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ABSTRACT
In the particle-based simulation of cell-biological systems
in continuous space, a key performance bottleneck is the
computation of all possible intersections between particles.
These typically rely for collision detection on solid sphere
approaches. The behavior of cell biological systems is in-
fluenced by dynamic hierarchical nesting, such as the form-
ing of, the transport within, and the merging of vesicles.
Existing collision detection algorithms are found not to be
designed for these types of spatial cell-biological models,
because nearly all existing high performance parallel algo-
rithms are focusing on solid sphere interactions. The known
algorithms for solid sphere intersections return more inter-
sections than actually occur with nested hollow spheres.
Here we define a new problem of computing the intersections
among arbitrarily nested hollow spheres of possibly different
sizes, thicknesses, positions, and nesting levels. We describe
a new algorithm designed to solve this nested hollow sphere
intersection problem and implement it for parallel execution
on graphical processing units (GPUs). We present first re-
sults about the runtime performance and scaling to hundreds
of thousands of spheres, and compare the performance with
that from a leading solid object intersection package also
running on GPUs.

Keywords
Neighbor Lists, Nearest Neighbors, Cellular Biology, Com-
partmental Models, Nested Shells, Smooth Particles, GPU,
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1. INTRODUCTION

1.1 Background and Motivation
Particle-based reaction-diffusion models in continuous space

are computationally very expensive. One possibility to speed
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up simulation is parallelization [9]. Over the past decade,
general purpose graphical processing units (GPU)-based com-
putation has been effectively exploited for simulation [28,
22, 25], and for simulating cell biological systems in partic-
ular [5]. Models that are executed on the GPU are typically
composed of many individual entities with similar behavior
patterns, where the simulation proceeds stepwise and the
calculations per simulation step are quite similar [24]. Thus,
individual particles moving stepwise [8, 4, 26] or stochas-
tic reaction-diffusion algorithms based on operator-splitting,
lend themselves very well to GPU-based execution [10].

To take excluded volumes and crowding into account
in particle-based reaction-diffusion models [30], sub-cellular
components may be abstracted as spherical in shape of dif-
ferent radii, with a diffusion-excluded interior [32]. The core
computational problem concerns the proximity-based inter-
action of many sub-cellular components [30]. If a particle
attempts a move, it is checked whether the particle will as a
result of the move overlap with another particle and, if so,
the move will be rejected. Other tools rely on energy land-
scapes to model the interaction of particles. Independently,
whether the particles’ interactions are modeled by move re-
jection [14, 27] or by potentials (energy landscape) [29], typ-
ically they are assumed to be solid (hard-core or soft-core)
spheres.

However, abstracting them as solid spheres ignores the
dynamic nesting of cell-biological systems that plays a
key role in the functioning of the cell. In addition to
static compartments, such as the nucleus in eucaryotes, we
find dynamic compartments and vesicles, like mitochondria
and lysosomes, whose number, volume, content, and inter-
connectivity changes over time. This is illustrated in Fig-
ure 1 [23], which shows the process of receptor recycling in
the cell schematically. Vesicles form at the membrane and
engulf protein receptor complexes, those are transported to
a lysosome. The vesicle merges with the lysosome. Part of
the receptor complex is freed and returns to the membrane
(being recycled) whereas the other part of the receptor com-
plex is degradated within the lysosome.

The forming, merging, and destruction of vesicles lead
to dynamically and arbitrarily nested compartmental struc-
tures. These require the models to treat cells, compart-
ments, and vesicles as hollow spheres that allow an arbi-
trary dynamic nesting of spheres within each other [3]. In
cell biological systems of interest to us, the nesting is such
that there are a small number of large-sized compartments
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(a) Biological view

(b) Hollow spheres view

Figure 1: Illustration of a cellular subsystem model whose
components can be specified as nested arrangements of ob-
jects within objects that interact at intersection points and
can be approximated to spherical objects/shells of various
sizes and thicknesses moving within and through each other

such as nucleus, cytosol, or membrane, and a larger num-
ber of smaller-sized compartments, such as mitochondria or
lysosomes interacting with many small objects like proteins.

Additional applications in which nested containment in
hollow spheres is used include simulations of friction-based
contacts among many objects (“intersection” of a range) for
estimating the dissipated energy in rotating containers [31].
To meet desired configurations containing 200,000 particles,
parallel simulation is warranted. Other peripherally related
applications include simulation of foams and foam-packed
materials.

1.2 Contributions
In this paper, we identify core computational problem in

such cellular simulations in terms of a new, formally-defined
and generalized problem of arbitrarily nested configurations
of hollow spheres or shells. The determination of intersec-
tions is a crucial step in such simulations to model the in-
teractions. The determination of interaction activity due to
intersections forms a major, time-intensive part of cellular
simulations.

