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Scalable Cloning on Large-Scale GPU Platforms with

Application to Time-Stepped Simulations on Grids
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Cloning is a technique to efficiently simulate a tree of multiple what-if scenarios that are unraveled during the

course of a base simulation. However, cloned execution is highly challenging to realize on large, distributed

memory computing platforms, due to the dynamic nature of the computational load across clones, and due

to the complex dependencies spanning the clone tree. We present the conceptual simulation framework, al-

gorithmic foundations, and runtime interface of CloneX, a new system we designed for scalable simulation

cloning. It efficiently and dynamically creates whole logical copies of a dynamic tree of simulations across

a large parallel system without full physical duplication of computation and memory. The performance of

a prototype implementation executed on up to 1,024 graphical processing units of a supercomputing sys-

tem has been evaluated with three benchmarks—heat diffusion, forest fire, and disease propagation models—

delivering a speed up of over two orders of magnitude compared to replicated runs. The results demonstrate

a significantly faster and scalable way to execute many what-if scenario ensembles of large simulations via

cloning using the CloneX interface.
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1 INTRODUCTION

1.1 Overview

With many analytic simulation applications, ensembles of simulations are used to explore, test,
and experiment with many scenarios. In large-scale scenarios, the simulation in ensembles are
often highly related to each other, potentially sharing a large amount of state evolution. Here, we
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focus on ensembles in which simulation scenarios are generated as a dynamically unraveled tree
of simulations. Within this simulation tree, each node logically represents an entire simulation
of its own, containing its own separate version of simulation state and simulation time starting
from its branching point out of its parent simulation. Such ensembles or trees of simulations are
characterized by the presence of a large domain size and/or a large number of interacting entities,
while the decision points for what-if actions that create branches in the tree involve relatively
small, localized, dynamic changes to the scenarios.

Cloning is a conceptual approach in which such a tree of many related simulations is efficiently
executed by dynamically minimizing the duplication of memory and computation among the sim-
ulations. The efficiency is achieved by separating the logical view and physical manifestations
of the simulations in terms of their memory usage and computational operations. Logically, each
simulation is an entirely separate simulation of its own. However, using cloning, the physical man-
ifestation of the simulations is optimized: the common shared content across state space and vir-
tual time along the clone tree hierarchy is combined at runtime, thereby dramatically reducing the
aggregate amount of computation and memory consumed by the entire tree.

Although cloning as a concept has been previously proposed and explored (see discussion of
related work in Section 1.3), previous work on cloning was restricted to shared memory systems
or single-node graphical processing unit (GPU) systems. Problems such as memory management
and load balancing were absent in previous implementations that were restricted to a small scale
of computing hardware. Modern parallel systems are much larger in size, making it necessary to
revisit the cloning techniques to scale to the modern systems.

Toward realizing cloning on modern parallel systems, we present the design, implementation,
and performance study of our large-scale, transparent, and optimized simulation cloning frame-
work, which efficiently and dynamically creates whole logical copies of simulations without full
physical duplication.

In this article, we focus on advancing the realization of the cloning approach by significantly
increasing the scale of cloned simulations. We present the problems and solutions in achieving
efficient cloning-based parallel execution of simulations that can scale to the tremendous levels of
hardware parallelism offered by supercomputing systems. We describe the conceptual framework,
the algorithmic foundations, and a prototype interface with implementation of CloneX as a scal-
able runtime system for cloning. We also discover and address several performance and scaling
challenges that arise in the form of GPU thread management, overall memory management within
and outside GPUs, simulation state lookup in the clone tree, and dynamic load balancing of simu-
lation clones at runtime. We also present the performance results from three different benchmark
simulation applications—heat diffusion, forest fire, and epidemic outbreak models, which we devel-
oped. The performance is studied on up to 1,024 GPUs of a supercomputing system, covering key
cloning parameters, namely, branching factors, branching levels, and fraction of common state be-
tween clones. Experiments show over two orders of magnitude gains compared to replicated runs,
both in terms of memory consumed and computational time.

1.2 Motivation

There are many simulations that do not possess large levels of concurrency in a single run. Yet, it
is possible to identify plenty of additional parallelism in the simulation methodology and use-cases

of those simulations.

1.2.1 Computational Gains. The cloning approach addresses multiple parallel computing chal-
lenges in the context of utilizing large computing systems as follows.
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—Parallelism: As a concurrency amplification technique whose system-level technology is
possible to develop in a largely application-oblivious manner, cloning exposes and exploits
a new source of parallelism that is otherwise lost in traditional execution flow of simula-
tions. It is ideally suited for a large class of application areas dominated by what-if scenario
simulations.

—Memory: Cloning provides tremendous savings in aggregate memory consumed by a non-
trivial what-if tree unraveled by dynamically determined decision points.

—Fault Tolerance: Since cloning by definition charts out trajectories that have large fractions
of common state, fault tolerant execution is naturally supportable via dynamic redistribu-
tion of lost state from live nodes to faulted nodes.

—Real-time Operation: Since cloning permits initiation of multiple branch points with little
cost, many solutions may be computed ahead of real-time; the branches that correspond to
actual events may be retained when the outcomes of actual events are later available (such
a benefit is known to be applicable in real time-constrained simulations such as missile
launches).

1.2.2 Applications. The following are intended to illustrate the types of simulation applications
in which cloning can be gainfully applied.

—Forest Fire Simulations: Simulations of forest fire involve large tracts of land across which
fires start and spread, and many alternative scenarios need to be considered, including the
possibilities of fires starting at various locations, at various time periods, and in different
sequences. Also, effects of many actions need to be modeled, including the intensity of re-
mediation, resource allocations, and schedules of proactive and reactive treatments. Most
of these decisions and actions result in localized changes to an otherwise massive simu-
lation. These changes are easily expressed as clones of the base simulation of the entire
domain. The clones are incremental changes at various simulation times, all operating on
the evolving base scenario.

—Epidemiological Simulations: Simulations of the spread of diseases are characterized by large
populations forming the base scenario in which the epidemic propagates, while many al-
ternative actions need to be explored, such as curfews, school closures, or vaccinations.
What-if analyses of school closures or vaccinations can only be simulated at locations at
which high disease intensity can only be found dynamically. Moreover, many hypotheses
need to be investigated regarding the locations and intensity of potential sources of new
infections, in both space and time. Each proactive campaign or reactive remediation forms
a decision point that is localized relative to the base, large-scale domain. Each such decision
point can be realized as a clone over the original base simulation.

—Transportation Simulations: A large road network forms the base simulation over which
many what-if scenarios are explored, such as accident-induced road/lane closures that are
dynamically encountered based on congestion levels. While a microscopic vehicular traffic
simulation of a city-sized road network forms the base simulation, many local actions or
incidents can be explored as incremental changes to the base simulation at various road
intersections or times of the day. Cloning is a natural way to define and simulation each
such incremental change in a memory-efficient and computationally-efficient fashion.

—Battlefield Simulations: In battlefield simulations, all alive/damaged/dead alternatives need
to be pursued. For example, branching on the kill probability-based outcomes in battlefield
simulations would require full replication of the entire theater of war, while cloning would
incur negligible memory cost by simply initiating a few incrementally differentiated clones.
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—Other Simulations: Similar branching and sharing effects across multiple scenarios arise in
other simulations such as climate change (e.g., effects of the choice of clean air or drilling
policies in selected countries), material science simulations (e.g., nucleation or fracture ini-
tiation), and biochemical simulations (e.g., mutation events or folding events).

