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Abstract Pareto cautiously asserted that the wealth and income distributions which
bear his name are universal, basing his argument on observations of this distribution
in many different types of economies. In this paper, we present an agent based model
(and a scalable approximation of it) in a closely related spirit. The central feature of
this model is that wealth enables an individual to secure more wealth. Specifically, the
important and novel feature of this model is its ability to simultaneously produce both
the Pareto distribution observed in empirical data for the top 10% of the population
and the exponential distribution observed for the lower 90%. We show that the model
produces these distributions of wealth when initialized with an equitable distribution.
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Then, using historical data, we initialize the model with US wealth shares in 1988 and
show that the model tracks wealth share changes from 1988 to 2012. Simulations to
2088 project that the top 0.01% of the population will possess more than 70% of the
total wealth in the economy.

Keywords Pareto · Boltzmann–Gibbs · Wealth · Income · Inequality · Agent-based
model

1 Introduction

The Pareto distribution was first discovered by Vilfredo Pareto in the late 19th cen-
tury (Chipman 1976; Persky 1992). He found that, regardless of how an economy is
structured, the wealth and income distributions among the upper tier of the population
(typically, the upper 10% of a population is examined) follow a power law, which
came to be known as a Pareto distribution (Jones 2015). The Pareto distribution is
given by the relation

P(ω∗ > ω) =
(ωm

ω

)α

, (1)

where ωm is some minimum wealth and α is the Pareto index. Equation 1 states that
the probability of someone’s wealth ω∗ being greater than ω is proportional to ω−α .
Thus, it is a power law, and, in most economies, α is between 1 and 3 (Ghosh et al.
2016; Gabaix 2009; Chipman 1976).

Rapid improvements in the availability of data on wealth have reinvigorated empir-
ical and theoretical investigation of the Pareto distribution. One recent discovery is
that the lower 90% of the population does not follow a power law, but rather follows
an exponential distribution1 (Drăgulescu and Yakovenko 2001), which is defined by
the probability density function

P(ω) = ce−ω/Tω , (2)

where Tω is the “wealth temperature” and c is a normalizing constant. These exponen-
tial and Pareto distributions fit to observed wealth distributions in the United Kingdom
(UK) are illustrated in Fig. 1, which is taken from Drăgulescu and Yakovenko (2001)
and Yakovenko and Rosser (2009).

A common measurement of inequality in the distribution of wealth is the Gini
coefficient. If we arrange the individuals in an economy by their wealth in m distinct
groups such that {ωi }mi=1 is non-decreasing (ωi+1 ≥ ωi for all i) and Ω = ∑m

i ωi is
the total wealth of the economy, then the Gini coefficient, G, is defined as:

G = 2

mΩ

(
m∑
i=1

iωi

)
− m + 1

m
. (3)

1 Although the gamma and log-normal distributions have been used in other models, we restrict our study
to the exponential distribution, which is the only distribution we have found that matches empirical mea-
surements of the bottom of the wealth distribution.
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Fig. 1 Cumulative wealth distribution of UK copied directly from Drăgulescu and Yakovenko (2001)

There have been many attempts to describe why wealth inequality arises
(Yakovenko and Rosser 2009). The macro-economic perspective has shifted to
Piketty’s findings published in his Capital in the Twenty-First Century (Piketty 2013).
Themodel that emerges fromPiketty’swork generates a Pareto distribution through the
combined effects of several factors, some of most significant being birthrate, growth
rate, and return rate (Jones 2015).

While Piketty’s work focuses almost exclusively on the Pareto distribution of
wealth, a variety of econophysical models, which rely extensively on descriptions of
stock market transactions (Yakovenko and Rosser 2009), either produce a distribution
characteristic of the exponential distribution, or a power law, but not both. Moreover,
by relying on specific economic data and processes to generate wealth inequality, these
models are intrinsically tailored to a specific type of economy. Consequently, these
models can explain inequality within a specific economic system, but they do not shed
light on Pareto’s assertion that inequality is intrinsic to all economic systems.