We analyze the nested sphere problem in detail with the
range of possible scenarios of nesting levels, sphere densities,
sphere radii, thicknesses, and position distributions. Based

on this problem specification, we propose a new, efficient so-
lution for fully arbitrary nested configurations. We present
a novel algorithm that is efficient and scalable to large num-
bers of nested hollow spheres with widely varying radii and
thicknesses. We have completed an efficient implementation
of the algorithm on the GPU (implemented in CUDA and
run on a NVIDIA K80 card) and have tested correctness.
The implementation addresses multiple GPU-specific issues,
the most challenging of them being the variable loading per
GPU thread. We present runtime performance data of the
new algorithm on multiple benchmarks exercising a range of
scenarios with varying sizes and positions of large numbers
of spheres.

The algorithm and results presented here are among the
first in the literature on the definition of the novel prob-
lem in nested spherical body intersections, along with al-
gorithm, implementation, and performance data tested in
a experimental design with variation of many scenario pa-
rameters. The algorithm and implementation have also been
integrated into a cell biological simulator that has been sped
up with our algorithm to simulate scenarios with higher
scale. A separate experimental study is underway in ana-
lyzing the runtime gains of the overall application, which
are planned for a subsequent publication. In this paper, we
focus on the computation of the underlying general problem
of computing nested hollow sphere intersections.

1.3 Related Work
The problem of collision detection (also called intersec-

tion detection) is well explored in the literature [15, 19, 7],
predominantly studied in the context of solid, non-nested
bodies. When interested in the collisions of n objects, the
näıve approach would be to simply perform a brute force
pass over all the objects, checking each object for potential
intersection with all other objects. However, this leads to
an execution time of O(n2), which is impractical for large
systems. At this point, we can exploit the fact that all po-
tential object-object intersections exist only at the scales
of the particle sizes rather than at the full domain length
scales. As identified by Hubbard [12], most state of the art
collision detection algorithms consist of two phases, a broad
phase and a narrow phase, as follows.

Broad Phase In this phase, a rough measure is used to
separate potential collisions (of objects that are in some
vicinity of one another) from non-potential collisions
(of object pairs that are too far from one another to
intersect).

Narrow Phase In this phase, the potential pairs of objects
identified in the Broad Phase are more closely inves-
tigated. In computer graphics, this phase often in-
volves computationally intensive mesh calculations, as
the objects tend to have complex three dimensional
geometrical structures defined by triangle meshes.

In this paper, we focus on the broad phase due to the
simplicity of geometries typically assumed in our immedi-
ate application of interest, namely, particle-based reaction-
diffusion simulation. We are interested in a rough pruning
of the n2 set of pairs for large number of objects. After
the broad phase, the pruning of this set during the narrow
phase can be rather easily done with our type of objects
(see Section 2.1), compared to the sometimes very complex
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triangle meshes as found in other applications such as visu-
alization, computer gaming, and computer graphics. Conse-
quently, we describe different broad phase algorithms here.
Specifically, we will be examining algorithms that are suited
for execution on the GPU, which is a power efficient paral-
lel processing hardware architecture for simulating systems
with large numbers of particles.

Fixed radius on grid
There exists a very fast and refined solution for a particu-
lar sub-problem, that of equal-sized (or very similarly-sized)
spheres. This fixed radius collision problem has been in-
vestigated and well understood, because a consistent spheri-
cal cutoff is commonly encountered in many simulation con-
texts, such as smooth particle hydrodynamics and molecular
dynamics simulations [6].

In the state of the art algorithm [11] called fast Fixed Ra-
dius Nearest Neighbor (fFRNN), the system is organized into
bins such that each particle, after being assigned to its own
bin, only needs to check the bins in its Moore neighborhood
in order to find all possible neighbors. This works only when
the interaction cutoff between two particles is ensured to be
smaller than the bin width. Moreover, solidity of objects is
implicit.

Grids for variable sizes
One way to approach the problem of finding intersections
among a number of complex shaped particles is to allow one
particle to span across multiple bins in the grid. This is
achieved in some approaches [20] by approximating all par-
ticles as boxes spanning over multiple bins (easy to calculate
for the axis aligned boundary box (AABBs)). AABB means
a rectangle or cuboid whose edges are aligned with the x,
y and z axis of the underlying coordinate system. Object
identifiers are added to all the bins. For each bin, all possible
collisions are calculated. Finally, the redundantly counted
collisions need to be removed.

Sweep and prune
The sweep-and-prune (SAP), also called sort-and-sweep, al-
gorithm originates in works by Baraff [2]. The idea is to
project the objects onto one linear axis. All objects then
calculate the starting and the ending points of their projec-
tion onto that axis. The objects are then sorted by both
these values. If one object’s starting point or ending point
lies within the starting and ending interval of another object,
these two objects potentially have a collision. Projection is
then repeated for all axes (for example, the three axes for
3D space). If two objects have overlapping intervals for all
tested projections, they are considered a possible collision
pair.

An advantage of this algorithm is that the axis projections
do not completely change, if the system is only minutely al-
tered. Specific sorting algorithms are employed, which are
efficient for sorted lists (such as insertion sort). Numer-
ous optimizations exist, such as using Principal Component
Analysis (PCA) for determining the axes. The SAP method
cannot immediately be ported to the GPU, as there are some
naturally sequential parts (mostly contained in the sweep
phase). After some modifications, an efficient GPU variant
has been developed [18]. This however only works for small
(< 64K) system sizes, as SAP does not cope well with very
large systems. Scaling for large systems has been achieved

in their implementation by introducing coarse bins for the
system that are independently “swept and pruned.”

