every batch
and, the error and loss values are copied back from the device
to main memory once at the end of each epoch.
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b) Parallel Input Data Reads: Due to the availability of
memory across many nodes in distributed execution and also
due to a relative abundance of host memory on each node,
we read the data from files only once and keep it in the host
memory throughout execution. We maintained a hash table for
the data read from files and used them to quickly access the
data during the execution of successive epochs. Further, we
also overlapped the reading of data from the input files (or
from host memory) to device memory using pthreads. To
accomplish this, we reserve the device memory that is twice
the size of batch data for the input layer. As the CUDNN batch
computations execute, the next batch size of data is copied
asynchronously to the buffer input. By toggling between the
two buffer inputs at the start of every batch execution, we
ensured an overlap of asynchronous data read operations with
batch training computations.

c) Stackable Layered Architecture: We realized the feed-
forward networks in DEEPEX as a composition of layered
objects. Each layer performs a well defined task; for example,
convolution computations to learn the filters were performed
in a convolution layer. Each layer composes an object of type
CUData to store its intermediate results, weights, biases, and
differentials. We used the corresponding service in the CUDNN
API to realize the functionality of each layer.

d) Network Traversal: The individual layers can be com-
posed together and traversed as a doubly-linked list. Each layer
object in between the input layer (head) and the output layer
(tail) is linked to its previous and the next layers. Hence, during
the forward and backward computations, the device memories
of the previous and next layers are directly invoked to read or
write data, thus minimizing the data duplication. Feed forward
execution is realized by carrying out the computations layer-
by-layer as we traverse through the doubly-linked list of layer
objects. Similarly, traversal backward from tail to head realizes
the passage of differentials and computations of gradients.
We used CUDA streams to perform certain independent
asynchronous computations. For example, the weights and
biases are asynchronously updated after the corresponding
gradient computations.

e) Domain Decomposition: To realize parallel execution
across distributed memory, we divide the computations in
parallel such that the overall workload is shared among parallel
computational units. We used a data-parallel approach, which,
with minimal communication and synchronization require-
ments, offers a greater potential to improve runtime perfor-
mance and scaling. We divide the input data files almost
equally among the parallel processes. Each process reads
its sequence of input data files and learns only from that
data. However, at every epoch, the sequence of the file reads
is varied by permuting them by random shuffling. At the
beginning of the execution and after synchronization, we
ensure that the weight and bias values across all the relevant
layers in each of these parallel processes are exactly the same.

f) Data Communication: As a result of our domain
decomposition approach, each process learns its variables
separately while training on its input data set. The weight

and the bias values that are learned by the deep learning
networks can be on the order of several million, depending
on the network being trained. To have a single consistent
learned model after training would require the parallel pro-
cesses to communicate their learned information periodically
with each other. Hence, the variables from several layers of
the network need to be transferred over the network, which
can be either performed layer-wise or as one whole set. We
use a synchronous method for updating weights and bias
values of the entire network at once and not layer-by-layer.
Our synchronization method is close to local SGD [1]. We
use parallel all-reduce algorithm for synchronization. More
sophisticated mechanisms for background synchronization and
inter-network synchronization are also supported in DEEPEX
but are not discussed in this paper due to their complexity.

g) Feed Forward Network Execution: The execution of
feed forward networks happens in 3 phases: (1) forward phase,
(2) backward phase, and (3) update phase. The initial weight
and bias values of the convolution and the fully connected
layers are random values (from standard distributions such
as Gaussian, uniform, and Xavier). Mathematical operations
are performed on the input data using these weights and bias
values in the forward phase. The forward phase predicts the
classification group and compares it with the known ground
truth. The errors at the end layer are estimated. The differen-
tials calculated from the errors are percolated backward layer-
by-layer through the network in the backward phase. These
differentials are used to compute weight and bias gradients.
The mini-batch stochastic gradient descent method of learning
with a momentum-based optimizer is used in the backward
propagation. In the update phase, the weight and bias gradients
are used to update the variable values in the relevant layers
of the network. These three steps are iteratively performed
many times on the same input data set during training. A
loss function is employed to measure the classification error.
When the error rate diminishes to a user-specified threshold,
this iterative learning procedure is terminated. For validation,
only the forward phase is performed.