1.3 Related Work

The basic concept of cloning in computing may be dated back to John von Neumann’s allusion to
it for fault tolerance (Von Neumann 1956) in the 1950s; however, not any significant amount of
cloning work can be found until the 1990s. During the 1990s, this changed; pioneering work on
cloning was performed by Hybinette et al. and was applied successfully to problems such as faster-
than-real-time simulation-based decision tools in missile defense applications. The hardware con-
figurations of that time limited the scale to small compute clusters, and the work happened to be
primarily focused on parallel discrete event simulations (Bestavros and Wang 1993; Heidelberger
1988; Hybinette and Fujimoto 2001).

While potential benefits of cloning have been known, no large-scale implementation has been
realized to date. This is probably (or partly) due to the fact that, at the relatively small scales of
parallel computing so far, full replication has not been a major hindrance. Since completely new
copies of small simulations could be re-executed for different scenarios, techniques like cloning
were not necessarily warranted or sought. This situation has changed lately due to (a) the sizes of
individual simulations becoming larger, as in applications simulating millions of entities such as
people, vehicles, or geographical regions, and (b) the hardware size of parallel machines becoming
larger, as in supercomputers or GPU clusters.

By and large, cloning has generally been restricted to single-node, shared-memory processing,
or small scale; consequently, prior work on cloning did not encounter, uncover, or address key
challenges that arise on modern parallel platforms with thousands of nodes and many-GPU sys-
tems. In our present work, we identify new challenges, such as clone tree management, clone
memory management, and fast clone identity lookups as critical concepts that arise in scalable
implementations on modern, massively parallel platforms. Additionally, load balancing becomes a
key determinant of scalable performance. In this article, we identify and address these issues and
challenges in large-scale execution.

Another gap in the literature concerns the theoretical understanding of the computational com-
plexities of cloning. A theoretical analysis of the potential gains of cloning relative to simple en-
sembles of simulations has been missing in the literature. In this article, we fill this gap by devel-
oping a parametrized model of memory and computational gains from cloned execution relative
to replicated execution.

Cloning bears superficial similarity with the concepts of transparent duplication for virtual
machines in cloud computing, and the copy-on-write semantics of forked UNIX processes, but
it is fundamentally different due to the presence of the new dimension of virtual time used in
simulation.

Another related approach is that of computational steering of the mid/late 1990s (Vetter and
Schwan 1997; Vetter and Reed 2000), in which the course of an active simulation may be dynami-
cally altered at runtime; however, such steering is restricted to a single large-scale simulation run
and for single, steered trajectory per run.

Cloning has recently been applied to agent-based simulation and its execution on GPUs (Li et al.
2015, 2017). They identified the potential of cloning on GPUs and advanced the state-of-the-art by
showing how cloning can effectively help in important applications such as real-time what-if sce-
narios for crowd management and decision systems. In general, our work is similar to theirs in the
fact that both use GPUs and both use cloning. Nevertheless, our work has significant differences
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that are complementary or distinguishing. Our CloneX system offers an entirely different set
of clone management, memory management, and clone mapping concepts. The concept of load-
balancing clones as proposed in this article is novel, which makes it possible to achieve excellent
scaling beyond 1,000 GPUs, larger than any scaling of cloned execution previously reported. The
parallel implementation has also been able to sustain over 350,000 clones simulated in parallel; to
our knowledge, this seems to be one of the largest configurations tested to date. Our implemen-
tation and performance study also focuses on memory savings, which is an important gap in the
literature that we fill here. In a similar context, new algorithms for distributed execution of cloning
have been previously studied (Chen et al. 2003) and applied to federated execution in the context
of the High Level Architecture (HLA) (Chen et al. 2005). The latter supports distributed execution;
however, it is targeted at interoperable execution, and hence load-balancing considerations and
high-performance computing were not specifically considered.

Another recent work that shares some similarity in principle with our present work is the con-
cept of differential simulation (Hanai et al. 2015) (also coauthored by us), which shares similar
goals as this article. However, it is fundamentally different in that differential simulation is built
on non-volatile memory. In the differential simulation approach, the base simulation is first exe-
cuted to full completion independently, just like a traditional (single) simulation. However, during
the base simulation execution, every event is logged to non-volatile memory, such as a hard disk.
This logged trace of events becomes the basis for introducing the desired modifications corre-
sponding to the what-if scenarios. CloneX is a high-performance parallel implementation that is
entirely based on computation and inter-processor communication for simulating the complete
clone tree and does not require disk input/output (I/O).

1.4 Organization

The rest of the article is organized as follows. Section 2 describes the conceptual background and
theoretical analysis of cloned execution, along with design considerations for scalable execution
of cloning. Section 3 presents the implementation details of the CloneX system for scalable cloned
execution on massively parallel GPU platforms. Section 4 provides a detailed performance evalua-
tion study using three benchmarks subjected to cloned execution on up to 1,024 GPUs. The article
concludes with Section 5 summarizing the article and identifying future work.

2 CLONING CONCEPTS AND ANALYSIS

2.1 Definitions

Consider any simulation containing models with many interacting entities and a simulation
methodology in which decision points are encountered in the models. In such simulations, a se-
ries of decision points is handled using the traditional approach of replicated runs, which are
full-blown physical instances simulations for each trajectory in the series of decisions. However,
cloning takes a different approach.

—Clones: In cloning, each decision point conceptually results in the generation of two or
more different logical instances of the simulation called clones. Although each clone begins
a life of its own, it often has very little difference from its parent; large portions of the
clone’s computation and state remain almost identical to its parent’s, the deviation growing
only as simulation progresses (or, sometimes, might coincide/collapse entirely into parent’s
trajectory). For example, in a large-scale traffic simulation with millions of intersections, a
clone into which an accident event or lane closure event is introduced continues to share
much of the rest of the road network simulation relatively unchanged.
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Fig. 1. Illustration of simulation clones and their relationships in the clone tree.

—Decision Points: The decision points could be dynamically generated from within the sim-
ulation (endogenous branches). For example, the ambiguity about kill vs. damage due to a
projectile landing in proximity of a battle vehicle creates an endogenous decision point to
spawn both trajectories: killed and damaged. Similarly, in epidemiological simulations, the
initiation of vaccinations or curfews when disease infection levels cross a threshold are ex-
amples of endogenous decision points. Decision points may also be externally introduced
(exogenous branches). For example, in emergency simulation models, branches may be ini-
tiated by user’s interest in trying multiple alternatives such as stay-in-place vs. evacuation
options. A combination, called exo-endogenous decision points, is also possible, for real-time
considerations; endogenous branch points are created in anticipation of exogenous input
down the line.

—Clone Tree: Cloning dynamically creates one or more logical copies of an active simulation
even while the simulation is running. These copies start their simulation from the point of
the virtual time at which the copies are created. Each logical copy (clone) shares (inherits)
all of its logical state from the original simulation state, thereby avoiding having to recom-
pute from initialization to the moment of cloning. The physical differences of the cloned
copies (children) from the original simulation (parent) arise only in the form of decision
point values that vary with each copy. A simulation clone can itself become a new original
(parent) for another set of clones (for later decision points) at any later time during its own
evolution. Thus, in general, cloning creates a tree of simulations, each simulation dynami-
cally charting out its own timeline after branching from its parent, all conceptually sharing
state yet logically independent from each other. Also, the simulation clone tree is dynamic
in nature as the simulation clones could be created or quashed at various decision points.