Bounding volume hierarchy trees
A more complex approach to the collision problem is that
of a bounding volume hierarchy. The underlying data struc-
ture of this approach is a tree (usually a binary tree), whose
leaves are the objects of the system. Every other node of the
system contains a volume. The tree is built in such a man-
ner that all child node’s volume is contained in their parent
node’s volume. These trees can be built with varying quality
(e.g. how balanced they are). For applications in which the
system is static and the tree is frequently traversed, such as
in ray tracing, higher quality trees are used. For our appli-
cation, we need to frequently rebuild the tree. This can be
done efficiently using the algorithm proposed by Karras [13]
which is based on the M-Code [16]. Lauterbach also presents
an efficient way to traverse the tree on the GPU [17].

1.4 Organization
The rest of the paper is organized as follows. We describe

the hollow sphere/shell intersection problem in Section 2,
followed by a presentation of our new hollow sphere/shell
intersection algorithm in Section 3. Section 4 describes the
parallel version of the algorithm and presents the details
of its implementation on GPUs. A detailed performance
study is presented in Section 5. Finally, Section 6 concludes
the paper with a summary of the results and findings, and
outlines future work.

2. HOLLOW SPHERE INTERSECTION
In what follows, we will refer to the solid sphere intersec-

tion problem as SSX and the nested hollow sphere intersec-
tion problem as HSX. Also, in the context of HSX, we will
use the terms spheres and shells interchangeably.

2.1 Definition and Description
The HSX problem is concerned with finding all pairs of

spheres that are overlapping and can be formally defined as
follows (vectors are denoted in bold font).

A single hollow sphere object hi is defined by its posi-
tion xi, its radius ri, and its shell thickness qi (qi = 0 is a
valid choice). Note, that an sphere’s radius marks the outer
perimeter, while a sphere around xi with radius ri−qi marks
the inner perimeter of the hollow sphere.

This allows for the definition of the following three rela-
tions.

• Non-commutative contains relation C(j, i) that spec-
ifies whether shell hj is completely contained within
shell hi:

C(j, i) =

{
true if |xi − xj | < rj − qj − ri
false otherwise

(1)

• Commutative contains relation Ĉ(j, i) that specifies
whether one of the shells hj and hi completely contains
the other:

Ĉ(j, i) = C(j, i) ∨ C(i, j), and (2)

• Commutative intersection relation IHSX(j, i) = I(j, i)
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that specifies if shells hi and hj intersect:

I(j, i) =

{
true if ¬Ĉ(j, i) ∧ |xi − xj | ≤ rj + ri

false otherwise
.

(3)

The HSX problem can now be defined as: given a set of
n hollow spheres, compute the set of unique pairs of inter-
secting spheres {〈j, i〉 |I(j, i) = true}.

2.2 HSX versus SSX
The SSX problem only differs from HSX in the definition

of the intersection relation. In SSX, the commutative inter-
section relation ISSX(j, i) is defined as

ISSX(j, i) =

{
true if |xi − xj | ≤ rj + ri

false otherwise
. (4)

Since the HSX intersection criterion is stricter than that of
SSX, it follows that an HSX intersection implies an SSX
intersection, that is,

IHSX(j, i)⇒ ISSX(j, i) , (5)

but not the other way around. This means that any result
of SSX can be converted to an HSX result by means of a
linear pass over the results to cull spurious pairs that do not
intersect in the hollow sense. However, such an approach of
generate-and-cull-pairs can be prohibitively expensive. Con-
sider a simple scenario in which all n spheres share the same
center, but have varying radii and zero thickness. Any SSX

algorithm would return n(n−1)
2

= O(n2) pairs, however the
correct HSX result would be 0 pairs. The difference is fur-
ther illustrated in Figure 2.

Figure 2: Here the difference between HSX and SSX is ilus-
trated. Collisions are indicated by dashed lines. On the
right, the HSX case illustrates a collision occurring between
E and C. On the left, in the SSX case, the inclusion of A
and B in E is also counted as a collision, which are not valid
collisions in HSX

2.3 Computational Problem
The computation of the list of pairs of intersecting pairs

is a major computational burden in the simulation of cell
biology systems [3]. Hence, efficiency improvements in the
computation of intersections directly will improve the simu-
lator speed and the size and number of models that can be
simulated.

Efficient intersection algorithms exist for calculating col-
lisions of solid spheres, which could be applied to hollow

sphere models as a rough approximation. However, for dy-
namically nested models as in cell biological systems, the
use of solid sphere intersection algorithms is fundamentally
mismatched. The computationally intensive core problem is
in fact an HSX problem, rather than SSX.

Although it is possible to apply SSX algorithms for solv-
ing the HSX problem, (a) the number of pairs generated by
SSX algorithms is potentially much larger than what HSX
defines, and (b) more computational work/runtime may be
wasted by SSX algorithms when applied to the HSX prob-
lem.

