
Interfacing JavaScript and MPI
Dr. Kalyan S. Perumalla & Charles “CJ” Johnson

Introduction

Terminology
• C:	 the	C	Language;	A	structured,	procedural	programming	language	that	

has	been	widely	used	both	for	operating	systems	and	applications	and	that	
has	had	a	wide	following	in	the	academic	community.	[1]	

• Fortran:	 FORTRAN;	Formula	Translation;	a	third-generation	
programming	language	that	was	designed	for	use	by	engineers,	
mathematicians,	and	other	users	and	creators	of	scientific	algorithms.	It	has	a	
very	succinct	and	spartan	syntax.	Today,	the	C	language	has	largely	displaced	
it.	[2]	

• C++:	 A	general-purpose,	object	oriented	programming	language	developed	
by	Bjarne	Stroustrup,	and	is	an	extension	of	the	C	language.	It	is	considered	
to	be	an	intermediate	level	language,	as	it	encapsulates	both	high	and	low	
level	language	features.	Initially,	the	language	was	called	'C	with	classes’	as	it	
had	all	properties	of	C	language	with	an	additional	concept	of	'classes’.	
However,	it	was	renamed	to	C++	in	1983.	[3]	

• JavaScript:	 Javascript;	JS;	A	scripting	language	primarily	used	on	the	Web.	
It	is	used	to	enhance	HTML	pages	and	is	commonly	found	embedded	in	
HTML	code.	JavaScript	is	an	interpreted	language.	Thus,	it	doesn't	need	to	be	
compiled.	JavaScript	renders	web	pages	in	an	interactive	and	dynamic	
fashion.	This	allowing	the	pages	to	react	to	events,	exhibit	special	effects,	
accept	variable	text,	validate	data,	create	cookies,	detect	a	user’s	browser,	
etc.	[4]	

• MPI:	 the	Message	Passing	Interface;	A	de	facto	standard	for	communication	
among	the	nodes	running	a	parallel	program	on	a	distributed	memory	
system.	MPI	is	a	library	of	routines	that	can	be	called	from	Fortran	and	C	
programs.	MPI's	advantage	over	older	message	passing	libraries	is	that	it	is	
both	portable	(because	MPI	has	been	implemented	for	almost	every	
distributed	memory	architecture)	and	fast	(because	each	implementation	is	
optimized	for	the	hardware	it	runs	on).	[5]	

• Open	MPI:	 OMPI;	Open	Message	Passing	Interface;	Open	MPI	is	an	open	
source,	freely	available	implementation	of	both	the	MPI-1	and	MPI-2	
documents.	The	Open	MPI	software	achieves	high	performance;	the	Open	
MPI	project	is	quite	receptive	to	community	input.	[6]	

• MPI-1	and	MPI-2:	 The	MPI	standard	is	comprised	of	2	documents:	MPI-1	
(published	in	1994)	and	MPI-2	(published	in	1996).	MPI-2	is,	for	the	most	
part,	additions	and	extensions	to	the	original	MPI-1	specification.	[7]	

• Node.js:	 Nodejs;	NodeJS;	Node;	A	server-side	platform	wrapped	around	
the	JavaScript	language	for	building	scalable,	event-driven	applications.	This	
is	confusing	for	even	experienced	programmers	because	the	traditional	
JavaScript	environment	has	always	been	client-side	-	in	a	user's	browser	or	
in	an	application	that	is	talking	to	a	server.	JavaScript	has	not	been	
considered	when	it	comes	to	the	server	responding	to	client	requests,	but	
that	is	exactly	what	Node.js	provides.	Node.js	is	not	written	in	JavaScript	(it	is	
written	in	C++)	but	it	uses	the	JavaScript	language	as	an	interpretive	
language	for	server-side	request/response	processing.	In	other	words,	
Node.js	runs	stand-alone	JavaScript	programs.	[8]	

