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ABSTRACT 

Reversible random number generations are useful in large-scale fault-tolerant parallel computations and 
parallel discrete event simulations that are based on reversible computation.  The Universal Non-Uniform 
Random Number Generator (UNU.RAN) is one of the popular random number generators used in the 
simulation community, but the generators are forward-only in nature.  In this paper, we develop new reverse 
algorithm for the default uniform random number generator algorithm of UNU.RAN and also a few non-
uniform random generators that use the Transform Density Reduction (TDR) method.  We verify the 
correctness of reversals of our algorithms and also provide performance results to demonstrate reverse 
computing runtime adds little overheads relative to its forward counterpart. 

Keywords: Reverse-computing, Reverse random number generator 

1 INTRODUCTION 

Bi-directional (forward and reverse) execution finds use in fault-tolerant high performance computing, 
rollback-based optimistic parallel simulations, large-scale debugging, and other areas (Perumalla 2013, 
Carothers et al. 1999, Bishop 1997, Boothe et al. 2000, Lee et al. 2002, Tang et al. 2006).  However, bi-
directional execution by log-based reversal typically incurs high memory costs.  Probability distribution 
sampling, used in many scientific codes, is one of the challenging components to reverse, due to the large 
amount of memory needed to store long traces.  Naïve approaches can render bi-directional execution 
impractical due to high memory costs of the execution that the traces need to achieve reversibility (Lin et 
al. 1990, Palaniswamy et al. 1993, Cleary et al. 1994, West et al. 1996, Gomes et al. 1996).  This problem 
is especially pronounced in high performance computing, due to the dramatic increases of trace lengths that 
result from very high speed of execution.  For example, a random number generator can be thrown a million 
times in a second, whose reversal by log-based methods can require several megabytes of memory for each 
generator.  The memory cost is even more amplified when the quality of the random number generator is 
increased by increasing the seed size.  Thus, for enabling bi-directional computation, new memory-efficient 
schemes must be developed that either minimize the overhead, or, ideally, eliminate the memory needed 
for reversal.  Here we focus on one of the core operations that occurs in scientific simulations, namely, 
sampling of complex probability distributions, and provide a new scheme that eliminates the memory cost 
for reversal. 

Sampling of probability distributions is routinely employed in computer models of physical systems.  
Pseudo-random number streams are used to generate samples that conform to the desired probability 
distributions. In computationally intensive simulations, a large number (millions to billions) of samples are 
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drawn.  For simple distributions, the sampling procedure is given by a closed-form formula for certain 
distributions (such as the Exponential distribution).  In more complex distributions, the sampling formula 
is either computationally complex, or, worse, may not be expressible as a closed-form expression.  In such 
complex distributions, a different sampling procedure is employed, using an iterative approach to 
progressively approach the desired distribution. 

In the case of simple probability distributions, such as Exponential or Pareto distributions, closed-form 
inversions of their cumulative distribution functions (CDF) are known.  For such distributions, it has been 
shown that perfect reversibility can be achieved  (Carothers et al. 1999, Perumalla et al. 1998).  This is 
realized by employing reversible uniform random number generators.  Reversing the sampling operation 
on an exponential distribution, thus, becomes as simple as invoking the reversal of the underlying uniform 
random number generator once per reversal step.  The restoration of the uniform random number seed is 
necessary and sufficient for reversing the sampling of the distribution. 

However, for more complex distributions for which either the inverse of the CDF is computationally 
prohibitive or a closed form representation of the inverse of the CDF is unknown, a simple reversal based 
on restoration of random number seeds does not work.  This is because of two reasons: (1) the unavailability 
of closed-form inversion of CDF, or its prohibitive computational complexity for exact computation, gives 
rise to iterative code that uses multiple uniform random number samples, and (2) the number of uniform 
samples used up for any given non-uniform sample varies with each sample, and hence cannot be easily 
reversed.  For example, in First Passage Time (FPT) distributions (Redner 2001, Perumalla and Donev 
2009), the sampling formulas are computationally intensive and difficult to express as closed form 
expressions.  In such complex distributions, a different sampling procedure is employed, using an iterative 
approach to progressively approach the desired distribution. 