In many systems spheres only move very little between
steps. Instead of recalculating all intersections every step,
it could be useful to calculate all neighbors in some vicinity
and update that data only occasionally. This can easily be
done by enlarging the radius and thickness of the spheres
during the neighbor calculation. A simple upper bound for
the size/thickness increase may be computed by considering
the maximum velocity in the system and then calculating
the maximal distance covered by any object within a given
time step.

3. NEW HSX ALGORITHM
In this section, we present our new algorithmic approach

to solve HSX problems. An overview of the algorithm is
provided, followed by the details of the algorithmic steps,
and a description of how large and small spheres are handled
in the algorithm.

3.1 Algorithm Description
The algorithmic framework for HSX we propose here is

inspired by the fast Fixed Radius Nearest Neighbor (fast
FRNN, or fFRNN) algorithm proposed by Hoetzlein [11].
The FRNN problem can be seen as a special case of SSX in
which all spheres have the same radius. The fFRNN algo-
rithm provides a very efficient way to solve such problems
on the GPU, by binning all spheres into a grid and then it-
erating over that grid. In fFRNN, each sphere is associated
with exactly one bin, and the bins are large enough such that
each sphere needs to only consider the neighboring bins for
possible collisions.

Input: Set M of shells (hollow spheres)
Data: The initial grid size d0
Result: Set R of possible HSX collisions

1 d← d0 // typically, d0 = mini(ri)
2 while M 6= ∅ do
3 S ← {si|si ∈M ∧ ri ∗ 2 < d}
4 L ← {si|si ∈M ∧ ri ∗ 2 ≥ d}
5 GFRNN ← grid(S, d)
6 RS ← {〈sj , si〉 | inMoore(G, sj , si)}
7 Bli ←

{b|b ∈ G ∧ ∃sk {b = Bin(sk, G) ∧ I(sk, li) = true}}
8 RL ← {〈sj , li〉 |sj ∈ S ∧ sj ∈ b ∧ b ∈ Bli}
9 R← R ∪RS ∪RL

10 M ←M \ S
11 d← d · 2
12 end
13 return R

Algorithm 1: The new HSX algorithmic framework

Our algorithm builds on the concept of grid-based binning,
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but introduces different phases for different sizes of shells.
This will be covered in the following step-by-step description
of Algorithm 1.

Initially, a grid size d is chosen that is able to handle
the smallest sphere in an fFRNN fashion. Grid size here
refers to the width of the spatial bins. Thus, as a reasonable
choice, d needs to be larger than the diameter of the smallest
sphere. Furthermore, at the beginning, all the spheres are
considered to be unprocessed and are therefore part of the
set M of spheres that have not yet been fully processed.

In the main loop (while starting on line 2), the number
of unprocessed spheres M is iteratively decreased until all
spheres are fully processed and the problem is completely
solved.

First, spheres are partitioned into two sets: L being those
spheres with a diameter larger than d, and S being those
with a diameter less than or equal to d. Next, these two sets
are processed in relation to each other.

3.2 Processing Small Spheres
The grid GFRNN is used to determine, in constant time,

all small spheres in a certain area of space. This is shown
in Algorithm 1 on line 5. Each sphere in S is assigned to
a grid cell in GFRNN as determined by the position of its
center. Efficient creation of the grid and its associated look-
up structure is discussed in Section 4.1.

On line 3, all collisions among the spheres within S are de-
termined, that is, one small sphere overlapping with another
small sphere. The notion of “small” is relative to the current
value of d: at any given iteration, all spheres in S are of size
no larger than d. Since all spheres in S are smaller than the
grid width in terms of diameter, it is sufficient to examine
the 9 cells (in 2D models) or 27 cells (in 3D models) within
the Moore neighborhood of each sphere si (including itself).
This is accomplished in line 6, where inMoore(G, sj , si) de-
notes that the spheres sj and si are contained in the Moore
neighborhood of each other within the grid G.

It is also useful to make sure that redundancies are avoided,
such as in the pairs 〈a, b〉 and 〈b, a〉. This can be easily
achieved by imposing an ordering criteria (for example, us-
ing the sphere identifiers).

3.3 Processing Large Spheres
The goal when processing the large spheres is to find all

grid cells for each large sphere that contain smaller spheres
potentially colliding with the larger spheres. In other words,
for each large sphere, this part of the processing considers
all smaller spheres whose centers are located in any of the
grid cells spanned by the large sphere.

This is accomplished in two steps. First, in line 7, for each
large sphere li, a list Bli is created that contains all the grid
cells that could possibly contain a small sphere s with a
potential collision with li. This list of grid cells is designed
to only consider the rim of the large sphere and avoid the
potentially empty space in the middle of the sphere where no
intersections can occur with that sphere. This computation
would take into account the discretization of the sphere into
d-sized grid cells enclosing the shell walls. In line 8, the grid
cells Bli of each li are consulted to determine each small
sphere sj that actually lies in those grid cells and, thereby,
mark 〈sj , li〉 as a colliding pair.

In the next step, in line 9, all the cells that were found to
contain potentially colliding small spheres are added to the

resulting list R. This is the combination of RS , which con-
tains small-small sphere collisions, and RL, which contains
small-large sphere collisions.