Figure 1 is an illustration of the cloned simulation execution framework in action. The base

simulation is a complete core simulation from which the simulation clones branch off at decision

points. Logically, the simulation clones are completely different simulations altogether, however
physically they correspond to only the Δvariations (Δv ) of the base simulation. In Figure 1, the
small rectangles within the larger ones at every branch represent the memory and computational
foot prints of the respective simulation clone, the solid arrow-lines represent the spawning of new
simulation clones and the dotted arrow-lines represent the simulation state lookups, which are
explained later in Section 2.3.
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2.2 Theoretical Analysis

To gain an estimate of the extent to which cloning can help in terms of memory and computation,
we developed an abstract, generalized analysis of a tree of cloned simulations. Theoretically, the
amount of aggregate memory conserved and the amount of aggregate computation saved due
to cloned execution can be roughly estimated for an example cloning scenario. Let this example
cloning scenario involve k decision points, m branches, and assume that only the leaf nodes of
the clone tree create m simulation clones at every decision point. The base simulation creates m
simulation clones at the first decision point and each of these m simulation clones in turn create

additional m simulation clones at the second decision point, thus creating a total of
∑k−1

l=0 m
l =

(mk − 1)/(m − 1) simulation clones, where k represents the number of levels and k = 1 suggest
that only base- or the root-simulation clone execution. Hence, for parameter values of k = 3 and
m = 3, a total of 13 simulation clones (including base simulation) will be created. Note, the number
of decision points and number-of-levels are the same, since we consider the initiation of base
simulation or root simulation clone to based on some user-specific decision, which can also be
considered as a initial decision point.

Further, suppose that, on average, only a fraction f of the memory is affected per branch be-
tween the parent and child of the decision point, and the computation per unit virtual time of
simulation is proportional to the memory affected. Thus, f captures the numerical quantification
of Δv previously described.

2.2.1 Theoretical Aggregate Memory Savings. The theoretical amount of aggregate memory
saved due to cloned execution is roughly estimated1 here for large values of m and k .

Given a total memory requirement of M bytes per simulation, conventional replicated runs
consume Mmk−1 bytes of aggregate memory to complete all the runs concurrently. The last level k
places the most demand for the memory, and all of the previous levels can fit within the maximum
requirement of the last level.

With cloning, only the affected fraction of memory Mf is required per clone, reducing the
aggregate memory to M +Mfmk−1 (k > 1). Therefore, the expected theoretical factor of reduction
in aggregate memory is given by FM = 1/(m1−k + f ). As the number of branches m and decision
points k increase, the memory savings becomes large. With even modest values of m > 2, and
k ≥ 10, the factor of memory savings FM tends to equal the inverse of affected memory fraction
f : FM ≈ 1/f .

In applications where cloning can be used, such as forest fire and epidemiological modeling,
simulation scenarios arise by which the cloned decision points involve very small changes, such
that f ≤ 10−3. This indicates that the theoretical reduction in aggregate memory usage compared
to conventional replicated simulations can be several orders of magnitude: FM ≥ 103. For decision
points such that k � 10, or for smaller fractions such that f � 10−3, the ideal factor of savings is
even larger.

Figure 2(a) illustrates the theoretical gains for f = 10−3 and m = 3, showing the potential to
reap orders of magnitude in aggregate memory savings. In the performance study in Section 4, we
observe that our implementation in the CloneX system precisely reflects these trends on actual
large-scale GPU-based parallel system.

2.2.2 Theoretical Aggregate Computational Savings. Theoretically, the achievable speedup due
to cloned executions is roughly estimated as follows. For simplicity, assume that each branching
level consumes an equal fraction of the total simulation time, that is, branches from decision points

1A more precise formulation that is valid for even small values of m and k is provided in the online supplement.
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Fig. 2. Illustrative theoretical performance gains from cloning with f = 10−3.

occur at equally spaced intervals along the total simulation time. Recollect that, with cloning, all
children share the simulation progress (consequently, gain in computation time) of their ancestors
before branching, whereas conventional replicated simulations duplicate all computation.

LetC be the total processor time used per simulation instance. After k levels of decision points,
each with m branches, the aggregate processor time used for conventional replicated simulations
is Cmk−1 (for large values of k and m). With cloning, the theoretical aggregate processor time (as
k becomes large) is bounded from the top by C +C fmk−1/k . Therefore, the factor of reduction in
aggregate computation time is given by FC = 1/(m1−k + f /k ). With conservative estimates, just
as in the preceding memory analysis with f ≤ 10−3, m > 2, and k ≥ 10, the theoretical factor of
computational time savings, FC , is several orders of magnitude. The savings potential becomes
even larger for actual large-scale scenarios, just as in the case of savings in aggregate memory
usage.

Figure 2(b) illustrates the theoretical computational gains for f = 10−3 and m = 3, showing
the potential to reap orders of magnitude in aggregate computational savings. In the perfor-
mance study in Section 4, we observe that the cloned execution in our CloneX system imple-
mentation precisely reflects these computational savings on actual large-scale GPU-based parallel
system.

2.3 Issues and Challenges in Scalable Design

The theoretical analysis of cloned execution indicate the potential for orders of magnitude of gains
relative to ensemble runs. To achieve the theoretical potential, the runtime implementation of
cloned execution needs to be efficient and scalable. Clone management, synchronization, commu-
nication, and computational costs must be minimized to reap the ideal theoretical gains.

Clone Tree Memory Management. Since the simulation clones are only minor variations over
their parent simulation clones, they offer the potential to theoretically realize significant memory
savings. However, to actually achieve such theoretical savings in practice, we need to limit the
memory utilization of the actual simulation clone in software by starting it with only the memory
needed to encode the variations from its parent and incrementally grow the clone’s simulation
state from that of the parent, as needed. We focus on the set of applications in which the simulation
state of a modeled entity depends on its immediate neighbors. In these applications, the variations
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concentrically grow in layers at every time step. To reflect this growth during cloned simulation
executions, the memory of the cloned simulations should be able to expand at every time step.
To accomplish this, we need to track a priori the extent by which spatial elements in the cloned
simulation would grow at every time step. Also, this computation must carefully account for edge
effects at the boundaries of the spatial domain, since the newly created simulation clone spatial
growth can hit the domain boundaries at any stage of its execution. Additionally, on the GPU
platforms, the movement of data from device memory to host memory needs to be minimized to
achieve good performance gains.

Clone Tree Dynamic Data Lookup. In parallel execution, each thread of execution evolving
a clone needs to lookup and retrieve the simulation state data of the clone’s neighbors from its
parent clone during execution (data that is logically distinct but not physically instantiated in a
clone). With simulation clones spanning several levels of the clone tree, the needed information
might not be available in its immediate parent clone; this necessitates a lookup up the parental
lineage, which, in the worst case, can go up to the root or the base simulation.

A critical point to note is that, even though the root has all the information, a clone cannot
always directly pull the data from the root. This is illustrated by the marker (a) in Figure 1: the
lookup may be a single hop to its parent simulation clone or may involve multiple hops terminating
at the base simulation, as shown by marker (b). To determine the presence or absence of a requested
state variable, the lookup mechanism utilizes the span of the clone’s Δv and the offset (horizontal
and vertical) information of the parent clones up the ancestral chain in the clone tree.

Since the lookup operation for each data item is performed extremely often for every time step,
the efficiency of the lookup implementation becomes very crucial for achieving overall efficiency
from cloning.

Thread Management for Cloned Execution. The runtime performance of modern super-
computing systems employing a large number of GPUs relies on a mode of parallelism called
Single Instruction Multiple Data (SIMD) in which many threads apply identical operations on
varying streams of data. Modern GPUs provide several thousands of SIMD cores per device and
their mapping to the computational problem defines the performance gains. To achieve efficient
cloned execution, the GPU threads must be mapped to the varied sizes of cloned domains.