Motivations
One	of	the	main	issues	with	MPI	as	it	was	defined	in	the	MPI-1	and	MPI-2	

standard	is	its	use	of	traditional	function	calls.	A	function	(ex:	MPI_Init(&argc,
&argv);)	is	invoked	and	it	is	a	requirement	of	the	implementation	that	before	the	
code	may	progress,	the	function	must	be	returned.	Often	times	this	seems	rather	out	
of	place	due	to	the	way	the	arguments	are	structured	in	the	MPI	library.	MPI	doesn’t	
directly	return	values	like	many	programmers	expect.	(ex:	int rank =
MPI_Comm_rank(MPI_COMM_WORLD);/* doesn’t work */)	Instead	the	specification	is	
such	that	you	must	first	allocate	some	memory	for	the	data	you	want	by	defining	an	
empty	variable	(ex:	int rank;)	and	then	passing	the	memory	address	of	that	
variable	as	an	argument	of	the	function.	(ex:	int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);/*rank is now set properly*/)	This	
makes	sense,	since	it	allows	for	less	invocation	layers	on	the	stack,	but	it	carries	
with	it	the	baggage	of	directly	setting	variables.	Before	MPI_Comm_rank()	ever	
returns,	(returning	is	required	in	order	for	the	code	execution	to	progress)	it	must	
wait	until	the	rank	variable	can	be	set.	This	process	by	which	the	program	is	forced	
to	wait	for	a	return	statement	is	called	“blocking”	and	MPI	uses	these	for	all	parts	of	
the	library.	“Blocking	function	calls”	are	great	in	that	they	ensure	information	(on	an	
individual	process)	moves	linearly.	When	a	function	is	called,	the	state	of	the	
program	is	known	and	the	same	state	is	retained	for	when	the	function	returns.	This	
is	a	convenience	and	it	helps	for	the	logic	of	the	program	because	it	allows	for	more	
linear	thinking	(at	the	process	level	–	it	should	be	noted	that	multiple	processes	run	
independently	so	the	same	rules	do	not	apply	at	that	level).	The	reason	this	is	a	
problem,	though,	is	that	it	creates	these	gaps	in	“real”	time	(the	time	on	your	watch)	
where	the	process	is	perfectly	capable	of	computing	more	data	or	performing	some	
other	action,	but	the	system	isn’t	allowing	it	to.	The	best	example	is	with	
MPI_Recv().	When	a	process	knows	it	will	want	some	data	from	another	process,	it	
calls	the	“receive”	function.	Often	times,	the	function	is	called	but	the	data	it’s	
looking	for	isn’t	there	yet.	Until	the	accompanying	MPI_Send()	is	called	by	another	
process,	the	data	simply	doesn’t	exist	yet	and	the	code	execution	is	stuck.	This	is	
somewhat	solved,	though,	as	there	are	two	“non-blocking”	versions	of	those	same	