All the small spheres of this level (corresponding to grid
size d) can now be removed from the M , as they no longer
need to be processed. This is done in line 10. The loop
is then repeated with an increased value of grid size d, as
shown in line 11.

4. PARALLEL EXECUTION ON GPU
The HSX algorithm in Algorithm 1 has been designed with

the objective of applying it to parallel computing hardware
such as GPUs. Therefore, each step of the algorithm has
been designed to allow implementation as parallel comput-
ing operations.

Note that, as a general rule, all spheres are stored in con-
tiguous memory arrays to enable efficient memory access
throughout the algorithm. To implement line 3 and line 4
of Algorithm 1, the array containing the sphere data is par-
titioned such that all smaller spheres are in front and all
larger spheres are behind a certain indexed position. This is
parallelized on the GPU using techniques such as indicator
sequences and prefix sums [21].

4.1 Creating the Grid
To implement line 5 of Algorithm 1, the process of creat-

ing the grid for fast look-up via counting sort on the GPU
(similar to the method used by fFRNN) is as follows.

1. Generate a vector V of integers initialized to zero, with
each entry in the vector corresponding to one grid cell.

2. Iterate (in parallel) over all spheres, calculating their
grid cell identifier to which they belong, (atomically)
incrementing the corresponding counter (of that grid
cell) in V by 1, storing the old value of V at that
position with each sphere. This value will indicate for
each sphere its rank within a grid cell. The global
atomic operations on modern GPUs permit this step
to be accomplished very efficiently.

3. Compute the prefix sums1 of V . This is a well studied
operation that is efficiently parallelized on the GPU.

4. Create a new vector K storing all spheres in a different
order – the new position of each element is computed as
the index i, where i is equal to the value of its grid cell
in the prefix-summed V plus its rank stored from the
earlier access to V . This guarantees that each sphere
has a different position in K, and all spheres can be
moved to K independently, which allows this operation
to be performed in parallel.

5. As a result of the previous steps, the data structures
V and K are created that, when used together, allow
constant-time access to all spheres in a certain grid cell.
For example, queries to all spheres in any given i-th cell
can be found in constant time. These are conveniently
stored as contiguous elements from K[V [i]] to K[V [i+
1]− 1].

1An exclusive prefix sum is an operation on a list of numbers
in which each element is the sum of all its preceding elements
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4.2 Assembling to the Result Set
In principle, it is possible to parallelize the operation of

looping over all data in order to implement line 9 of Algo-
rithm 1. However, parallel execution of operations on data
structures such as R might lead to race conditions. After
all the pairs are determined, the pairs are scattered in mul-
tiple segments across the memory. Therefore, they need to
be collected into a single contiguous array before they are
returned as the result. This is done in the following way in
our implementation when processing the small-small sphere
interaction.

1. Create an array with an integer entry for each grid cell.

2. Iterate in parallel over each grid cell to determine the
maximum number of collisions found by looking at the
number of spheres in the Moore Neighborhood of that
grid cell and store that count in the array.

3. Perform a prefix sum on the array and allocate suf-
ficient storage for R such that all possible collisions
would fit.

4. Using the array as an index structure, iterate in par-
allel over each grid cell and write all possible collisions
to R.

5. Prune the list R under the criterion of redundancy
(〈a, b〉 ↔ 〈b, a〉). Since the previous steps iterate through
the result anyway, the precise intersection condition
Equation 3 can also compute and remove the pairs
that were erroneously added due to the grid being too
coarse (that is, they were incorrectly flagged as inter-
secting).

6. Removing spheres from an array A in parallel is a sim-
ple, four-step process, outlined here for illustration,
similar to the array partitioning operation previously
indicated.

(a) Create a second array C that has an integer cor-
responding to each entry in the array.

(b) In parallel, set each entry to 0 if the corresponding
entry in A is to be removed, or set it to 1 if the
entry should stay.

(c) Perform a prefix sum on C.

(d) Re-position all entries to be kept in A to their
new position as given by C.

The same process of creation followed by removal can also
be used for adding the small-large collisions to R. However,
pruning is not necessary for R as there cannot be redundant
entries.

4.3 Finding Grid Cells for Large Spheres
In implementing line 7 of Algorithm 1, the task of finding

the grid cells that enclose each large sphere’s shell walls is
not an easy operation to accomplish on a GPU. This is be-
cause different sphere sizes lead to different workloads per
sphere. To address this problem, we have chosen the follow-
ing approach.

1. For each sphere, using a rectangular bounding box,
estimate the maximum number of grid cells that it
overlaps.

2. Instantiate each of these grid cells in an array B and
check if the cells actually overlap the sphere, or, if the
cell is surrounded by li, but, due to its finite thickness,
there is no possibility of collision. If not, mark them
and remove them from the array.

3. Now, for each of these grid cells b in B, find the corre-
sponding grid cell gFRNN in GFRNN.

4. For all b, determine the collisions of all small spheres
in gFRNN with the large sphere that spans the grid cell
b. Add these collision pairs to the result set R.