III. IMPLEMENTATION AND EXECUTION

In this section, a brief overview is presented regarding the
hardware of the massively parallel HPC system used in our
performance study along with some implementation details of
our software implementation.

The Summit machine is made of approximately 4,600
compute nodes containing a mixture of CPUs and GPUs.
Each node contains two IBM POWER9 processors (two CPU
sockets) and six NVIDIA Volta V100 accelerators (six GPUs)
connected by high speed NVLINK connections. Each node has
512 GB of DDR4 memory for use by the CPUs, 96 GB of
High Bandwidth Memory (HBM2) for use by the GPUs, and
1.6TB of non-volatile memory. Nodes are connected by dual-
rail EDR InfiniBand network with a node injection bandwidth
of 23 GB/s. The inter-node network has a non-blocking fat
tree topology, which is implemented by a combination of a
three-level tree of cabinet switches and inter-cabinet director
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switches. Each IBM POWER9 CPU has 22 physical cores.
Each physical core supports (multiplexes) 4 hardware threads,
giving 88 hardware threads per core. One physical core per
CPU is reserved for system operation, and the rest are available
for user applications. Thus, each node has 176 hardware
threads of which 168 hardware threads are usable by appli-
cations. Each CPU and 3 GPUs are connected via NVLINK2
links. Additional detail may be obtained from the online
documentation of the machine at www.olcf.ornl.gov.

The DEEPEX code is written in C/C++ and CUDA,
with calls to the native implementation of MPI (Spec-
trum MPI). CUDA-aware MPI is enabled using the
--smpiargs="-gpu" options to the jobs. Jobs are
launched via the jsrun job control system. On Summit,
DEEPEX is launched with 6 MPI tasks per node, which maps
3 MPI tasks per CPU. Each task exclusively uses a single
GPU. Therefore, the 6 MPI tasks use all the 6 GPUs on each
node, one per task. Input image files are accessed through a
GPFS high performance storage system.

Communication of synchronized data across deep learning
networks spanning intra-node GPUs as well as inter-node
GPUs is achieved via a combination of the Message Passing
Interface (MPI) natively supported by the HPC system, and
also via the NVIDIA Collective Communications Library
(NCCL) interface natively supported by the GPUs. We have
implementations to support direct MPI, CUDA-aware MPI and
the NCCL library. We have exercised GPU-Direct MPI by
explicitly managing all data structures on the device memory
to avoid copying from/to host memory to/from device memory
before/after MPI communication. We also exploit CUDA-
aware MPI features that pipeline copy operations by merging
them through one unified thread.

The data structures are also carefully organized to minimize
the overheads in intra-node and inter-node communication.
The memory layout is designed such that the number of MPI
calls (for periodic synchronization of weights across nodes) is
minimized. Specifically, the convolutional network elements
are laid out in a way that makes it possible to invoke a single
call per epoch to MPI_Allreduce() to synchronize all
weights across all GPUs.

At initialization, we compute the memory size required for
all weights in the learning network. We then allocate a single
contiguous block of memory for all weights (on both host and
device memories). Offsets into that single block are used to
set up device pointers for the weight vectors with CUDNN.
This scheme enables us to pass a single pointer to MPI to
transfer all weights since they are contiguously placed as one
vector in physical memory. Moreover, instead of host pointers,
device pointers are directly passed to the MPI calls to bypass
unnecessary device-to-host copy operations.

IV. BENCHMARK DATASETS AND DL NETWORKS

In this section, we introduce the benchmark applications,
their data sets, and their corresponding deep learning networks.
Three benchmarks are used: (1) Atom Microscopy, (2) Protein
Folding, and (3) ImageNet.

A. Atom Microscopy

Deep learning has introduced a great amount of new enthu-
siasm in the scientific community to uncover the unknowns
hidden in extremely large data sets from simulations as well
as from sophisticated scientific tools such as electron micro-
scopes. At the heart of Electron Microscopy (EM) lies the
difficult inverse problem of inferring the three-dimensional
atomic distributions that produce an electron diffraction image.
It has been established that a single scanning convergent beam
electron diffraction (CBED) image encodes complete informa-
tion regarding the three-dimensional atomic distribution (that
is, the 3-D positions of atoms and their chemical elements) [2].
In essence, by recovering this full information from CBED,
most material properties of interest will be accessible at sub-
nanometer spatial resolutions. Similarly, accurate numerical
simulations of how electrons interact with a material to pro-
duce CBED are available [3]. The major caveat here is that
the 3-D atomic potential of the material must be specified
a priori as input. Moreover, a direct comparison between
simulations and experimental images requires a large number
of parameters to be included that characterize a particular
electron microscope. The combination of the unknown 3-D
atomic potentials and unknown instrumental parameters is
where the difficulty of the inverse problem of CBED lies.
The objective of the scientific problem is the prediction of
the 3-D atomic potential using deep learning networks on
the simulation data that also accommodates the experimental
imaging conditions.