Multi-node Clone Execution and Scaling. Every clone’s execution depends on the state of
its ancestors. Hence, moving of clones across nodes would also require movement of copies of
relevant ancestral clones in the hierarchy up to the root. The parental lineage up to the root needs
to be made available at the compute nodes to which the simulation clone is moved. Although
this seems burdensome, the operation is not as heavy as it appears, for two reasons. First, the
amortized cost of copies of ancestors at any processor will only be logarithmic in the number of
local clones. Second, most of the clones (other than the root) only consume a small fraction of
the entire simulation space. Hence, making copies of the parents across processors would not be
expensive in terms of network communication. In fact, since the root is needed by all clones, a
copy of the root needs to be simulated at every node. Hence, to avoid having to transfer the root at
runtime, it is better to make a copy of the root at every node during initialization itself. Therefore,
in our multi-node execution, the root simulation is hosted on all the execution nodes. The first
processor hosts the actual root simulation while other processors also have the same simulation
but marked as copies.

To deal with the dynamic growth of the clone tree across multiple computational nodes, we have
developed a customized load-balancing algorithm for multi-node simulation clone execution. This
load balancer periodically redistributes clones across processors based on the occupied amount of
device memory and the number of new clones to spawn at each processor.
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3 IMPLEMENTATION

In this section, the data structures and algorithms in the implementation of CloneX are presented.
The data is organized across host (main memory) and device (GPU memory) modules, which are
synchronized between time steps for the purposes of visualization and instrumentation.

3.1 Overall Execution

The main data structure is an array of “simulation records” analogous to the process table for
processes in an operating system. Each simulation record holds the meta information about each
clone, such as its identifier, its parent identifier, and its sub-domain specification. The overall ex-
ecution proceeds as initialization followed by the main simulation loop until the desired virtual
time, followed by generation of simulation results and statistics. Within the simulation loop, an op-
tional interactive mode is supported by periodically synchronizing the dynamic simulation state
from the device to the host memory and using a graphical interface to display an animation of
the simulation. The user interface provides facilities to choose the specific clones to display and
navigate across the clone tree.

ALGORITHM 1: Computational loop of CloneX simulation clones

Input:

tt , M1, M2, Sr , Lt , fm1

Data:
tt Total number of simulation time steps

M1 List of m1 matrices [m1i ...]

M2 List of m2 matrices [m2i ...]

m1i Matrix1 of simulation clone i
m2i Matrix2 of simulation clone i
Sr List of simulation records [si , ...]
si Record [m1oi ,m2oi ,xoi ,yoi ,nri ,nci , cidi ,pidi ]

m1oi Offset to accessm1i in M1

m2oi Offset to accessm2i in M2

xoi X offset in simulation clone i
yoi Y offset in simulation clone i
nri Number of rows in simulation clone i
nci Number of columns in simulation clone i
cidi Clone Id of clone i
pidi Parent clone Id of clone i
Lt Lookup tree

fm1 Flag indicates m1 is input or output

tc Current time step

nc Number of clones

csi CUDA stream id

Algorithm:

tc = 0

while tc < tt do
Call SpawnClonesIfAny()

Call LoadBalance()

for i ← 0 to nc do
Call CloneXKernel

(i, csi , fm1,m1i ,m2i , si ,Lt )
end

fm1 = notfm1

if (not (base simulation)) then
Call AdjustIndices(Sr , fm1)

end

tc = tc + 1
end

The simulation records are maintained in a list, represented as Sr in Algorithm 1. Each simula-
tion record contains variables namedm1o,m2o, xo, yo, nr , nc , cid , and pid . Them1o andm2o hold
the offsets into the two matrices (input and output) that the simulation uses at each time step,
which will be discussed in more detail in the following memory management section. The xo and
yo are the horizontal and vertical offsets of the two-dimensional simulation space, both of which
would be zero for the base simulation, but would be some positive values for any simulation clone
that has not grown into its complete spatial dimensions (as large as the base simulation’s full spa-
tial dimensions). The variables nr and nc represent the spatial dimensions of the simulation clone,
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which will always be less than or equal to the spatial dimensions of base simulation. The variables
cid and pid represent the identifier of the clone and its parent, respectively.

The simulation executes for the specified number of time steps tt and, at each time step, the
application’s call-back function is invoked to provide the option to the application to spawn any
new simulation clones. If the application spawns new clones, then the spawning functionality is
carried out by the SpawnClonesIfAny of Algorithm 1. Spawning involves two steps: (1) specification
of branch conditions and data, (2) distribution of the new clone (simulation records and data)
across processors. After the application specifies the data of any new clones, the LoadBalance

routine is invoked to redistribute the clones for even load balance. This involves identifying lightly
loaded processors, assigning the clones to the identified processors, determination of the parents of
new clones whose copies should accompany the new clones to the new execution processors, and
finally, the transfer of simulation records and the all state values of the new clones and all their
associated parents to the destination processors. In this process, care is taken not to needlessly
transfer clones whose copies already exist on the destined execution processor.

After the spawn phase, the simulation is advanced by invoking the application model code on
every simulation record. Since the clone simulation timelines are independent of one another, we
employ CUDA streams to parallelize these simulation clone time advancements. The computations
are implemented as CUDA kernels and the application makes it available to the simulation clone
runtime infrastructure through callback functions. The simulation computations involve reading
the previous state information and writing the computed new state information to an output
matrix. This is performed by the CloneXKernel of Algorithm 1, which is application-specific. After
the simulation computations, the fm1 flag is set to switch the input and output matrices for next
time step computations. We call another CUDA kernel AdjustIndices before computing the next
time step of the simulation, which updates the simulation records with new xo, yo, nr , nc , and
m1o or m2o values of the new input matrix. This is because clones expand in size at every time
step, requiring increase of the memory for the new state, as elaborated next.

3.2 Intra-Node Engine Implementation

Memory Management. The cells on the periphery of the clone simulations need to refer to their
parents to obtain the state information of their neighbors. The neighbors’ information so read from
the parent is added to the simulation clone at every step, which essentially expands the simulation
clone spatially.

The spatial expansion requires memory adjustments at every time step. It is highly wasteful
to allocate and free memory at every time step to fulfill this requirement. Hence, the maximum
amount of available device memory is acquired at the start of the simulation and that is inter-
nally managed by CloneX. For computational efficiency, we maintain two copies representing the
spatial state information for every simulation clone. At every time step, the previous state of the
simulation is read from one copy and the computed state information of the current time step is
written to the other. In the next time step, their roles are reversed: the memory copy that was
written into previously will be read from and that was read from will be over written with the
newly computed state information, as shown in Figure 3.

At every time step, we specify the spatial dimensions of the memory chunk to which state will
be written. This requires prior knowledge of the dimension to which the simulation clone expands.
Hence, we calculate the memory offsets (m1o andm2o in Algorithm 1) before the computed state is
written to the output matrix. This computation of the offsets must be carefully performed, because
the expansion is not always the same in all the directions. To accommodate these considerations,
the expansion is calculated in terms of the number of bounding rows and columns that need to be
added, which is later converted into the necessary byte information.
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Fig. 3. Simulation clones memory management.