The inversion challenge for such distributions is rooted in the fact that control flow is infused into the 
sampling procedure.  Such control flow information is absent in sampling simple distributions.  When 
control flow complexity is introduced into this method, the one-to-one correspondence between the random 
number seed stream and the probability distribution sample stream gets broken.  Thus, reversal of a sample 
𝑠" might require an unknown number, 𝑛" > 0 , of reversals of updates to the underlying random number 
seed.  Since each sample 𝑠" has a value 𝑛" that may be different from other samples, a log is apparently 
needed to keep track of the number of iterations performed for each sample in the forward direction.  Thus, 
the log is: (a) proportional to the number of samples, and (b) theoretically unbounded in the amount of 
memory needed to remember each sample’s iteration count.  In practice, the theoretically unbounded nature 
of control flow information for each sample can be capped with a sufficiently large integer variable.  
Nevertheless, the proportionality of the trace size with the sample stream length (number of samples drawn) 
is the most dominant factor on memory.  It is this trace length that we reduce (in fact, eliminate) with our 
reversal procedure. 

We solve the problem of minimizing the memory needed to move forward as well as backward, at will, in 
a stream of samples generated by a rejection-based procedure used to generate samples from probability 
distributions.  Our scheme completely eliminates the memory overhead.  The scheme is perfectly reversible 
in the sense that the memory needed to go backwards is independent of the sampled stream length.  Our 
solution provides two important features needed for use in parallel programs, namely, determinism and 
repeatability, across arbitrarily spaced changes of direction. 

While these algorithms and methodologies have been documented earlier (Perumalla 2013), they have not 
been applied to any popular, production-level random number generator software and hence their utilization 
is limited.  In this paper, we take a step towards bridging this gap by developing a methodology using which 
the reverse-computing abilities can be brought into the folds of popular RNG packages.  For this purpose, 
we use the Universal Non-Uniform Random Number Generator (UNU.RAN).  The UNU.RAN library is a 
collection of algorithms for generating non-uniform pseudo-random number variates and is considered 
suitable in almost all situations for experimenting with different distributions including non-standard 
distributions.  In the following section, we introduce few methods of UNU.RAN package for uniform and 
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non-uniform random number generation.  The reversal algorithms and implementations of the forward 
random number generation routines discussed in section 3 is discussed in section 3. In section 4, we present 
the verification and performance results, and finally conclude in section 5. 

2 FORWARD COMPUTING IN UNU.RAN 

2.1 UNU.RAN Uniform RNG 

In default settings, UNU.RAN package uses a fast combined multiple recursive generators (L'Ecuyer 2000, 
L'Ecuyer 2012) for generating uniformly distributed random number generation.  This uniform RNG is 
used for generating random numbers for any given probability density functions (PDF).  Hence, it becomes 
essential to reverse the uniform RNG at the core of the UNU.RAN package.  Further, for effective usability, 
reversal speed must be comparable to its forward counter-part.  The MRG31k3p version of combined 
Multiple Recursive Generators (MRG) (L'Ecuyer 2000) is used as the default uniform RNG in UNU.RAN.   

𝑥',) = +𝑎''𝑥',)-' + 𝑎'/𝑥',)-/ + 𝑎'0𝑥',)-01	𝑚𝑜𝑑	𝑚'    (1) 

𝑥/,) = +𝑎/'𝑥/,)-' + 𝑎//𝑥/,)-/ + 𝑎/0𝑥/,)-01	𝑚𝑜𝑑	𝑚/   (2) 

A random number is generated as	+67,8-69,81	:;<	:7
:7

	        (3) 