4.4 Implementation Details
We have implemented our algorithm using NVIDIA CUDA

v8.0 and the thrust package. The thrust package is a li-
brary that provides numerous standard algorithms, such as
the aforementioned partition or prefix sum operations, with
a consistent iterator interface that is inspired by the C++
standard template libraries. This offers us several advan-
tages. First, the implementation effort is simplified because
basic algorithms such as prefix sums do not need to be reim-
plemented in CUDA. Secondly, the code remains resilient to
hardware changes as the thrust library is continuously up-
dated and optimized to fit the latest parallel hardware. The
benefits of the approach are evident from the fact that it
was not necessary to specify low-level CUDA configuration
such as block and thread counts to obtain optimal perfor-
mance in our current hardware setup. Our HSX algorithm
required several complex functions or CUDA-specific expres-
sions such as atomics, but even those were utilized via the
thrust interface (such as for each) available in the form
of C++11 lambda functions. In the form of zip iterators,
thrust also provides a convenient and consistent way to
use the structure-of-arrays idiom, that is preferred for per-
formance considerations over the, array-of-structures idiom,
that is commonly used in object oriented programming. Fi-
nally. thrust also provides a back-end for CPU parallelism.
This would allow us to create a parallel CPU version of the
code with little extra work.

Our prototype can handle both two-dimensional (2D) and
three-dimensional (3D) scenarios. Our code supports both
single and double precision floating point arithmetic, but
performance results presented here are with single precision.

5. PERFORMANCE STUDY
In order to empirically understand the performance of the

algorithm and its implementation (called GHSX), we un-
dertake a scalability study and run time evaluation of the
system operating on a range of scenarios.

5.1 Experimental Setup
For each number of spheres investigated, we generated

multiple system configurations, with different random ini-
tialization. Each of the generated scenarios was processed
using different intersection algorithms. For each system-
algorithm pair, the average run time is recorded from ten
runs (five runs in the case of less sensitive configurations).
In order to compare our algorithm to some baseline, we chose
the chrono::collide package from the Project Chrono
suite of physical simulation tools [33]. The source code
for chrono::collide was published and documented under
BSD-3 licence on github [1]. The chrono::collide package
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is a CUDA-based GPU implementation of a uniform grid
collision detection algorithm. The experimental study exe-
cuted all scenarios with each intersection algorithm. Note
that our algorithm as well as the chrono::collide pack-
age return a set of pairs that are potential collisions rather
than actual collisions. This is because generally broad phase
collision detection algorithms don’t return a perfect result
containing only the actual collisions.

Hence, for a fair comparison, we prune the returned re-
sults from all algorithms the same way (to determine ac-
tual collisions from the computed potential collisions set).
This pruned (tighter) set is the final result transferred back
from the GPU. Operationally, this is achieved by means of a
thrust::remove_if call. Note that chrono takes the initial
grid size as a parameter, just as our algorithm (d0 in Algo-
rithm 1 line 1). For both algorithms we always chose the
optimal grid size.

For simplicity and scenario-independence, we increase the
grid size d by a factor of 2 in each iteration (Algorithm 1
line 11). In future work, we plan to investigate the impact of
this growth function of grid size on the overall performance
of our algorithm depending on the type of system.

In order to make a reasonable comparison, the tool should
run on the GPU and be able to handle arbitrary sphere sizes.
Many current tools that originate in the areas of molecular
dynamics or fluid dynamics are unsuitable, because they do
not support the combination of GPU-based execution and
arbitrary sphere sizes. The gSAP system for simulating col-
lisions among many rigid bodies [18] (available on-line) is
an exception, but it does not offer documentation and is
restricted to Windows platform (communication with the
authors also was not fruitful).
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Figure 3: Run time spent in different parts of the algorithm,
as a function of the number of spheres

5.2 Benchmarks
The generalized HSX problem can be instantiated in a

variety of system configurations. To exercise the algorithm
and its implementation, multiple parameters are varied: the
total number of spheres in the system, the distribution of
the spheres’ radii, the density of the system measured in

spheres per unit volume, and the thickness of the shell walls.
All systems are investigated in 3D, except where explicitly
mentioned otherwise.

Generally, in cell biological systems of interest to us, there
are a relatively smaller number of large-sized compartments
such as nucleus, cytosol, or membrane, and a larger num-
ber of smaller-sized compartments, such as mitochondria or
lysosomes interacting with many small objects like proteins.
In our test cases we model this variance by means of an
exponential distribution

P(r) = e−r , (6)

as it offers a representative distribution of sizes.
In order to avoid system boundary overlap (or periodic

boundary conditions), that are supported by GHSX, but
not by chrono, the systems are initialized as follows.

1. Generate an sphere with uniform random position in-
side the volume and a radius from the exponential dis-
tribution (Equation 6)

2. If the sphere does not overlap with the systems border,
add it to the system. Otherwise, discard it.

3. Repeat the preceding steps until the system has the
desired density for the scenario.

When applied to systems with a small number of spheres,
this process results in a slight bias towards smaller spheres,
as they are less likely to intersect with the outline of the
volume, when placed randomly. For larger systems, this
bias asymptotically approaches zero.