In contrast, we propose a model that fits the entire wealth distribution without mod-
eling any specific economic process other than growth. The fundamental assumption
in this model is that individuals who possess greater wealth derive from it a greater
ability to secure more wealth. We quantify this advantage and show that the resulting
dynamic in a growing economy leads to a Pareto distribution of the wealthy minority
and exponential distribution of the less wealthy majority. The model’s free parameter
is calibrated to reproduce the observed distribution of wealth in the United States (US)
from the period between 1988 and 2012. Projections with this model to 2088 produce
a striking separation between the shrinking minority of super-rich and everyone else.

2 Model

We assume an exponentially growing economy
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Ω(t) = Ω(0)eλt (4)

whereΩ(t) is the sum of the wealth of all individuals at time t and λ is the growth rate
of the economy. In our model, the economy does not grow continuously, but instead
grows in small, fixed increments δω. Hence, over a time T , the number of increments
n will be

n = Ω(0)(eλT − 1)

δω
. (5)

Each increment is given to exactly one individual. Let ωi,k be the wealth possessed
by the i th individual following the kth distribution, with k = 0 indicating the initial
wealth of i . The probability Ψ (i, k + 1) that i will receive increment k + 1 is

Ψ (i, k + 1) = p(ωi,k)∑
i p(ωi,k)

, (6)

where p(ωi,k) is a “wealth power.” In our model, we let

p(ωi,k) = (
ωi,k

)β
. (7)

Values forλ,Ω(0), and the initialωi,0 can be determined directly fromdata.We assume
β to be a parameter intrinsic to the economy, and with it we can directly control the
change in inequality. This is quickly explainable by Eq. 7. For 0 < β < 1, the power of
wealthier individuals is diminished much more than the power of poorer individuals.
For β = 1, the model gives all individuals a proportional amount of power, and for
β > 1, the model gives a disproportionate amount of power to the richer individuals in
the market. We will choose β by fitting economic trajectories produced by the model
to historical data.

It is unclear how to select δω, which is primarily a computational artifact and has no
obvious analog in the real world. If δω is on the order of ωi,0, then the first individual
to win an increment accrues a tremendous advantage. This circumstance is unlikely
to produce a realistic outcome and suggests that δω should be small. If δω is much
smaller than ωi,0, then those who win wealth increments gain a negligible advantage.
Presumably, a very small δω would eventually approach the same distribution as a
slightly larger δω, but our simulations show that the distribution does not correctly
formwithin a reasonable amount of simulated time, and in addition, the computational
time implied by Eq. 5 puts a practical lower limit on δω. We have therefore chosen a
value of δω that is small in proportion to ωi,0, but large enough that the individual who
receives a wealth packet gains a marginal advantage. A more comprehensive study of
how δω affects outcomes will be reserved for future work.

3 Simulation

We will develop two closely related simulators for the proposed model: one which
repeatedly distributes a single wealth packet and updates Ψ (·, k + 1) as described in
Sect. 2, and one that distributes multiple packets between updates to Ψ (·, k + 1). The
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single-packet model will be used to reproduce the trajectory of wealth shares in the
US. The multi-packet model is shown to produce trajectories similar to the single-
packet model, but we leaves for future work an investigation of the larger populations
enabled by the multi-packet model.

3.1 Single-packet model

The procedure for the single-packet model can be summarized as follows:

1. Set k to 0 and distribute Ω(0) to the population according to a desired initial
distribution to obtain ωi,0 for each individual i .

2. Calculate Ψ (i, k + 1) for each individual within the population.
3. Select at random one individual, say j , in accordance with the distribution defined

by the Ψ (·, k + 1).
4. For the selected j , set ω j,k+1 ← ω j,k + δω. For all other individuals i �= j ,

ωi,k+1 ← ωi,k .
5. Increment k and then repeat from Step 2.

This single-packet version of the model allows for immediate updating of
Ψ (·, k + 1) after distributing each wealth packet, which more convincingly suggests
that the resulting distribution is an immediate consequence of Eq. 6.