# define m1      2147483647 
# define m2      2147462579 
# define norm    4.656612873077393e-10 
# define mask11  511 
# define mask12  16777215 
# define mask20  65535 
double unur_urng_MRG31k3p (void *dummy ) 
/* Combined multiple recursive generator. */ 
/* Copyright (c) 2002 Renee Touzin.       */ 
{ 
  register unsigned long yy1, yy2;  /* For intermediate results */ 
  /* First component */ 
  yy1 = ( (((x11 & mask11) << 22) + (x11 >> 9))  
      + (((x12 & mask12) << 7)  + (x12 >> 24)) ); 
  if (yy1 > m1) yy1 -= m1;  
  yy1 += x12; 
  if (yy1 > m1) yy1 -= m1;  
  x12 = x11;  x11 = x10;  x10 = yy1; 
  /* Second component */ 
  yy1 = ((x20 & mask20) << 15) + 21069 * (x20 >> 16); 
  if (yy1 > m2) yy1 -= m2;  
  yy2 = ((x22 & mask20) << 15) + 21069 * (x22 >> 16); 
  if (yy2 > m2) yy2 -= m2;  
  yy2 += x22; 
  if (yy2 > m2) yy2 -= m2;  
  yy2 += yy1; 
  if (yy2 > m2) yy2 -= m2;  
  x22 = x21;  x21 = x20;  x20 = yy2; 
  /* Combination */ 
  if (x10 <= x20) 
    return ((x10 - x20 + m1) * norm); 
  else  
    return ((x10 - x20) * norm); 
} /* end of unur_urng_MRG31k3p() */ 

Figure 1 Combined MRG with powers of 2 decomposition method (MRG131k3p implementation in 
UNU.RAN) 

The source code of MRG31k3p implemented in C language is shown in Figure 1.  This combined MRG 
has 𝐽 = 2  components of order 𝑘 = 3 . The two components are defined by parameters 𝑚' = 20' −
1,	𝑎'' = 0, 𝑎'/ = 2// , 𝑎'0 = 2C + 1, 𝑚/ = 20' − 21069, 𝑎/' = 2'F , 𝑎// = 0, 𝑎/0 = 2'F + 1.  In the 
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code shown in Figure 1, the RNG starts with six seed variables 𝑥'G, 𝑥'', 𝑥'/, 𝑥/G, 𝑥/', 𝑥// which correspond 
to 𝑥',)-', 𝑥',)-/, 𝑥',)-0, 𝑥/,)-', 𝑥/,)-', 𝑥/,)-/, 𝑥/,)-0of the above equation.  At the end of each generation, 
𝑥'G  takes the newly generated random number, while the 𝑥''  and 𝑥'/  take the values of 𝑥'G  and 𝑥'' , 
respectively.  Similarly, 𝑥/G takes the newly generated random number, while 𝑥/' and 𝑥// are overwritten 
by 𝑥/G and 𝑥/' values respectively, as indicated in the equations (1) and (2). 

2.2 UNU.RAN Non-uniform RNG 

UNU.RAN implements several methods for generating random numbers.  However, the choice is dependent 
on the type and amount of information about the required distribution that can be provided and the 
familiarity of the user about different methods.  Several different methods for generating non-uniform 
random variates have been developed and are discussed in UNU.RAN User Manual.  However, in this 
paper, we focus on the “Transformed Density Rejection” (TDR) method and experiment with univariate 
continuous distribution to demonstrate our perfect reversal capabilities.  The methodologies developed here 
are equally applicable to other supported UNU.RAN methods of RNG generation.  The TDR is an 
acceptance/rejection method that uses the concavity of a transformed density to construct the hat and 
squeeze functions automatically [5]. 

The function call unur_tdr_ps_sample is used for the non-uniform random number generation with the 
TDR method.  Based on acceptance-rejection, this method samples random points that are uniformly 
distributed and checks whether the points fall within the density curve of a given distribution.  If the 
randomly picked point falls within the density function then the point is accepted; if not, it is discarded, and 
the same procedure is repeated with newly sampled set of points.  This works for any input distribution 
with bounded density on a bounded domain.  The TDR uses the hat and squeeze functions for efficiently 
generating the random numbers for the input density function.  The following is the general procedure 
followed by TDR method. 

1. Generate a U(0,1) random number U 
2. Set X to H-1(U) 
3. Generate U(0,1) random number V 
4. Set Y to Vh(X) 
5. If (Y ≤ f(X) || Y £ s(X)) accept X as the random variate 
6. Else try again (goto 1)  

Figure 2 Pseudocode of the forward procedure unur_tdr_ps_sample 

In the above procedure, U(0,1) samples random numbers between 0 and 1 from an uniform RNG.  The H-1 
function corresponds to the CDF of the hat function with density h(X), which is chosen such that h(X) ≥ 
f(X) for all X in the domain of given distribution whose density function is f(X).  To generate a (X, Y) pair, 
X is generated from a distribution with density proportional to h(X) and Y is a random number from uniform 
RNG from 0 and h(X).  If Y falls within the density of the given distribution, then X is accepted, else 
rejected.  Since, computing f(X) is expensive or time-consuming, a simpler lower-bound squeeze function 
s(X) is used for quick acceptance, that is if Y ≤ s(X), X is accepted (see UNU.RAN User Manual). 