a) Dataset: The first dataset (AtomAI) contains several
single-channel images of resolution 120 × 85 along with 27
labels. The data is generated from a prismatic simulation
tool and the output 3-D atomic potentials are binned into 27
clusters. The training sample contains 656,100 images and the
test sample contains 72,900 images, which are in the portable
network graphics (PNG) format.

b) DL Network: To solve the classification task in this
application, we employ convolutional neural networks (CNN).
Specifically, we built a ResNet-50 CNN using DEEPEX for
this purpose. In contrast to other feed forward networks
such as AlexNet or VGGNet, the ResNet-50 network tries
to optimize the residual mapping [5]. To accomplish this,
ResNet-50 uses shortcut connections that several layers. These
shortcut connections, in turn, result in multiple transitions from
a few layers of the network. To realize this non-linear flow
within the layered architecture of DEEPEX, along with its
traversal to realize forward and back propagation, we created
another layer called AddLayer. During forward propagation,
the AddLayer combines data from multiple inputs. During
back propagation, the differentials stored within this layer
are exposed to all the layers to which it is connected. The
operation of the AddLayer becomes slightly complicated
when the tensor dimensions of the source of the shortcut
connection and its destination do not match. We addressed this
mismatch by composing an additional block of convolutional,
batchnorm and activation layers within the AddLayer and
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Fig. 2. Molecular dynamics simulation data converted to contact matrices are passed through the CVAE network that includes convolution, dense and latent
layers. In the latent layer, a 3-D latent space is built using which the contact maps are reconstructed [4].

utilizing them under conditions of dimension mismatch.

B. Protein Folding

The next data set comes from a protein folding analysis
application illustrated in Figure 2.

Molecular dynamics (MD) simulations are used to obtain
insights on the events driving complex biological phenomena
such as protein folding, ligand binding, and membrane for-
mation. MD simulations are governed by a potential energy
function that includes both bonded and non-bonded terms
whose gradient defines a force-field applied to every atom in
the bio-molecular system [6] [7] [8] [9]. These simulations
apply Newtons laws of motion on every atom in the system
and advances typically in femtosecond (10−15 second) time-
steps. The molecular events of interest typically occur in the
microsecond to millisecond timeframes. Machine learning is
employed to obtain statistical insights on the time-dependent
structural changes of a biomolecule in the simulation, to
identify events that characterize large-scale conformational
changes at multiple timescales, to build low-dimensional
representations of the simulation data to obtain biophysical,
biochemical or biological insights, to infer kinetically and en-
ergetically coherent conformational substates, and to perform
a quantitative comparison with experiments [10]. However,
ML approaches require well-designed and often handcrafted
features. In contrast, the deep learning approaches learn the
lower level representations (or features) from the input data.
For example, Convolutional Variational Auto-Encoder (CVAE)
can reduce the high-dimensionality protein-folding trajectories
and cluster conformation from MD simulations into a small
number of conformational states that share similar structural
and energy characteristics [4] [11].

a) Dataset: The data set consists of over a million
images of size 28×28 where each image represents a contact
matrix between Cα atoms. The atoms are considered to be in
contact if they are separated by less than 8Å. MDAnalysis
library was used to extract the contact matrices from the
MD simulation predicted trajectories. Additional details on the

dataset can be found in the literature [4].
b) DL Network: Autoencoders follow the deep learning

architecture and they capture key representational information
of a data set in a low-dimensional latent space in an unsuper-
vised manner [12]. The variational autoencoders constrain the
autoencoder with the requirement of a normal distribution of
the latent space [13]. With the convolutional layers, the CVAE
learns the convolutional filter maps that can better recognize
the local patterns independent of its position and these are
better suited for the contact matrix data sets generated from
the MD simulations.