Each simulation clone maintains a simulation record that holds all the necessary information
needed to perform its individual simulation computations independently. This record is updated
at every time step to reflect the changes in the memory space and the spatial dimensions of the
simulation clones. The span of Δv of a simulation clone is determined by these simulationrecord
variables xo, yo, nr, nc, cid, and pid (Algorithm 1). During the simulation, only simulationrecord
pertaining to the simulation clones are transferred from device memory to the host memory. This
information transfer is required because the GPU compute variables like block and grid dimen-
sions are calculated based on the dimensions of the simulation clone span. The host side of this
simulationrecord array is maintained in memory pages that are pinned. The data specific to the
simulation-specific state-variables of all the simulation clones stay in device memory and are not
transferred at every time step and are only copied during creation or destruction of the simulation
clones, or at the end of cloned simulation execution while gathering the results.

GPU Thread Management. To extract maximum utilization of compute resources, we vary the
block and grid dimensions to reflect the cloned simulation compute needs. During kernel launching
the block dimensions are selected such that it can employ specified number of CUDA threads
per block in the computation. The maximum number of threads per block tmax is limited by the
shared memory that we use. When possible, the entire simulation is computed by a 1 × 1 grid with
block dimensions equal to the simulation stencil dimensions. When the stencil dimensions exceed
the number of CUDA threads per block, then the block dimensions are calculated using binary
reductions as shown in Algorithm 2.

Algorithm 3 provides the pseudo-code of the CloneXKernel of Algorithm 1. This algorithm is
executed by each CUDA thread, and hence we contain the number of threads used for computation
to the span of the input matrix using the Idx and Idy parameters of the CUDA threads. Shared
memory of dimension (bDx + 2 × bDy + 2) is populated by values from the input matrix Im , which
could be either m1 or m2, based on the flag fm1. While the base simulation populates the shared
memory by reading its Im , the simulation clones that do not span the complete space of the base
simulation need to obtain their peripheral values from their parents. The bulk of this algorithm is
identifying the threads working on the outer most rows and columns of the input matrix, providing
them with additional functionality of getting their neighbors value from parent and writing the
values in the shared memory (required for current state update), while also calculating the correct
output index to write the computed values to the output matrix. Writing out computed values
in the output matrix is performed by the outer SIMD threads using its block dimensions, grid
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ALGORITHM 2: Mapping computation onto CUDA threads

Input:

nr , nc , tmax

Output:

bx , by , дx , дy

Data:
nr number of rows

nc number of columns

tmax CUDA max threads per block

bx x dimension of CUDA block

by y dimension of CUDA block

дx x dimension of CUDA grid

дy y dimension of CUDA grid

Algorithm:

if ((nr × nc ) ≤ tmax ) then
bx = nc ; by = nr ; дx = 1; дy = 1

else
i = 0; j = 0

tnr = nr + (nr %2)
tnc = nc + (nc %2)

while tnc ≥
√
tmax do

tnc = tnc/2 + (tnc/2)%2

i = i + 1
end

while tnr ≥
√
tmax do

tnr = tnr /2 + (tnr /2)%2

j = j + 1
end

bx = tnc by = tnr дx = 2i дy = 2j

end

ALGORITHM 3: CloneXKernel pseudo-code

Input:

M1, M2, Sr , Lt , fm1

Data:
Idx , Idy Global thread id along X and Y

Im ,Om Input and output matrices

shm Shared mem[(bDx + 2) × (bDy + 2)]
bDx Block dimension along X

bDy Block dimension along Y
Functions:
GU (v, shm ) Get v from parent and populate shm

DW (v,Om ) Compute out index and write v to Om

Algorithm:

m1 = M1[Sr .m1o];m2 = M2[Sr .m1o]

if fm1 then
Im =m1; Om =m2

else
Im =m2; Om =m1

end

if (Idx < nc & Idy < nr ) then
Populate shm with values from Im
if not (basesimulation) then

if within boundary then
GU (v, shm )
DW (v,Om )

end

end

Call Simulation_Step (this_cell_val , sh_m)
Compute out_index
Write this_cell to Om

end

dimensions,m1o orm2o, nr , nc , and additional SIMD thread centric offset values calculating exact
position of the output value. The functions DW and GU perform these functionalities.

First, the memory block comprising the state values of the concerned simulation clone is placed
inside the shared memory. The block within the shared memory comprises of all the elements
whose state-values need to be updated along with the elements that form the circumference of this
block. The elements that form the circumference of the block are read-only and are used for com-
puting the state-values of the other elements in the shared-memory. In the case of base-simulation,
the values of the elements in circumference are readily available. However, for the cloned-
simulations that expand at every simulation time-step, the state-values of the circumference

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 5. Publication date: January 2018.



5:14 S. B. Yoginath and K. S. Perumalla

elements will not be part of cloned simulations and hence, need to be fetched from their parents
in the clone-tree hierarchy. This fetching of state-values is performed byGU function, which uses
the GPU-based Adaptive Radix Tree (GART) for looking up the ID of the closest parent simulation-
clone that holds the state-values of these circumferential elements and updates the shared-memory
with the state-value read from the parents. Following which, the new state-values of the all the
block elements other than circumferential elements are updated. This state-values of a block of
cloned-simulation space in the shared-memory need to be written to the global-memory. Since,
the cloned-simulation expanded from its previous dimension, the new memory-indices for each
of its elements in the block of cloned simulation space needs to be determined. The function DW
performs this task, where each CUDA-thread computes its output-index and the updates of cloned
simulation state-space happen element-by-element and block-by-block, ensuring correctness dur-
ing expansion of the state-space.

In addition, we also need to accommodate the concern that the expansion of the clone is de-
pendent on its current position in the base simulation span. Based on its position, the expansion
could vary from one to all four directions in the two-dimensional simulation space, leading to
unequal dimensions of Δv span of the simulation clone. Memory expansion and update happens
after every time step. The expansion size is determined and the corresponding simulation record
of every clone is updated. These updated simulation record values are used during calculation and
updating of simulation states during next time step.

Dynamic Lookup. To provide fast lookup operations, we developed an efficient radix-tree-based
lookup mechanism that maintains the clone tree on the GPU. Since clones are dynamically dis-
tributed across processors, the clone identifiers and their spans do not necessarily offer any pattern
to exploit in the clone-to-memory mapping. We implemented an efficient GPU-based index search
system (Alam et al. 2016) that returns the memory index given the clone identifier. The GPU-based
Adaptive Radix Tree (GART) system has been benchmarked to deliver a very high speed of over
600 million lookups, and returning each index lookup in a few nanoseconds. The main instance
of the adaptive radix tree is stored in CPU. All the insert and update operations to add or modify
the tree are performed in CPU. GPU is used mainly for the lookup operations. Typically, the num-
ber of insert/update operations on the tree is negligible compared to the lookup operations. To
efficiently perform the lookup operation on the GPU, the whole tree is copied to the GPU mem-
ory. However, CPU-based adaptive radix trees use dynamic memory allocation and use pointers to
connect the tree nodes. The next level of the tree could be found only by following pointers. This
structure does not work well on the GPU. To get the best performance, memory access should be
coalesced. Therefore, the tree is serialized as a byte array for the GPU lookup. The index tree used
for searching is only updated when simulations clones are added or removed. The index tree is
directly queried from the CloneXKernel CUDA kernel to retrieve the information from simulation
clone’s parental hierarchy.

3.3 Inter-Node Engine Implementation

As cloned simulations progress on the GPUs, the limitation of total available device memory
can start constraining the number of simultaneously executing clone simulations. To overcome
this memory constraint of a single GPU, multiple GPU nodes will have to be utilized. Thus, our
approach is critically motivated by the goals of scaling the number of clones supported and the
amount of speedup achieved in the process. The base (root) simulation is clearly the largest in
terms of memory occupancy; moreover, since the movement of simulation clones from one node
to another also requires the transfer of their parents, we decided to have the base simulation run
on all the execution nodes, because the root is the parent of all parents. This would reduce the
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network load significantly, because the base simulation does not need to be transferred; moreover,
since all the clones are the children of base simulation, its transfer to new nodes is unavoidable
and imminent.