3.2 Multi-packet model

Ideally,wewould like to simulate ourmodelwith asmany individuals as the population
of the US. However, Eq. 5 restricts the single-packet model to a smaller population,
because the computational time increases nearly quadratically with the number of
individuals, m. Thus, we investigate a second version of the model by allowing multi-
packet distributions per iteration in order to linearly decrease the computation time.
This allows us to simulate larger populations.

Note that, by performing multi-packet distributions, we restrict individuals from
immediately using gained wealth to their advantage. Rather theymust wait for the next
multi-packet distribution. Because of this, it is reasonable to suppose that the dynamics
of a multi-packet model would potentially be different than the single-packet model.
Nonetheless, for small δω and large populations, the multi-packet model produces
results very similar to the single-packet model in Sect. 4.3.

We employ Algorithm 1 to model the distribution of economic growth via P ≥ 1
wealth packets per distribution. Note that n in Eq. 5 must be proportionally adjusted
to account for the multi-packet distributions, and that the power function in Eq. 7 is
only updated after distributing multiple packets.

The algorithm works as follows. In lines 2–3, the wealth of each individual is
set to suit any desired initial distribution. After initialization, in line 4, the initial
wealth values are sorted in ascending order. The main iteration loop is started at
line 6. In each iteration of the main loop, the following four operations are per-
formed.

123



H. A. Vallejos et al.

Algorithm 1: Parallel algorithm for wealth distribution

1

m Number of individuals
W [m] W [i] is current wealth of individual i
T Total time of simulation
P Number of wealth packets per iteration
dw Value of each wealth packet
Rn Number of “normal” threads, 1 ≤ Rn ≤ m
Rp Number of “packet” threads, 1 ≤ Rp ≤ P

2 for i = 0 to m − 1 do
3 W [i] ← Initial wealth of individual i

4 Sort W
5 t ← 0
6 while t < T do
7 with Rn threads in parallel do
8 Ŵ ← Wβ

9 ˆSW ← ∑m−1
i=0 Ŵ [i]

10 ˆPW ← Prefix sums of Ŵ

11 (prefix sum ˆPW [i] ≡ ∑i
j=0 Ŵ [ j])

12 for Rp threads in parallel do
13 g ← Uniform random number in [0, 1]
14 v ← g · ˆSW
15 Bisection search ˆPW for j such that

16 j = 0 if ˆPW [0] ≤ v

17 0 < j < m if ˆPW [ j − 1] ≤ v < ˆPW [ j]
18 Atomic: W [ j] ← W [ j] + dw

19 Sort W
20 t ← t + P

(a) Preparation of the cumulative density function This is performed in lines 7–
11. From the wealth array W , a new array Ŵ is created to store Wβ (line 8).
The sum of all elements of Ŵ is obtained as ˆSW (line 9). A new array ˆPW is
built as prefix sums of Ŵ . This ˆPW is essentially a scaled representation of the
cumulative density function of Ŵ . Locating the position of a random value v

in the range [0, ˆSW ] from the prefix sums array ˆPW is equivalent to correctly
sampling the cumulative density function. Note that all the steps in this operation
can be performed in parallel, affording a parallelism potential of up to Rn ≤ m
threads.

(b) Parallel selection of wealth recipients and their enrichment This is performed in
lines 12–18. Note that each step in this operationwill involve action on at least one
wealth packet, and hence the parallelism potential of this operation is limited to
Rp ≤ P threads. Each thread selects a random value v in [0, ˆSW ] (lines 13–14),
and performs a bisection search with time complexity of O(logm) (lines 15–17)
to find the individual who should gain the next packet. The individual’s wealth is
updated to reflect this gain – in line 18, the wealth is atomically updated (since
theoretically it is possible for more than one thread to happen to choose the same
individual within an iteration).
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(c) Update of the wealth distribution to sorted order This is performed at line 19.
(d) Finally, advancement of time is performed in line 20 by an increment equal to P

packets.