Fig. 3. Implementation of CVAE in DeepEx

To realize CVAE in DEEPEX, we derived an AutoEncoder
(AE) version of the layer for all the implemented layers. For
example, convolutionLayer AE was derived fromconvolution
layer. In addition to generic forward execute and back-
ward execute methods represented as Fwd and Bwd in
Figure 3 in all the layers, the AE version contains re-
verse forward execute and reverse backward execute, which
are represented as R Fwd and R Bwd, respectively in
Figure 3. Within the reverse forward execute functionali-
ties like reverse convolution, reverse pooling and so on
are implemented at relevant corresponding layers. The re-
verse backward execute function implements the back prop-
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agation of differentials from the sum of RMSE loss and
Kullback-Leibler (KL) divergence loss for the decoder. The
encoder uses forward execute for forward computation and
backward execute for back propagation of differentials in the
encoder. Thus, the network traversal involves a sequence of
forward execute calls from all the layers till the traversal
reaches Latent Layer. This is followed by a sequence of
reverse forward execute calls from all the layers until the flow
reaches the input layer. This is followed by a sequence of
reverse backward execute calls until the traversal reaches La-
tent Layer again, and finally, a sequence of backward execute
calls until the traversal reaches input layer again. Our imple-
mentation of the CVAE network consists of three Convolution
Layer, a Fully Connected Layer, and a Latent Layer. The
convolution layers have 128 (1 input× 128 output channels),
16K (128 in × 128 out), and 16K (128 in × 128 out) filters
of size 3 × 3 respectively. The fully connected layer has
100352 × 128 weights. Finally, the latent layer consists of
3 latent variables. In total, the network has 26M trainable
weights and biases. During these traversals, the CVAE encodes
the input, computes latent values, decodes using latent values,
computes errors, propagates differentials, calculates weight
gradients and updates weights.

C. Image Recognition
We also carried out performance experiments using the well

known ImageNet data sets with a ResNet-50 CNN. The Ima-
geNet is an image database used for visual object recognition
software research. The database of annotations of third-party
image URLs and is freely available. Since 2010, the ImageNet
project has been running an annual software contest, the Im-
ageNet Large Scale Visual Recognition Challenge (ILSVRC),
where software programs compete to correctly classify and
detect objects and scenes. The ImageNet Challenge uses a
trimmed list of one thousand unambiguous classes. A dramatic
2012 breakthrough in solving the ImageNet Challenge is
widely considered to be the beginning of the deep learning
revolution of the 2010s [14].

a) Dataset: In our experiments, we use 544,546 images
for training and 50,000 images for validation. The data set was
downloaded from the ImageNet website and each image was
scaled to a size of 224 × 224. This image set contains color
and monochrome images in the JPEG format. While extracting
the data from the images, we used all the images with three
channels corresponding to RGB values. For monochrome
images, a single pixel value was replicated across all the
channels.

b) DL Network: The ResNet-50 network discussed in
Section IV-A was used for performance evaluation.

D. Summary of Application Datasets
Table I provides a summary of the important aspects of the

datasets of the three benchmarks.
We refer to ResNet-50 CNN on the atom microscopy data

benchmarks as AtomAI benchmarks. CVAE on protein folding
data sets will be referred to as PF benchmarks. ResNet-50 on
ImageNet datasets will be referred to as ImageNet benchmarks.

TABLE I
SUMMARY OF BENCHMARK DATASETS

Dataset Size Format Ch #Images
Training Validation

AtomAI 120× 85 PNG 1 656,100 72,900
PF 28× 28 ASCII 1 1.1 M N/A
ImageNet 224× 224 JPEG 3 544,546 50,000

V. PERFORMANCE RESULTS

In this section, we evaluate the performance of DEEPEX
with the three preceding benchmarks.

A. Parallel Scaling and Per Epoch Speedup
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Fig. 4. Parallel SpeedUp per Epoch for different data sets and batch sizes

We calculate the per-epoch speedup (Sp) as

Sp =
τspe
τppe

where, τspe is per-epoch execution time on a single node
and τppe is parallel per-epoch time. An epoch is defined as
one iteration of processing across all available images in the
data set.