For specific sections of the performance evaluation we also
study other special cases, such as uniform sphere size. Some
of the system scenarios are illustrated in 2D in Figure 4.

5.3 Software and Hardware Enviroment
All the experiments were executed on a headless server,

DELL PowerEdge R730, containing two Intel Xeon Pro-
cessor E5-2683v4 (40M Cache, 2.10 GHz), 256GB RDIMM
Memory (2400MT/s) and running CentOS version 7. GPU
acceleration was provided by an Nvidia Tesla K80 card us-
ing a driver version 367.48 under the CUDA toolkit version
8.0.44.

5.4 Performance Results
Our first key result (as observed from Figure 5) is that for

a dense large (10000) system the performance of our algo-
rithm performs well, running faster than chrono by about
50%. However, for sparse systems, it does not perform as
well, as shown in Figure 6. This is expected because our al-
gorithm is specially designed to handle nesting, while sparse
systems exhibit limited nesting. All these runs used the
same exponential distribution for the sphere sizes. The den-
sity was varied between 10 and 0.1 spheres per unit volume.

The density relation can also be seen in Figure 7. Clearly
our implementation benefits from having a more tightly
packed system. The denser a system is, the higher the num-
ber of collisions between large and small spheres, and, more
importantly, the more likely it is that non-HSX tools will
spend extra work detecting spurious collisions that do not
exist when nesting is considered.

The observation that large spheres make the difference can
be made from Figure 8. In highly dense scenarios containing
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(a) Exponentially distributed
radii, sparsely distributed po-
sitions

(b) Exponentially distributed
radii, densely distributed po-
sitions

(c) Varying thicknesses, ex-
ponentially distributed radii,
sparsely distributed positions

(d) Uniformly distributed
radii, sparsely distributed
positions

Figure 4: Illustrations of some of the benchmark cases

large spheres, both tools perform fairly similarly. This is
because both of them perform roughly the same steps.

When the system contains spheres of only one size, there is
no need for our algorithm to iterate through multiple phases,
as there are only small spheres. The small-small intersec-
tion is already handled in an optimal way. Nonetheless, it
can be seen that chrono performs better, at least at a large
number of spheres. This is due to differences in implemen-
tation between the two software tools, to be able to account
for nesting or not. Interestingly, chrono performs poorly at
5000 spheres (actually slower than with 10000 spheres). In
this case, our implementation was 20% faster. This perfor-
mance persists even when the positional configuration of the
spheres is changed; also,it appears in sparse systems as in
Figure 6, although not as pronounced. We hypothesize it as
attributable to some thread allocation or buffer size which
is perhaps sub-optimally set.

5.5 Number of Collisions
Further motivation for our multiphase algorithm can be

found by looking at the theoretical number of HSX collisions
present in the system compared to what other variants find.
Here we focus on the theoretical minimum that could pos-
sibly be found by an ideal algorithm. In reality, most al-
gorithms (including ours) return a larger set. In Figure 10,
the difference between, the collisions found by using HSX,
SSX and axis aligned boundary boxes (AABBs), as used by
chrono is laid out. It is clear that in this test case the dif-
ference between HSX and SSX in marginal. This can be
further seen in Figure 9, where varying the thickness of the
spheres only very slightly changed the number of collisions.
The run time was also hardly influenced by the thickness.
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Figure 5: Run time for very dense system with exponentially
distributed radii. At large system sizes, the performance
gain of GHSX is about 50%
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Figure 6: Run time for sparse system with exponentially
distributed radii. chrono is significantly faster than GHSX
for this sparse scenario

However, what makes a big difference in both plots is the
difference between AABB and HSX/SSX. This is also where
the performance difference seen in Figure 5 stems from. Not
only does our algorithm handle nesting well, but also, as a
byproduct, offers an efficient, generalized way of handling
large spheres in close proximity to smaller ones. This is
due to the finer grid used to sample the surroundings of big
spheres, whereas chrono uses an AABB approach.

5.6 Scaling with System Size
In Figure 11, we investigate the scaling characteristics of

the algorithm in 2D and 3D. It is seen that, with fewer
than 10000 spheres, the resources are not used very well,
as time per sphere or collision is seen to increase. The 2D
version is observed to be relatively less efficient than the 3D
simulations. This is possibly because the program, designed
for 3D, has unused memory when only doing 2D. It could be
customized to perform well specifically for 2D. Unlike ours,
few other tools offer the useful capability to handle both 2D
and 3D scenarios in the same implementation.
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radii, corresponding to the configuration illustrated in Fig-
ure 4d

5.7 Highly Nested Case
The preceding experiments using random initial positions

offer only a low degree of nesting. In physically-based struc-
tures, as in cell biology, the degree of nesting is higher.
Spheres are more likely to be fully nested than to be in-
tersecting. Therefore, to experiment with an extreme case,
a scenario is created in which all spheres are perfectly nested
within one another (concentric spheres).

As expected, Figure 12 shows that increased amount of
nesting leads to a significant speedup of our implementation
over chrono, because chrono, by design, only handles non-
nested (solid) spheres, and hence does not account for the
nesting.