3 REVERSE COMPUTING IN UNU.RAN 

3.1 Reverse UNU.RAN Uniform RNG 

In this reverse MRG31k3p implementation shown in Figure 3, four of the six values of 𝑥",H of the combined 
MRG can be reversed, as these values are copied over on to other variables.  That is, values held by 
𝑥'', 𝑥'/, 𝑥/', 𝑥// in the current cycle are 𝑥'G, 𝑥'', 𝑥/', 𝑥// of the previous cycle.  Further, the values held 
by current 𝑥'G	and 𝑥/G correspond to the values obtained by computing the two MRG equations.  With this 
observation as a starting point, we need to recover the values of 𝑥'/	and 𝑥// that were overwritten in the 
previous cycle of the random number generation.  Let  𝑦𝑦'	and 𝑦𝑦/ be the previous result from the first and 
second MRG equations, respectively.  Note that 𝑦𝑦'	has components of 𝑥''	and 𝑥'/ , while 𝑦𝑦/  has 
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components corresponding to 𝑥/G	and 𝑥// .  First, from the 𝑦𝑦'	and 𝑦𝑦/ , the values corresponding to 
components 𝑥''	and 𝑥/G  are negated, respectively.  This results in two simpler multiplicative linear 
congruential generator (MLCG) equations, where 𝑥",)J'	and the multiplier 𝑎" are known and 𝑥",) needs to 
be determined in  𝑥",)J' = +𝑎"𝑥",)1	𝑚𝑜𝑑	𝑚".  Obtaining efficient reversals from such equations has been 
addressed previously by computing  𝑏" = +𝑎":-/𝑥",)1	𝑚𝑜𝑑	𝑚" , and 𝑥",) is reverse-computed using 𝑏" as  
𝑥",) = +𝑏"𝑥",)J'1	𝑚𝑜𝑑	𝑚" (Carothers et al. 1999). 

3.2 Reverse UNU.RAN Non-uniform RNG Procedure 

The complexity in the reverse algorithm for this procedure arises from the fact that the acceptance of a 
random variate does not use a constant number of steps and it can be only determined at the runtime.  This 
is because a random variate can be accepted or rejected based on the actual set of random numbers generated 
and on the input density function.  Hence, for every step in reversal, we need to ensure that the random 
variate was accepted and not rejected.  The following is the procedure for reverse TDR at every step of 
reversal. 

 
double rev_unur_urng_MRG31k3p (void *dummy ) 
{ 
  long yy1, yy2; 
  if (firstFlag == 0){ 
    b22 = FindB(a23, m2); 
    b12 = FindB(a13, m1); 
    firstFlag = 1; 
  } 
  yy2 = x20; 
  yy1 = x10; 
  // reverse unchanged values 
  x10 = x11; 
  x11 = x12; 
  x20 = x21; 
  x21 = x22; 
  // find values of x12 and x22 from yy1 and yy2 
  // find x12  
  long tx12n = (((x11 & mask11) << 22) + (x11 >> 9)); 
  if (tx12n > m1) tx12n -= m1; 
  long tx12 = yy1 - tx12n; 
  if (tx12 < 0){tx12 += m1;} 
  x12 = (b12*tx12)%m1; 
  //find x22 
  long tx22n = (((x20 & mask20) << 15) + 21069 * (x20 >> 16)); 
  if (tx22n > m2)  tx22n -= m2; 
  long tx22 = yy2 - tx22n; 
  if(tx22 < 0 ) {tx22 += m2;} 
  x22 = (b22*tx22)%m2; 
} 