In Figure 4, we plot the per-epoch speedup for AtomAI,
PF and ImageNet benchmarks with different batch sizes. The
limit on the maximum number of GPUs that can be used with a
data set is determined by the batch size: every GPU must have
at least one complete batch size worth of images to process.
Therefore, some data sets are limited to a smaller number of
GPUs, while others span very large system size (up to 15,000
GPUs). The Imagenet-32 benchmark with a batch size of 32
was run using up to 15,000 GPUs and AtomAI-32 with an
batch size of 32 benchmark was maximum of 12,000 GPUs.

The per epoch speedup observed for the AtomAI and Im-
agenet benchmarks that use ResNet-50 network appear to be
almost similar. Overall, we see nearly linear speedups across
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both benchmarks. We observe a parallel efficiency of around
75% at 1.5K GPUs and over 35% at 10K GPUs. However,
there is a slight dip in the speedup Imagenet benchmark seen
at the 15,000 run. We intend to investigate this high-mark
data point later with additional runs to test reproducibility
or eliminate the aberration. In contrast to the AtomAI and
ImageNet benchmarks, the PF benchmark flattens even at
1,536 GPUs as seen in Figure 4, largely due to PF’s tiny
image sizes.

B. Parallel Runtime Profile

We show the breakdown of parallel runtime for the Ima-
geNet benchmark in Figure 5 and Figure 6. Similar breakdown
for the AtomAI-128 benchmark is provided in Figure 7 and
Figure 8 and, for the PF benchmarks is provided in Figure 9
and Figure 10. The description of corresponding labels in the
plots are provided in Table II.

TABLE II
PARALLEL RUNTIME PROFILE LABEL DESCRIPTIONS

Label Description
IpUpdateTime Time to read images; first epoch reads and

caches the images in memory, so this time
is shown amortized across epochs

TotalCompTime Aggregate computation time (FwdTime +
BwdTime + WtUpdateTime)

BwdTime Time to compute backward propagation
FwdTime Time to compute forward propagation
WtUpdateTime Time to update weights
SyncTime Time to synchronize weights (compute av-

erage) across all GPUs at the end of each
epoch
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Fig. 5. Scaling trends of learning subtasks illustrated using time-per-epoch
required to train ResNet-50 network on ImageNet data set

With an increasing number of GPUs, we observe that the
forward propagation runtime, backward propagation runtime,
input data update time and the weight update time decrease
almost linearly. However, the synchronization time remains
nearly unchanged. It is also seen that the insignificant commu-
nication cost in the parallel runs with a small number of GPUs
becomes a significant runtime determinant on larger scale runs.
These observations are consistent across all ImageNet, AtomAI
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Fig. 6. Contribution of each learning subtask to overall per-epoch runtime
cost to train ResNet-50 network on ImageNet data set

and PF benchmarks. The first set of point in Figure 9 is from
a single node run (6 GPUs), hence, the synchronization cost
is relatively low.
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Fig. 7. Scaling trends of learning subtasks illustrated using time-per-epoch
required to train ResNet-50 network on AtomAI data set
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Fig. 8. Contribution of each learning subtask to overall per-epoch runtime
cost to train ResNet-50 network on AtomAI data set

The computational load becomes comparable to the com-
munication load at around 5,000 GPUs for the ImageNet
benchmark, at around 4,000 GPUs for the AtomAI benchmark,
and at around a few hundred GPUs in the case of the PF
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Fig. 9. Scaling trends of learning subtasks illustrated using time-per-epoch
required to train CVAE network on Protein Folding data set
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Fig. 10. Contribution of each learning subtask to overall per-epoch runtime
cost to train CVAE network on Protein Folding data set

benchmark, as seen in Figure 6, Figure 8 and Figure 10,
respectively. Beyond this point, the computational gains are
mainly due to a reduction in the time to update the input data.
Hence, the ImageNet benchmark at larger image dimensions
and with three channels shows the best scaling behavior. The
AtomAI benchmark with a slightly lower image dimension
and single channel data sets that are larger in volume also
shows good scaling behavior. However, the speedup of the
PF benchmark with a very small image dimension of 28× 28
flattens very quickly because neither computation nor data read
time is significant on larger GPU runs.