The next step toward the multi-node scaling is in differentiating between the local and non-local

clones. This differentiation is necessary to avoid duplicates of the simulation clones from spawn-
ing new clones; also, the presence of duplicate clones (with same cloneId and parentId) cannot be
avoided without significant performance loss in the multi-node executions. The simulation clones
are tagged local during their spawning phase, and they retain the tags even when they are moved
by the load balancer to other nodes. However, when the simulation clones are moved to other
execution nodes as parents of newly spawned simulation clones, they are tagged as non-locals.
Although we start with base simulations on all the GPUs during multi-node execution, the base
simulation is local only on the process with rank 0 and is marked as non-local on all the other
process ranks.

An important component in the multi-node execution is the load balancer, which decides the
movement of simulation clones across different nodes. Algorithm 4 gives the pseudo-code of our
load-balancing algorithm. The load balancing starts by one process (the leader) gathering the cur-
rent device memory occupancy (Wp ) and the new clone spawning information (dWp ) from each
node. It culminates when the leader makes clone-redistribution decisions, and sends out the sender

Sp and their receivers list Rp to each of the clones. This interface is fixed while the implementation
can be varied to experiment with different load-balancing schemes. We explored multiple imple-
mentations and converged on an efficient variant. In future, it is possible to easily replace with
other algorithms customized for future hardware by changing this single module.

In this current load-balancer implementation variant, the balancing loop iteratively maps the
smallest of Wps (receivers) to the largest of the dWps (senders). Some number of receivers are as-
signed to a sender, where the exact number of receivers for a given sender is a heuristic, whose

ALGORITHM 4: Load-balancing algorithm

Input:

p,Wp , dWp

Output:

Sp , Rp

Data:
p Processor 0 ≤ p < P
P Total number of processors

Wp Weight (sum of clone sizes) of p
dWp New load (clones) being added

Rp Set of receivers of load from p
Sp Sender of load to p

for ever do
for all p do Rp ← { p }; Sp ← p; /*initialize*/

/*Find the processor with most new load*/

pmax ← max(dWp , 0 ≤ p < P )
/*Find top k minimally loaded processors*/

Pmin ≡ {p1, . . . ,pk } ← {min(Wpi
, 0 ≤ pi < P )}

Find p0 such thatWp0 is minimum in Pmin

if Wp0 = ∞ OR dWpmax
= 0 then

break; /*No more free processors or work*/

end

Spi
← pmax for all pi ∈ Pmin

Rpmax
← Pmin

for all pi ∈ Pmin do
/*Take pi out of further consideration*/

dWpi
← 0 /*Prevent becoming sender*/

Wpi
← ∞ /*Prevent becoming receiver*/

end

dWpmax
← 0 /*All offloaded*/

Wpmax
← ∞ /*Prevent becoming receiver*/

end
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value is empirically determined. In our performance runs, we have fixed it to be 1/4th of number
of nodes used in parallel runs.

After receiving the sender scalar and a receiver vector, each process checks the sender, if it is itself
then they check on the receiver list and start sending its local simulation clones to the receivers,
after splitting the local clones equally among all the receivers. However, if the sender is not the
same as itself, it blocks in a receive call waiting for the sender.

The transfer of simulation clones involves moving the simulation records si and the initial
values of the simulation clones to the remote host. The parent clones that need to be transferred
to the new execution node needs to be determined. To avoid duplication of simulation clones
(parent) at the receiver, the sender sends the list of parent simulation clones to the receiver, which
negates the simulation clones that are already existing at its end. After receiving the revised list of
simulation clones, the sender sends the simulation records and the initial values of non-negated
simulation clones. After the parent simulation clones are moved to the receiver, the sender sends
the simulation records and the initial data of the new simulation clones to the receiver.

After receiving the simulation records and the initial data of the simulation clones to be
spawned, the receiver might add a few of its local simulation clones by populating its Sr simulation
record list and the data list of M1 and M2 matrices. This completes the transfer of the simulation
clones from the sender. The sender, after sending the simulation clones, might also spawn a few of
its own local clones, if assigned to do so by the load balancer.

4 PERFORMANCE EVALUATION

4.1 Hardware and Software

The performance study was conducted on a supercomputing system named Titan hosted by the
Oak Ridge Leadership Computing Facility. Titan is a hybrid computing architecture featuring
18,688 compute nodes, a total system memory of 710TB, and Cray’s high-performance Gemini
network. Each node comprises 16-core AMD Opteron processor with 32GB of host memory and
an NVIDIA Tesla K20 GPU accelerator containing 2,688 CUDA cores with 6GB of device memory.

The CloneX software is implemented in C++ for the host processor, CUDA 7.0 for the
GPU device, and the Message Passing Interface (MPI) for interprocessor communication and
synchronization.

4.2 Performance Benchmark Applications

To evaluate the performance gains in terms of computational speed and memory savings, three
different benchmarks are used. The first is a synthetic benchmark to simulate heat diffusion under
dynamically induced heat sources, the second being simulation of forest fire propagation, and the
third is a complex state machine-based propagation of disease with dynamically imposed decision
points such as new outbreak events and mitigation campaigns.

The images produced here for the benchmark simulations are snapshots from the CloneX in-
teractive graphical user interface. In each case, the decision points for branching were provided as
exogenous events through the user interface.

4.2.1 Heat Diffusion Simulation. For the first synthetic benchmark, we use a two-dimensional
(2D) heat diffusion simulation. This simulates the diffusion of heat according to the model in
Equation (1):

ρc
∂T

∂t
=
∂

∂x

(
k
∂T

∂x

)
+
∂

∂y

(
k
∂T

∂y

)
. (1)

In Equation (1), ρ is the density of the medium, and c is the specific heat. Forward-time-
central-space (FTCS), an explicit finite-difference scheme, is employed for solution, as shown in
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Fig. 4. Visualization of a heat diffusion simulation clone tree.

Equation (2):

U n+1
i, j = rx (U n

i−1, j +U
n
i+1, j ) + ry (U n

i, j−1 +U
n
i, j+1)

+ (1 − 2rx − 2ry )U n
i, j .

(2)

In Equation (22), rx =
σ Δt
Δx 2 , ry =

σ Δt
Δy2 , and σ = k

ρc
is the diffusivity of the material, where k is

thermal conductivity. Absolute stability of this scheme is assured in the maximum norm when
rx + ry ≤ 1

2 . In particular, when Δx = Δy, the stability requirement is σ Δt
Δx 2 ≤ 1

4 (Flaherty 2016).
Dirichlet boundary conditions are imposed.

The 2D heat diffusion model is simulated across a thin sheet of iron whose diffusivity k = 0.23 ×
10−6m2s−1 across cells of dimension 1cm × 1cm each. Serving as heat sources, a small fraction of
the cells in the simulation domain maintain a constant high temperature of 300◦C throughout the
simulation, while the other cells are initially at a normal temperature of 40◦C.

For cloning, each what-if scenario is represented by a simulation clone that is created by ran-
domly picking a part of the domain as a new heat source. Figure 4 illustrates an experimental sce-
nario with one branch per level for three levels in the heat diffusion simulation. It shows a snapshot
of simulation clones, where the base simulation is branched off to create simulation clone tagged
Clone sim1 by adding a heat source, which in turn has branched off another simulation adding
another heat source to its parent.