Figure 3 Code of the reverse procedure of MRG31k3p 

1. R(U(0,1)), R(U(0,1)) 
2. Generate a U(0,1) random number U 
3. Set X to H-1(U) 
4. Generate U(0,1) random number V 
5. Set Y to Vh(X) 
6. If (Y ≤ f(X) || Y ≤ s(X) ) R(U(0,1)), R(U(0,1)) break; 
8. Else R(U(0,1)), R(U(0,1)) and try again (goto 1) 

Figure 4 Pseudocode of reverse unur_tdr_ps_sample 

To start the reversal, we reverse the uniform RNG twice (R(U(0,1)) in line 1 of Figure 4) since we know 
that two uniform random numbers have been certainly used for a successful TDR accept.  The following 
procedure from (2 to 5), essentially checks if the set of uniform random numbers results in an acceptance; 
if yes, it reverts back to the uniform RNGs it started with, thus completing the single-step reversal.  If the 
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result from the uniform random numbers was rejected, then the reversal procedure requests additional 
uniform RNG rollbacks and continues this procedure until the generated RNGs are accepted.  Note that the 
very first reverse-TDR after the last forward TDR will reverse back in a single step.  However, this is not 
essentially true for multi-step reversals or in between two consecutive reversals.   

As seen in Figure 5, the reverse computing _unur_tdr_ps_rev_sample is analogous to its forward 
counterpart (_unur_tdr_ps_sample), with a few additional uniform random number reversal calls 
(highlighted in Figure 5).  For testing purpose, we provide access to the uniform random number reversal 
call (rev_unur_urng_MRG31k3p) through the anti variable of UNU.RAN generator (struct unur_gen).  The 
number of reversal steps to be performed is provided by the user as an input through the nRev argument. 

double _unur_tdr_ps_rev_sample( struct unur_gen *gen, int nRev) 
{ 
  UNUR_URNG *urng;        /* pointer to uniform random number generator */ 
  struct unur_tdr_interval *iv; 
  double U, V;                /* uniform random number                      */ 
  double X;                   /* generated point                            */ 
  double fx;                  /* value of density at X                      */ 
  double Thx;                 /* value of transformed hat at X              */ 
  int i = 0; 
  for (i=0; i<nRev; i++) 
  { 
    /* main URNG */ 
    urng = gen->urng; 
    while (1) 
    { 
      (urng)->anti((urng)->state, 0); 
      (urng)->anti((urng)->state, 0); 
      /* sample from U( Umin, Umax ) */ 
      U = GEN->Umin + _unur_call_urng(urng) * (GEN->Umax - GEN->Umin); 
         : 
         : 
      /* accept or reject */ 
      V = _unur_call_urng(urng); 
      /* squeeze rejection */ 
      if(V <= iv->sq) break; //returning in squeeze rejection; 
         : 
         : 
      /* evaluate PDF at X */ 
      fx = PDF(X); 
      /* main rejection */ 
      if (V <= fx) break; //returning in main rejection 
      (urng)->anti((urng)->state, 0); 
      (urng)->anti((urng)->state, 0); 
    } 
    (urng)->anti((urng)->state, 0); 
    (urng)->anti((urng)->state, 0); 
  } 
} 

Figure 5 Code excerpt of UNU.RAN TDR sampling reversal (_unur_tdr_ps_rev_sample) 

4 VERIFICATION AND PERFORMANCE EVALUATION 

The experiments were conducted on a Linux System with 6-core AMD Phenom(tm) II X6 1100T processor, 
with 16GB of memory.  UNU.RAN library version 1.8.1 was used in our experimentations. 

4.1 Verification of UNU.RAN uniform RNG Reversal 

To verify the exactness of reversals, we generate n random numbers followed by n reversals, ensuring that, 
at each step, the reversal produces the previously generated random number.  To visually convey the 
correctness of the reversals, we generate several millions of random numbers, sample every 50000th 
number and plot the obtained random numbers for both forward and reverse cases.  The reverse plot would 
start where the forward plot stopped and, for a correct reversal, the plot would exactly retrace the path of 
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forward plot in the reverse order.  Figure 6 plots the forward and reverse samples from the MRG31k3p 
uniform random number generator, which visually conveys a perfect reversal.  Most of the experimentations 
are performed on the example sets made available by UNU.RAN. Note that we verified the numbers 
programmatically for exact match, and this plot is only to convey its operation visually. 