The total byte size of the ResNet-50 weights exchanged
across the network is approximately 89 MB, while that of the
CVAE is approximately 100 MB. From the breakdown of time
per epoch, it is observed that the synchronization cost from
the collective operation of averaging across all GPUs is not
affected significantly as the number of GPUs is increased from
1,000 GPUs to as much as 15,000 GPUs. From this observa-
tion, we infer that the communication is not a bottleneck, and
the execution does not appear to be bandwidth-constrained.
This shows the potential to sustain bigger image sizes and/or
larger volumes of images. In particular, in emerging scientific
data sets, the image sizes are expected to be significantly
larger. For example, with AtomAI, it is possible to encounter

images of sizes 512× 512 or even larger.

C. Parallel Learning Speedup

Although we observe a very good linear per-epoch compu-
tational speedup on over 15,000 GPUs, the actual amount of
effective gain in training large deep learning networks may be
different. This is because the parallel training process, through
which the per-epoch computation time is diminished, may be
countered by an increase in the number of epochs taken by
the parallel training task to converge to a similar solution as a
serial task (or a smaller parallel task). In our experiments, for
a fair comparison, we do not enforce any decay in the learning
rate. We did this to ensure that a large number of epochs are
not additionally penalized with lower learning rates due to
decay.
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Fig. 11. Convergence for AtomAI data set with ResNet-50 network with a
batch size of 128

a) Convergence: For classification problems using CNN,
the error rate (ε) is calculated as ε = Ie/It, where Ie is the
number of erroneously predicted images and It is the total
number of images processed.

Convergence in the AtomAI benchmark using ResNet-50
is observed when the error rate ε drops beneath a certain
error threshold (0.1). The error rate reduction for the AtomAI
benchmark for varying number of GPUs from 1 to 1500 can
be observed in Figure 11.

For the PF benchmark, the Root Mean Square Error
(RMSE) plotted are calculated using decoder-generated output
(using latent variables) and its corresponding input. The RMSE
decreases when CVAE learns the latent variables well and is
able to decode images very similar to the inputs. Hence, con-
vergence in the PF benchmark is achieved when RMSE drops
to a certain predetermined threshold. The RMSE reduction can
be seen in Figure 12 for training CVAE for varying number
of GPUs from 1 to 1,536.

b) Learning Speedup: While the per-epoch speedup
is a measure of the parallel computation, another useful
application-level metric measures the gain in overall time for
training the deep learning network in parallel. To obtain a
perspective on the realistic gains from parallel execution, we
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Fig. 12. Convergence for Protein Folding data set (with and without
synchronization) with CVAE network with a batch size of 128

need to take convergence into consideration. We define the
learning speedup of parallel deep learning (SL) as

SL =
(τspe ×Ns)
(τppe ×Np)

where Ns is the number of epochs needed for a single node
or a baseline training to converge and Np is the number of
epochs needed for the parallel training to converge.
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Fig. 13. Learning speedup for the AtomAI and Protein folding benchmarks,
with each benchmark using a batch size of 128

The learning speedup SL for the AtomAI and PF bench-
marks is shown in Figure 13. With over 1500 GPUs, the
learning speedup of 40 and 20 is observed in training PF
benchmark for error rate cut-off values of 20% and 10%,
respectively. Similarly, a learning speedup of 20 and 10 are
observed in training AtomAI benchmark for error rate cut-off
values of 20% and 10%, respectively. We observe that the non-
linear learning speedup of the PF benchmark seems better
than that of the AtomAI benchmark, which is in contrast with
the per-epoch speedup presented in Figure 4.

We kept the learning rate fixed in these performance runs
for fair runtime comparison. However, we are aware that
faster convergence may be obtained by dynamically tuning
the learning rates [15] [16]. We are also aware that by
increasing the synchronization frequency, a faster convergence
and hence better learning speedups may be obtained. However,

due to diminished parallelism and increased communication,
the faster convergence comes at the cost of degraded per-epoch
parallel speedup. Determination of an optimal synchronization
frequency per epoch to attain better learning speedups without
compromising per-epoch parallel speedup is a part of our
future work.