4.2.2 Forest Fire Simulation. The second benchmark is a forest fire simulation that follows the
model of Balbi et al. (1999), using thermal balance of Equation (3) for simulating the fire dynamics,
where u = T −Ta , T is the temperature at current simulation time in Centigrade (◦C), Ta is the

ambient temperature, ρv = ρv0e
−α (t−tth ) (kд/m2) is the mass of fuel per unit area of platform bed,
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Fig. 5. Visualization of forest fire simulation clone tree.

t is the simulation time in seconds, and tth is the ignition simulation time:

∂T
∂t
= −k (u)) + KΔu −Q ∂ρv

∂t
,

∂ρv

∂t
= 0, for unburnt cell,

∂ρv

∂t
= −αρv , for a cell reaching ignition temperature.

(3)

As in prior works (Balbi et al. 1999), we set ρv0 = 0.4kg/m2 and the following values for the
constants: k = 0.071s−1,K = 3.1 × 10−5m2s−1,Q = 3605m2Ckg−1, and α = 0.19s−1. Further, α (s−1),
k (s−1), K (m2/s) and Q (m2C/kg) are constants corresponding to combustion time, convective
cooling coefficient, thermal conductivity and enthalpy of combustion, respectively.

The initial conditions are set as u = 0 for the unignited cells and boundary cells, and u = uth for
the ignited cells, where uth = T −Tth and Tth is the ignition temperature.

For the size of the simulated domain, the dimension of each cell in the simulation is set to
1m × 1m. The ignition temperature Tth is set to 300◦C and other non-ignited cells started at a
temperature of 50◦C.

The process of cloning involved modeling the ignition of a small block of cells. This is achieved
by resetting the selected block of cells to the ignition temperature. Igniting different points in the
forest area on fire creates new simulation clones. Other decision point schemes are also possible,
such as fire mitigation via watering and fire prevention via dampening.

Figure 5 illustrates cloned simulation executions of two branches/level with three levels in the
forest fire simulation scenario. In this figure, we note that the root is simulating the spread of
forest fire in a specified geographical area of a domain of user-specified dimension. The simulation
clones that are spawned as children of either the base simulation or other clones, at any stage
in the simulation, inherit the logical states of all their parents (as described in Section 2). Thus,
in this particular forest fire spread simulation scenario, while the fire originating at a certain
location is spreading, several what-if scenarios are effectively being evaluated simultaneously.
The visual in Figure 5 demonstrates the effect of what-if scenarios corresponding to additional
simultaneous fires starting at different locations.
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Fig. 6. Visualization of epidemiology simulation clone tree.

4.2.3 Epidemiological Simulation. As the third benchmark, we use an epidemiological model
based on geographical population distributions. The geographical domain is divided into cells in
which each cell contains four key state variables, each of which is a population count: S for suscep-
tible, E for exposed, I for infected, and R for recovered. This is known as the SEIR model, to which
we also add movement of individuals across cells. The initial population densities in the cells are
assigned based on population databases of countries made available by the United Nations.

The base simulation tracks the propagation dynamics based on the SEIR model. The clones
are spawned based on a variety of what-if scenarios, such as new outbreaks (cells with increased
infected count), quarantines (restricted spatial movement), vaccination (reducing susceptible
counts), and hospitalization (increasing recovered counts).

Figure 6 illustrates cloned simulations of three branches/level with two levels in the spread and
containment of disease in a large geographical area with a high population density. In the bench-
marked experimental runs, the population data of India was used for this purpose. The simulation
clones spawn increasing numbers of infections and containment zones into the population at run-
time to evaluate the what-if disease spread scenarios.

4.3 Performance Parameters

Variables and Constants in Performance Runs. The performance runs are executed for a number of
simulation time steps to exercise a sufficient spatial mixture and reach of model dynamics. The
key variables in the cloned simulation runs are: the fraction Δv of the domain affected that defines
each new clone, the number of branches m per level, and the number of levels k . We vary each
of these parameters and measure their effects on the runtime performance. A value of Δv ≈ 10−3

of the input spatial dimension is used in our experiments. The smaller the value of Δv , the better
the performance of cloning. Hence, the value of Δv ≈ 10−3 may be considered as a conservative
one for bechmarking, because cloned scenarios with smaller values of Δv , such as 10−4 to 10−6,
are possible to find in the benchmarks as well as other applications. The spatial dimensionW × H
with width W and height H of all our simulation experiments is set to 2048 × 2048 (again, even
larger dimensions can be defined for higher resolutions and larger domains, for which cloning
would perform even better). For this size and Δv ≈ 10−3 gives each clone’s initial dimensions as
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Table 1. Number of Clones Spawned for Given

Number of Levels (k) and Branches (m)

k = 1 k = 2 k = 3 k = 4 k = 5
m = 1 1 2 3 4 5
m = 2 1 3 7 15 31
m = 3 1 4 13 40 121
m = 4 1 5 21 85 341
m = 5 1 6 31 156 781
m = 6 1 7 43 259 1,555

√
2048 × 2048 × 10−3 ≈ 64. Hence, the simulation clones start with 64 × 64-sized scenario-specific

spatial data and if it were to grow both horizontally and vertically, it would reach a size of 264 × 264
by the end of 100 timesteps.

Clone Tree Specification. The number of total time steps (τ ) given is equally divided into speci-
fied number of levels (k) and, after every τ/k time steps, m simulation clones are spawned. Each
of these simulation clones is unique with regards to the spatial location of incidence of the deci-

sion point. This results in spawning and executing
∑k−1

i=0 m
i = (mk − 1)/(m − 1) simulation clones.

The clones are differentiated as local and non-local: local clones are owned by the processor while
non-local ones are copies of parent clones that are owned by another processor. The aggregate
number of local clones on all nodes in multi-node execution equals to (mk − 1)/(m − 1), while
the total number of clones local and non-locals will be greater, depending on the movement of
clones at runtime by the load-balancing algorithm. Only local clones can spawn new clones, but
non-local clones are replicas that come into being only when the load balancer moves copies
of parent clones. Further, in our benchmark runs, only the leaf clones spawn new simulation
clones.

Computational and Memory Savings. The computational and memory savings are determined
with reference to the resource consumption from fully replicated ensembles traditionally run with-
out cloning. The single simulation runtime (RS ) is that of a base simulation. Similarly, the single
simulation memory consumption (Ms ) is that of the base simulation. Let Rc and Mc be the runtime
and memory consumption, respectively, of cloned executions involving nc clones. The computa-

tional savings are determined as Rs×nc

Rc
and the memory savings are determined as Ms×nc

Mc
.

4.4 Single Node Performance Results

Computational and Memory Savings. Multiple scenarios are executed with varying number of
branches per level m and number of levels k parameters. Table 1 shows the aggregate number
of clones generated at each level during cloned execution. The number of levels was evaluated up
to k = 5, and m was varied from 1 to 6, which together provide good coverage with hundreds of
thousands of clones. This experimental setup was used for all simulation benchmarks. Figures 7(a)
and 7(b) provide the computational and memory savings results for the heat diffusion benchmark;
Figures 7(c) and 7(d) show the same for forest fire, and Figures 7(e) and 7(f) for epidemiology. Also
note that the ordinates are drawn in logarithmic scale (loд10) for all charts reporting computational
and memory savings.