5.8 Performance Improvements
There are a few aspects of the implementation that remain

to be improved. Figure 3, shows that pruning and returning
takes up a significant fraction of time towards the end of
the execution. This is mainly due to design choices made
for ease of implementation. In some places, in order to sim-
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plify memory access, the used amount of memory needs to
be overestimated, leading to data structures that turn out
to be smaller than estimate and hence need to be pruned.
Furthermore, data layout could be improved after pruning
which makes most memory access not coalesced.

Another potential improvement is in the work balance
among the computational threads. When threads are as-
signed per spheres, large spheres induce higher work loads,
leaving threads with smaller spheres idle.

The current implementation is also limited in the size of
the problem due to memory concerns. The current data
structures limit the number of spheres to 50000-200000, de-
pending on problem structure. This is planned to be fixed in
the future by partitioning larger problems into manageable
sizes. Sometimes in the later iterations of the algorithm,
only a small number of large spheres remain. At this stage,
a simple brute force approach of checking all pairs for po-
tential intersection would be faster, compared to the cost of
building up a complex grid data structure as is done cur-
rently.

Additionally, there are potentially algorithmic improve-
ments. The first concerns the determination of the initial
grid size and, related to that, the growth factor of the grid
size, or, more generally, a non-linear growth function. At the
moment, in each iteration we simply double the grid width,
but other more efficient ways can be imagined, dependent
on the properties of the system.

6. SUMMARY AND FUTURE WORK
Motivated by the problem to introduce dynamic nesting

into particle-based reaction diffusion simulation in contin-
uous space, we identified a core computational problem,
namely, the efficient determination of all pairs of spatial in-
tersections of the spheres.

Detecting whether or not two spheres intersect (and thus
collide) is a crucial step in such simulations, as it forms
the basis for determining various types of biochemical re-
actions. Most collision detection algorithms focus on solid

181



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.01 0.1 1 10 100 1000 10000

N
u
m

b
er

o
f

co
ll
is

io
n
s

(m
il
li
o
n
s)

Spheres per unit volume

AABB
SSX
HSX

Figure 10: Variation of the number of estimated collisions in
a system with exponentially distributed radii, counted using
HSX, SSX, and AABB

0.1

1

10

100

1000 10000 100000

A
m

o
rt

iz
ed

ti
m

e
sp

en
t

(µ
s)

Number of spheres in system

3D per particle
2D per particle
2D per collision
3D per collision

Figure 11: Scaling for 2D/3D variants of semi-dense system
with exponentially distributed sphere radii. The number of
collisions was kept similar for both 2D and 3D

sphere interactions (SSX) and thus tend to identify spurious
collisions.

As a new and more suitable formalization, we defined the
problem of hollow sphere intersections (HSX), which is an
elegant generalization of dynamically nested compartmental
structures. The abstraction is based on spherical bounding
boxes for the spheres and inter-sphere interactions at multi-
ple levels of nesting. We addressed the computational prob-
lem in determining all pairs of intersecting spheres under the
special considerations of nested containment.

We designed a novel algorithm for the problem and im-
plemented the algorithm on the GPU platform. We exe-
cuted experiments with several scenarios of hollow spheres
of different sizes, thicknesses, positions and nesting levels
in systems of varying density. A comparison with another
GPU-based algorithm from a leading solid sphere intersec-
tion package demonstrated the value of our new approach,
not only with regard to handling highly nested systems but
also for handling systems with spheres of varying sizes, whether
they are solid or hollow.
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Figure 12: Speed up observed in a highly nested case

The quality of collision detection results and the run time
performance of the algorithm are very encouraging. Our
implementation presents a proof of concept with many pos-
sibilities for additional improvement. The algorithm and
implementation have also been integrated into a cell bio-
logical simulator to simulate scenarios at larger scale and
higher speed. A separate study is underway in analyzing
the performance of the overall application with cell-biology
configurations.

Acknowledgements
This work was partly supported by a fellowship of the Ger-
man Academic Exchange Service (DAAD) and the Ger-
man Research Foundation (DFG) via the research grant ES-
CEMMO (UH66-14).

This manuscript has been authored by UT-Battelle, LLC
under Contract No. DE-AC05-00OR22725 with the U.S.
Department of Energy. The United States Government re-
tains and the publisher, by accepting the article for pub-
lication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, worldwide li-
cense to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Gov-
ernment purposes. The Department of Energy will pro-
vide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

7. REFERENCES
[1] https://github.com/uwsbel/collision-detection, 2014.

[2] D. Baraff. Dynamic Simulation of Non-Penetrating
Rigid Bodies. Ph. D thesis, Computer Science
Department, Cornell University, 1992.

[3] A. Bittig and A. M. Uhrmacher. ML-Space: Hybrid
spatial gillespie and particle simulation of multi-level
rule-based models in cell biology. IEEE/ACM
Transactions on Computational Biology and
Bioinformatics, online first: August, 2016.

[4] L. Dematte. Smoldyn on Graphics Processing Units:
Massively Parallel Brownian Dynamics Simulations.
IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 9(3):655–667, May 2012.

182
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[30] J. Schöneberg, A. Ullrich, and F. Noé. Simulation
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