D. Validation Results

In this paper, the convergence plots for training or validation
results for ImageNet benchmark are not obtained. This is
because ImageNet was executed only for one hundred epochs,
although several thousands of epochs are needed for con-
vergence. Due to our focus on runtime performance, and to
minimize the consumption of our limited wall-time allocation
on the leadership-class HPC system, we turned off parallel
validation and also limited the number of epochs to execute.
Using the synchronized weights at the end of every epoch, we
performed sequential validation on a single parallel task (rank
0). In Figure 14, we plot the training and validation curves for
the AtomAI benchmark on 1,536 GPUs. We observe that the
validation results closely follow the training results.
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Fig. 14. Training and validation errors for AtomAI data set with ResNet-50
network with a batch size of 128 on 1536 GPUs

VI. RELATED WORK ON SCALING DEEP LEARNING

Many recent studies have been conducted to scale deep
learning tools to a large number of accelerated processors.
In one of the early scaling efforts, ImageNet was trained by
Goyal et al with the ResNet-50 network using 256 GPUs in
an hour of wall clock time with the Caffe2 software [16].
This was performed on a cluster of servers, each server
containing 8 NVIDIA Tesla P100 GPUs interconnected with
NVIDIA NVLink. The servers were connected with Mellanox
ConnectX-4 50Gbit Ethernet network cards and Wedge100
Ethernet switches. ImageNet has been later trained by Jia et
al using 2048 GPUs with Tensorflow and ResNet-50 network
[17]. Each of their computing nodes contained 8 NVIDIA
Tesla P40 GPUs interconnected with PCIe. Nodes are con-
nected using Mellanox ConnectX-4 100Gbit Ethernet network
cards and RoCEv2 (RDMA over Converged Ethernet). More
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recently, Mikami et al used up to 3264 GPUs to scale Im-
ageNet classification with ResNet-50 networks using Neural
Network Libraries (NNL) [18], [19]. Each of their compute
nodes has 4 NVIDIA Tesla V100 GPUs linked with NVLink2.
The computing nodes are connected using 2 InfiniBand EDR
interconnects. In one of the notable scaling efforts not using
the GPUs, a large climate dataset was trained by Kruth et al
with Intel Caffe using 9600 Intel Xeon-Phi 7250 co-processors
[20]. The computing nodes are interconnected by the Cray
Aries interconnect utilizing the dragonfly topology. In another
recent work, Ying et al used 1024 Google Tensor Processing
Unit (TPU) v3 accelerators to train ImageNet classification
with ResNet-50 networks using TensorFlow.

VII. DISCUSSION AND FUTURE WORK

In this paper, we report the current status of our ongoing
effort to realize a scalable deep-learning library specifically
for native execution on next generation exascale systems. This
work highlights the possible role of deep learning in scientific
computing and the need for native execution to support a
backward compatible, efficient and scalable deep learning
library. A new deep learning library called DEEPEX has
been developed with features including low software footprint,
customization for native execution on large HPC systems
with heterogeneous architectures, and efficient execution on
the largest and fastest high performance computing facilities.
Three benchmarks were introduced including two new sci-
entific computing benchmark applications on which DEEPEX
was applied. We executed DEEPEX on benchmark applications
on up to 15,000 GPUs (NVIDIA Volta V100) of the Summit
supercomputing systems and presented a detailed performance
analysis using the three applications. Excellent scaling is
observed in terms of parallel scaling and GPU utilization
(see Figure 4). The results represent one of the largest scale
executions of deep learning reported in the literature.

Here, we focused on attaining the best parallel scaling
by minimizing the communication cost and maximizing the
parallelism in computation, while still being able to converge.
As a result, we see perfect linear per-epoch speedups with
convergence on up to 1.5K GPUs. While we know that with
an increase in the number of synchronizations per epoch,
the rate of convergence significantly increases, we are yet to
determine the optimal synchronization frequency per epoch
to achieve the best combination of per-epoch scaling and
overall learning convergence. With a single synchronization
per epoch, we obtain the best per-epoch speedup, although the
learning speedup is effected. We are currently exploring learn-
ing rate optimization methods such as layer-wise adaptive rate
scaling [15] to attain faster convergence without significantly
increased synchronization.

In our future work, we intend to investigate new perfor-
mance optimization techniques (such as intra-network syn-
chronization, exploitation of tensor cores, and large image
size customization) to improve the parallel deep learning
training process. Towards this end, we expect to evolve the
algorithmic implementations accordingly and incorporate into

the DEEPEX library. This paper is, therefore, a first step in
the direction of optimized native execution of deep learning
codes on leadership-class HPC systems.
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