3.3 Simulation scenarios

Our simulations examine two cases. In the first case that we consider, the initial
wealth is equally distributed throughout the population. Beginning from this equitable
situation, the expected exponential and Pareto distributions form after two centuries.
In the second case, the initial distribution of wealth mirrors that in the US in 1988 and
we show that, with an appropriate selection of β, the model generates the distribution
of wealth observed in 2012.

To fit the model to historical data on the distribution of wealth in the US, we
construct exponential andPareto distributions for the lower andupper parts of the initial
distribution respectively. The two distributions are blended using a weighted average
over an interval of overlap, where the overlap is defined to span the (normalized)
population in (κl , κu), with 0 ≤ κl ≤ κu ≤ 1. The resulting distribution of wealth
over thewhole population is fω(p), which calculates thewealth for a certain percentile
p of the population as

fω(p) = −Tω[1 − π(p)] log
( p

c

)
+ π(p)ωm p−1/α, (8)

where c, Tω, ωm and α retain their definitions from Eqs. 1 and 2 and

π(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 p < κl

p − κl

κu − κl
κl ≤ p ≤ κu

1 p > κu .

(9)

We set ωm = fω(κl − ε) where ε > 0 is very small so that the fω(p) > ωm for all p
in the Pareto part of the distribution.

We use data collected by Saez and Zucman (2014) on the US wealth distribution
from 1913 to 2012. From their data, it is apparent that the distribution of the top per-
centiles has been steadily increasing since 1988. We therefore choose to approximate
the interval from 1988 to 2012. This avoids the difficulty of changing β with time,
which is likely to be necessary to account for the acceleration in wealth concentration
that began in the 1980s.

We initialized the model to match each percentile’s fractional share of the total
wealth in 1988. We found that the data in 1988 fit well with a Pareto index of 1.55.
The initial conditions for the model are compared with the real US wealth distribution
in 1988 inTable 1.We then run themodel to see if itwill track theUSwealth distribution
over the next 24 years, letting the market growth rate λ = 0.02588 since that is the
average growth in the Gross Domestic Product (GDP) of the US over the 24 year time
period (Bureau of Economic Analysis, U.S. Department of Commerce 2016).
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Table 1 Initial wealth share
comparison of model to data
(Saez and Zucman 2014)

Percentile Wealth (%) in 1988 Model

Bottom 90% 34.7 34.7

Top 10% 65.3 65.3

Top 5% 50.9 50.6

Top 1% 27.9 27.7

Top 0.5% 21.5 21.2

Top 0.1% 11.6 11.1

Top 0.01% 4.4 3.8

Fig. 2 Market distribution. Parameters: 10,000 individuals over 225years with δω = 0.01, ωi = 1,
λ = 0.03 and β = 1.36

4 Model results

4.1 Single-packet uniform start

Figure 2 shows the distribution of wealth generated by the single-packet model with
β = 1.36, λ = 0.03, and the initial distribution of Ω(0) being uniform throughout the
population. The log-log plot of the cumulative distribution is shown in Fig. 3, and it
is similar in its form to Fig. 1.

Figure 4 compares the wealth of the bottom 90% of the simulated population to
an exponential distribution that is fit to the simulation data. Figure 5 shows a Pareto
distribution fit to the top 10% of the simulated population. The growing deviation at
wealth 2500 in the simulation data in Fig. 4 is due to the simulation data transitioning
from the exponential distribution to the Pareto distribution as seen in Fig. 5, similar
to the log-log plot in Fig. 1.
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Fig. 3 Log–log of cumulative wealth distribution

Fig. 4 Exponential lower part of distribution. Fit: y = ae−x/b: a = 1.583, b = 512.777

Beginning from its equitable initial state, this simulated economy needs about 200
years to form a distribution of wealth comparable to what is typical of economically
developed countries today. Its Pareto index is α = 1.685 compared to the UK’s Pareto
index of 1.9 in 1996 (Drăgulescu and Yakovenko 2001).
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Fig. 5 Pareto tail of distribution. Fit: y = mx + b: m = −1.762, b = 4.614, R2 = 0.997

4.2 Single-packet historical fit

As shown in Fig. 6, the single-packet model is able to closely track the historical
distribution of wealth to 2012 when initialized with wealth shares in 1988. The Gini
coefficient in our model is 0.796 in 2000, which is near the 0.801 Gini coefficient of
the US in 2000 (Davies et al. 2006). The variability of the metrics in Fig. 6 is less than
0.1% over 25 runs.