 
Figure 6 Forward and reverse sampling of every 50000th number of the generated million uniformly 

distributed random numbers 

4.2 Verification of UNU.RAN non-uniform RNG Reversal 

 

Figure 7 Density plot from the random numbers (million each) generated from various UNU.RAN 
functions using TDR method 

Using UNU.RAN for sampling from a particular distribution involves following steps (a) creation of a 
distribution object (b) choosing a method for RNG (TDR in our case) (c) initializing the generator (d) using 
the generator object to generate random numbers.  With the TDR method, we can generate random numbers 
corresponding to well-known distributions such as the normal distribution or we can also generate random 
numbers based on user-defined distributions by providing the function pointers to the PDF function and its 
derivative function.  In our experimentation with non-uniform RNG, we have used three standard 
distributions, namely, Normal, Cauchy’s and Exponential distributions, and one user defined distribution 
for which the PDF function and its derivative are as shown in Figure 8.  The PDFs of all the distributions 
for which non-uniform RNGs were generated are plotted in Figure 7.  For non-uniform RNG using 
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UNU.RAN we chose four distributions for verification.  The forward and reverse plots for the non-uniform 
RNG verification were generated using same procedure used for uniform RNG as discussed in the previous 
section.  The verification plots for normal, Cauchy, exponential and user-defined are shown in Figure 9.  A 
perfect reversal is observed in all these plots. 

/* ------------------------------------------------------------- */ 
/* Define the PDF and dPDF of our distribution.                  */ 
/*                                                               */ 
/* Our distribution has the PDF                                  */ 
/*                                                               */ 
/*          /  1 - x*x  if |x| <= 1                              */ 
/*  f(x) = <                                                     */ 
/*          \  0        otherwise                                */ 
/*                                                               */ 
/* The PDF of our distribution:                                  */ 
double mypdf( double x, const UNUR_DISTR *distr ) 
{ 
   if (fabs(x) >= 1.) 
     return 0.; 
   else 
    return (1.-(x*x)); 
} /* end of mypdf() */ 
 
/* The derivative of the PDF of our distribution:                */ 
double mydpdf( double x, const UNUR_DISTR *distr ) 
{ 
   if (fabs(x) >= 1.) 
     return 0.; 
   else 
     return (-2.*x); 
} /* end of mydpdf() */ 

Figure 8 PDF and dPDF of the user-defined distribution 

 

Figure 9 Forward and reverse sampling of every 50000th number of the generated million random 
numbers from normal, Cauchy, exponential and user-defined distributions 

In Figure 10, we plot the runtimes (in microseconds) for forward and reverse procedures for uniform 
random numbers on the left chart and all the non-uniform random numbers on the right chart.  Nearly 
identical runtimes are observed for the forward and reversal procedures in uniform RNG.  For non-uniform 
RNGs, the runtimes for all the non-uniform test distributions have their reversal runtimes slightly higher 
than their forward counterpart.  Cauchy forward and reversal runtimes are slightly higher than other 
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distributions, perhaps because of the skinny PDF, which might result in many non-accepted random 
numbers and, which also impacts the runtime of the reversals similarly. 

4.3 Runtime Performance 

  

Figure 10 Comparison of mean execution runtimes (from 100 sample runs) of forward and reverse 
random number generations. Uniform random numbers(left) and Non-uniform random numbers (right) 

5 SUMMARY AND FUTURE WORK 

In this paper, we addressed how reverse computations can be made available in well-known packages like, 
UNU.RAN.  We developed an efficient algorithm to reverse the default uniform random number generator 
(MRG31k3p).  Then we provided methodology and implementation specifics on infusing reverse 
computing capabilities for non-uniform RNG using TDR approach.  In each case, we demonstrated the 
effectiveness and efficiency through the verification and runtime performance results.  We also 
demonstrated the possibility reversals without much change to the original code structure of UNU.RAN.  
In our future work we intend to broaden the support for reverse computations within the UNU.RAN 
software framework. 

REFERENCES 

P. L'Ecuyer and R. Touzin. Fast combined multiple recursive generators with multipliers of the form a=±2 
q±2 r. Proceedings of the 32nd conference on Winter simulation. Society for Computer Simulation 
International, 2000.  