Orders of magnitude improvement are observed in computational savings, exceeding 102.5 when
the number of clones handled is 1,555, while the memory savings are almost a factor of 102.5.
Similar trends and savings are seen in all the benchmarks. The computational load and memory
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Fig. 7. Factor by which aggregate computation and memory are saved by cloned execution relative to non-

cloned execution on a single node (Δv = 10−3).
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Fig. 8. Theoretically estimated versus actual savings on a single node.

requirements of each of these benchmark simulations are different from one another. However,
the spatial dimensions of the base-simulation in each of these benchmarks are same (2048 × 2048).
As the computational and memory trends of cloned simulation runs seen in Figure 7 are relative to
their single simulation runs and, the number of clones spawned and span of cloned simulations are
the same across different benchmarks, hence similar trends can be expected. Benchmark runs with
differing values ofm and k can be expected to result in differing trends. These performance trends
indicate that the gains due to cloning are not limited to any specific set of simulation applications
but apply to wider set of two-dimensional simulation applications that update their states using
their immediate neighbor’s state information at every timestep.

Comparison with Theoretical Estimation. In Figure 8, against their theoretically expected per-
formance, we plot the computational and memory savings of two scenarios, namely, three
Branches/Level and six Branches/Level, with the number of levels varying from 1 to 5. The trends
of the observed performance results are nearly identical to theoretical estimates presented in
Section 2.2. However, the theoretical expectations assume static clone size and do not consider
the growth factor of memory usage as a clone evolves in its timeline after creation. Similarly,
the computational increase due the enlarged memory size during simulation is also not con-
sidered. Since the total number of time steps is small and the Δv is small compared to the
full spatial domain of the simulation, this is not evident in Figure 8. In simulations where the
number of iterations is comparable to the domain size, the growth effects become important.
For this reason, here we derive a more detailed theoretical estimate of the performance that
is more precise than the generalized estimate of Section 2.2 that provided an upper bound on
the performance under the assumption of a fixed fraction f of clone size relative to the base
simulation.

Performance Effects of Timesteps. As expected, in Figure 9, the computational and memory sav-
ings decrease with an increase in the number of simulated timesteps, but they are not as drastic
as the conservative estimates. Further, compared to memory savings, the computational savings
have a relatively milder effect with time steps. This could be attributed to the GPU hardware that
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Fig. 9. Savings (log-scale) in computation and memory on a single node.

provides a low-overhead parallel execution capability; CloneX is seen to be able to harness the
capability of exercising concurrent cloned executions.2

4.5 Multinode Performance Results

4.5.1 Scaling Behavior. For scaling studies, we ran all of our benchmark simulations for 100
timesteps, withm = 4 and k = 10, which results in the concurrent execution of 349,525 simulation
clones, executed on 128, 256, 512, and 1,024 GPUs.

The summaries of the results from heat diffusion, forest fire, and epidemiology simulations are
tabulated in Tables 2, 3, and 4, respectively. In this strong scaling experiment, we observe from
the runtime plot in Figure 10 and summary readings in Tables 2, 3, and 4, a good scaling behavior
on GPUs up to 1,024. In the tables, μnc and μnlc refer to the average number of clones (local +
non-local) per GPU and the average number of local clones per GPU, respectively; tnc and tnlc

refer to the total number of clones (local + non-local) across all the GPUs and the total number of
local clones across all GPUs, respectively; σnlc refers to the standard deviation of the number of
local clones per GPU; ts is the runtime in seconds.

4.5.2 Load Balancing. In all the three performance benchmarks runs, doubling the number of
GPUs has consistently reduced the runtime by nearly half. The tables also provide an insight on
the load distribution across GPUs. The load distribution across the benchmark applications remain
similar. A large number of duplicate clones is observed in each simulation benchmark run. Further,
the results also show that μnc and μnlc halve with doubling of number of GPUs in this strong scaling
experiment, while σnlc remains high.

With multi-node scaling, CloneX simulates nearly 350,000 simulation clones, which is a signif-
icantly large number of clones that is impossible to achieve on a single GPU. Also, since the base
simulation is large enough to fully utilize all the GPU threads for computation, traditional repli-
cated execution with one simulation clone per GPU of simulations would have required 350,000
GPUs for concurrent processing.

2A theoretical estimate of the variation of memory savings with the number of timesteps is provided in the online

supplement.
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Table 2. Scaling Heat Diffusion Cloning with 4 Branches/Level

and 10 Levels

GPUs μnc μnlc σnlc tnc tnlc ts
128 3,829 2,730 1,306 490,239 349,525 499.46
256 1,958 1,365 696 501,291 349,525 192.53
512 1,021 682 297 523,242 349,525 78.30

1,024 504 341 179 516,101 349,525 27.14

Table 3. Scaling Forest Fire Cloning with 4 Branches/Level

and 10 Levels

GPUs μnc μnlc σnlc tnc tnlc ts
128 3,799 2,730 1,329 486,395 349,525 1,134.30
256 1,948 1,365 693 498,783 349,525 455.33
512 1,022 682 298 523,526 349,525 189.02

1,024 503 341 177 515,885 349,525 65.42

Table 4. Scaling Epidemiology Cloning with 4 Branches/Level

and 10 Levels

GPUs μnc μnlc σnlc tnc tnlc ts
128 3,808 2,730 1,297 487,459 349,525 1,117.25
256 1,942 1,365 685 497,345 349,525 407.79
512 1,029 682 284 526,917 349,525 227.52

1,024 499 341 175 511,723 349,525 65.85

Figure 11 provides the load distribution in terms of (a) the number of clones hosted by each
GPU, and (b) the amount of memory occupied used by each GPU, for multi-node heat diffusion
execution. The trend labeled “Diffusion 1024” corresponds to cloned execution of Heat Diffusion on
1024 GPUs, and “Diffusion 512” corresponds to that on 512 GPUs, and so on. The load distribution
trends in forest fire and epidemiology simulations are similar to those for heat diffusion, and hence
omitted here. From Figure 11, we see that the loads become more and more well balanced as the
number of GPUs increases, up to a large number of GPUs.

Based on the observation that the load distribution improves with increase in the number of GPUs,

the load-balancing algorithm seems to be well suited for large-scale runs.

The limit on the number of receiving GPUs for each GPU that intends to share its load was set to
8, as that setting provided the best runtime balance. Values smaller than that keep the sender heav-
ily loaded, while values larger than that introduce a large overhead in communication and non-
local clone copies. Thus, an increase or decrease in the number of receivers in the load-balancing
algorithm yields interesting dynamics and insights that need to be further explored. A detailed
performance study of our load-balancing algorithm is planned as future work.

5 SUMMARY AND FUTURE WORK

A theoretical analysis has been presented to identify the potential for orders of magnitude of per-
formance gains obtainable by cloned execution of simulations. The design principles have been dis-
cussed to achieve the theoretically projected performance. The methodology to efficiently execute
cloned simulations across multiple nodes were presented. Algorithms have been designed here to
make cloning runtime scalable on a large number of computational nodes, using a load-balancing
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Fig. 10. Cloning scaled to 1,024 nodes (GPUs) simulating 349,525 clones.

Fig. 11. Load distribution in multi-node parallel execution.

algorithm and clone migration methodology developed specifically for cloned simulation execu-
tions. The scalable cloning software data structures and algorithms have been implemented on a
supercomputing system. The implementation demonstrated good scaling behavior across multi-
ple GPUs. Gains in excess of two orders of magnitude in computation and memory were observed
on three benchmarks: heat diffusion, forest fire, and epidemiological simulations. Future work
includes generalizing our approach beyond continuous and time-stepped simulations to parallel
discrete event simulations and extending the load-balancing algorithm beyond thousand GPUs.
Cloning bears the potential to become a mainstay in all future supercomputing, as a new method-
ology, a new runtime interface, and a new operating framework in general for many large-scale
simulations.
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