Figure 7 shows a continuation of the simulation to 2088, where an accelerating
concentration of wealth is apparent. By 2024, the top 0.01% of the population will
take possession of as much wealth as the bottom 90% of the population. Moreover, the
model predicts that by 2088 the top 0.01% of the population will possess more than
70% of the total wealth, which is the same fraction of total wealth owned by the top
10% in 2012. This implies that the Pareto part of the wealth distribution is shrinking,
and it will continue to shrink beyond 2088. Other indicators of this trend are the Gini
coefficient and Pareto index that are both approaching 1.

4.2.1 Historical fit from an equitable start

The same simulation described above, when begun from an equitable distribution in
which each individual starts with 1 unit of wealth, nearly reproduces the historical
data after approximately 360 years for the top 10% and bottom 90%. These data are
shown in Fig. 8. It is interesting and unexpected that the distribution of inequality
passes through the historical data in spite of the equitable start. However, simulated
and historical data for the top 5%, 1%, etc. are not in close agreement. The difference
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Fig. 6 Model tracking real wealth distribution data from 1988 to 2012. This is with initial parameters:
100,000 individuals and setting β = 1.25, δω = 0.01, c = 1, Tω = 0.3597, κl = 0.75, κu = 0.9, and
α = 1.55. Dotted lines represent the model’s fit

Fig. 7 Model Projection from 1988 to 2088
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Fig. 8 Model projection begun from an equitable start

between historical wealth ownership starting at 1988 and simulated wealth ownership
starting at 360 years for each category is shown in Fig. 9. The magnitude of the
differences between the historical data and simulated data grow with time, which
indicates that the rate of concentration in the model differs from that observed in
reality even if the general trends are in agreement.

4.3 Validation of multi-packet model

To validate our multi-packet model, we ran it with the same parameters as the single-
packet distribution model in Fig. 2. Figure 10 shows the power law fit to the top 10%
of the population produced by the multi-packet model, with 1024 wealth packets per
distribution over a population of 10,000 individuals. The power law created by the
multi-packet model is very comparable to the result of our single-packet model shown
in Fig. 5, and it produced a very similar Pareto index α = 1.636.

Preliminary runs of the model with large numbers of individuals produce the
expected distributions as well. We believe that because the dynamical behavior of
the multi-packet model is essentially the same as the single-packet model, the multi-
packet model will likely produce the same results in Sect. 4.2, and thus wouldmake the
same projection about wealth inequality in the US. Large scale simulation experiments
are a topic for future work.

5 Discussion of dynamics

The value of β is central to the dynamics of our model, as experimentation with it
on the presupposed exponential and Pareto distributions in Sect. 4.2 has shown that it
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Fig. 9 Difference between model and historical data from an equitable start

Fig. 10 Pareto tail of wealth distribution formed by multi-packet model with 1024 wealth packets per
distribution. Each packet is worth δω = 0.01. Fit: y = mx + b: m = −1.636, b = 18.849, R2 = 0.994

controls the change in the wealth inequality in an economy. This is concurrent with
the predicted role of β in Sect. 2. For 0 < β < 1, we observed that the value of
the Pareto index α would increase, implying less inequality in the population. For
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β = 1, the model would not alter the initial exponential and Pareto distributions for
an extended period of time, maintaining its initial value of α. Lastly, with 1 < β < 2,
we observed the distribution moving to lower values of α, suggesting more inequality.
For any β ≥ 2, we found that the model would quickly diverge from the expected
distributions, resulting in a “winner takes all” situation, where there was only one
individual far wealthier than the rest of the population. For 1 < β < 2, we observed
similar behavior, but the divergence was much slower.