P. L’Ecuyer. Random number generation. Springer Berlin Heidelberg, 2012. 
C. Carothers, K. S. Perumalla, and R. M. Fujimoto, Efficient Optimistic Parallel Simulations using Reverse 

Computation. ACM Transactions on Modeling and Computer Simulation, 1999. 9(3): p. 224–253. 
UNU.RAN User Manual http://statmath.wu.ac.at/unuran/doc/unuran.html 
K.S. Perumalla. Introduction to reversible computing. CRC Press, 2013. 
W. Hörmann. A rejection technique for sampling from T-concave distributions. ACM Transactions on 

Mathematical Software (TOMS) 21.2 (1995): 182-193. 
P. Bishop, Using Reversible Computing to Achieve Fail-Safety. in ISSRE-97. 1997. IEEE Computer 

Society Press. 



Yoginath and Perumalla 

B. Boothe, Efficient Algorithms for Bidirectional Debugging. in Programming Language Design and 
Implementation. 2000. ACM Press. 

J. Lee, et al., Reversible Computation in Asynchronous Cellular Automata. Lecture Notes in Computer 
Science, 2002. 2509: p. 220–229. 

Y. Tang, et al., Optimistic Simulations of Physical Systems using Reverse Computation. SIMULATION: 
Transactions of The Society for Modeling and Simulation International, 2006. 82(1): p. 61–73. 

Y.B. Lin and E. D. Lazowska, Reducing the State Saving Overhead for Time Warp Parallel Simulation. 
1990, Computer Science Department, University of Washington: Seattle, Washington. 

A. C. Palaniswamy and P. A. Wilsey, An Analytical Comparison of Periodic Checkpointing and 
Incremental State Saving, in Proceedings of the 7th Workshop on Parallel and Distributed Simulation. 
1993. p. 127–134. 

J. Cleary, et al., Cost of State Saving and Rollback, in Proceedings of the 8th Workshop on Parallel and 
Distributed Simulation. 1994. p. 94–101. 

D. West and K. Panesar, Automatic Incremental State Saving, in Proceedings of the 10th Workshop on 
Parallel and Distributed Simulation. 1996. p. 78–85. 

F. Gomes, Compiler Techniques for State Saving in Parallel Discrete Event Simulation, in Computer 
Science. 1996, University of Calgary, Canada. 

K. Perumalla, R. Fujimoto, and A. Ogielski, TeD - A Language for Modeling Telecommunications 
Networks. Performance Evaluation Review, 1998. 25(4). 

K. S. Perumalla and R. M. Fujimoto, Source Code Transformations for Efficient Reversibility. 1999, 
College of Computing, Georgia Institute of Technology, Atlanta. 

S. Redner, A Guide to First-Passage Processes. 2001: Cambridge University Press 
K. Perumalla and Alexandar Donev, Perfect Reversal of Rejection Sampling Methods for First-Passage-

Time and Similar Probability Distributions. 2009. Technical Memorandum ORNL/TM-2009/182, Oak 
Ridge National Laboratory, Oak Ridge. 

R. M. Fujimoto, Optimistic Approaches to Parallel Discrete Event Simulation. Transactions of the Society 
for Computer Simulation, 1990. 7(2): p. 153–191. 

K. S. Perumalla, µsik - A Micro-Kernel for Parallel/Distributed Simulation Systems. in Workshop on 
Principles of Advanced and Distributed Simulation. 2005. 

AUTHOR BIOGRAPHIES 

Srikanth B. Yoginath is a research staff member in the Computer Science and Mathematics Division of 
the Oak Ridge National Laboratory. He holds a PhD in Computational Sciences and Engineering from 
Georgia Institute of Technology.  His email address is yoginathsb@ornl.gov.  

Kalyan S. Perumalla is a Distinguished Research Staff Member and manager in the Computer Science 
and Mathematics Division at the Oak Ridge National Laboratory, USA, where he leads the Discrete 
Computing Systems Group.  He also serves as an Adjunct Professor in the School of Computational 
Sciences and Engineering, Georgia Institute of Technology, USA. His e-mail address is 
perumallaks@ornl.gov. 