Simulations have shown that β = 1 is not sufficient to create an exponential and
Pareto distributions with 1 < α < 3 when the model is initialized with a uniform
distribution. In most cases, α > 3 for β = 1 when run for a long period of time.
Lastly, when projecting from historical data, we found that the part of the population
described by the Pareto distribution decreased in size as α → 1 over time.We attribute
this to the divergence of the model, and the closer α was to 1, the more quickly a single
individual became extremely wealthy, which is not in accordance with the exponential
and Pareto distributions (for β > 1).

6 Conclusion

Themodelweproposemirrors empiricalwealth distributions in theUS.Theunderlying
assumption of the model is in accordance with Pareto’s view that human nature, and
in particular our innate tendency to use our resources to improve our own position, is
sufficient to generate an uneven distribution of wealth. Indeed, we may hypothesize
that economic growth and the tendency for wealth to breed more wealth are central to
simultaneously forming the exponential and Pareto distributions of wealth inequality.

The proposed model could also be used to generate income inequality under other
appropriate assumptions. In particular, if we assume an increase in GDP is reflected
as an increase in income for individuals across the economy, and if the wealth power
function is reinterpreted as an income power function, then the model would distribute
increases in income asGDPgrows. Since there is no change in the dynamics, themodel
would mimic the exponential and Pareto distributions of income inequality as well.

The historical data considered here span a short period for two reasons. First, there
is a scarcity of data quantifying the growth of inequality at other times. Second, from
the data that was available to us, the period from 1988 to 2012 was the best example of
sustained economic growth. Because sustained growth is a central assumption of the
model, it was natural to focus our first validation study on that period. More extensive
validation with an extended model that can account for greater economic volatility
will be the subject of future research.

A more substantial limitation of the model when trying to reproduce long historical
trajectories is its inability to account for social, economic, and geopolitical factors
that induce very sudden returns to more equitable conditions. Prime examples of such
upheaval in the United States are the Great Depression and the end of the Second
World War. It is notable that there are no modern examples of wealth concentrating
as our model anticipates for 2088, and this is inspite of the short 76 years that the
projection covers (from 2012–2088). This fact seems to limit the model to relatively
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short spans between events that alter the dynamics of the economy in some significant
way.

Nontheless, there is a need to understand the parameter β in more depth, as it
seems to dictate the rate at which inequality grows or diminishes. One weakness in
our approach to selecting β was a focus on fitting the Pareto part of the empirical data.
The exponential growth of the economy combined with the preferential attachment
of new wealth to already wealthy individuals is expected to produce an essentially
exponential distribution of wealth; that is, the exponential part of the distribution is
a given. Indeed, the Pareto portion of the simulated distributions shrink with time.
Hence, our approach is centered on getting a good fit to the most transient part of the
data. An interesting direction for future work would be to reverse this procedure by
fitting β to the exponential majority of the data and then seeing how accurately the
Pareto minority is matched by the model.

Another direction for future work is to explore what specific economic or human
tendencies underlay β. Of the many possibilities, at least two are intuitively appealing.
One of these is that the rate at which an individual can consume wealth to maintain a
standard of living is almost certainly limited (a point made by Hanauer (2014) when
he stated “I earn about 1000 times the median American annually, but I don’t buy
thousands of times more stuff. My family purchased three cars over the past few
years, not 3000.”). At the lower end of the wealth spectrum, we might expect the
vast majority of an individual’s wealth to be expended on basic needs. Hence, these
individualsmay have less opportunity - less excesswealth -withwhich to improve their
position. At the upper end, the rate limit is reached and excess wealth accumulates,
leaving vast reserves to seize new opportunities. Another closely related effect is the
redistribution of wealth that occurs through economic activity (e.g., the purchase of
a good or service has the effect of transferring wealth from buyer to seller), taxation,
charities, and other mechanisms.

Exploring these types of possibilities requires a more refined model of the popu-
lation to account for the statistical distribution of consumption behavior, engagement
in wealth transferring activities, and other factors that vary, possibly substantially,
from individual to individual. The scalable algorithm presented in Sect. 3.2 will be an
important tool for these future investigations.
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tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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