functions.	MPI_Irecv()	and	MPI_Isend()	immediately	return	after	being	called.	The	
thing	is,	these	still	have	a	lot	of	overhead	to	deal	with	when	implementing	them	in	a	
program.	The	receiving	process	needs	to	use	the	MPI_Wait()	and	MPI_Probe()	
functions	to	try	and	resync	the	data	transmission	process	as	well	as	learn	about	the	
messages	being	received	in	order	to	make	a	decision	about	whether	the	data	is	
desired	or	not.	This	requires	constantly	looping	and	checking	in	addition	to	the	
program	that’s	already	running.	This	problem	also	is	magnified	by	the	fact	that	
every	single	process	must	go	through	the	same	steps	on	their	own	(it	can’t	be	
centralized).	This	is	where	JavaScript	comes	in.	JavaScript	is	a	fully	interpreted	
language.	It	cannot	be	compiled	to	binary	and	run	stand-alone	like	C/C++	programs	
can.	Instead,	it	requires	an	environment	in	which	to	run.	Traditionally,	this	is	the	
browser;	however,	outside	of	that	there	is	an	interpreter	called	NodeJS.	Node	takes	
in	JavaScript	code	and	runs	it	in	real	time	on	any	computer	that	can	handle	it.	(It’s	
compatible	with	GNU+Linux,	Solaris,	OS	X,	and	Windows.)	Part	of	the	JavaScript	
specification	requires	an	event	system.	Events	aren’t	handled	by	JavaScript	itself,	
but	instead	by	the	interpreter.	There	many	predefined	events	in	the	browser	such	as	
onclick,	onkeydown,	and	onload.	Node	follows	this	same	system;	however,	many	of	
these	UI	type	events	don’t	exist	due	to	it	being	a	command-line	only	application.	
Interestingly,	though,	events	can	be	defined	by	the	developer	in	code.	A	common	
one	is	an	HTTP	request	listener.	There	are	several	libraries	for	running	an	HTTP	
server	in	Node.js.	All	of	them	create	an	event	that	fires	whenever	a	request	is	
received	and	then	subsequently	fire	a	callback	function	at	that	time.	This	event	firing	
is	all	handled	by	the	interpreter	and	is	native	to	JavaScript.	There	is	no	need	to	write	
a	loop	checking	for	data.	There’s	no	need	to	constantly	sniff	messages	and	see	if	it	
contains	data	you’re	looking	for.	It	all	just	happens	at	whatever	time	the	data	
becomes	available.	Another	feature	native	to	JS	interpreters	is	multithreading.	
JavaScript	itself	has	no	notion	of	multithreading	in	the	traditional	sense;	however,	
when	an	event	fires,	instead	of	interrupting	the	execution	of	the	currently	active	
script,	it	simply	spawns	a	new	thread	to	run	the	newly	started	code	in.	There	is	no	
hard	limit	to	how	many	open	threads	an	application	can	have	and	since	the	memory	
is	all	managed	with	a		garbage	collection	system,	the	programmer	is	allowed	much	
flexibility	in	how	they	structure	event	handlers.	So	much	so	that	in	most	well	
written	applications,	there	is	very	little	“main”	code.	Almost	everything	is	tied	to	
firing	of	events.	This	presents	a	massive	speed	improvement	as	well	as	an	ease	of	
software	development	simply	not	found	in	traditional	languages	such	as	C.	Going	
back	to	the	MPI_Send()	and	MPI_Recv()	example,	in	a	multithreaded,	event-driven	
language	such	as	JavaScript,	the	program	flow	would	be	very	different.	At	some	
point	during	the	initialization	of	the	program,	on	the	receiving	process,	an	event	
would	be	created	and	assigned	to	a	callback	function.	(pseudo	code	ex:	
addEventListener(MPI_Recv(/*args*/), function(e){/*code to run*/}))	Then,	
the	program	would	continue	executing	as	normal,	but	at	any	point	in	the	future	if	a	
message	is	received,	the	interpreter	would	spawn	a	new	thread	and	execute	the	
callback	function.	This	all	sounds	great;	however,	it	does	lead	to	an	intereating	
question.	“If	NodeJS	is	spawning	new	threads	to	run	callback	functions,	how	does	
communication	between	threads	work?”	The	answer	is	quite	simple	in	this	case.	“It	
doesn’t.”	or	better	wording	“It	doesn’t	have	to.”	Even	though	new	threads	are	being	

spawned,	this	actually	does	not	affect	communication	between	threads.	There	is	
simply	no	need	for	it	because	all	threads	on	an	individual	process	are	run	using	the	
same	memory	and	the	scope	follow	the	flow	of	the	document	that	they’re	written	in.	
If	an	event	handler	is	written	inside	a	certain	scope	and	has	access	to	a	certain	set	of	
variables,	if	those	variables	have	maintained	state	up	to	the	point	of	the	event	firing,	
then	it	still	has	access	to	them.	It	can	be	hard	to	keep	track	of	such	data	so	it’s	better	
to	implement	event	handlers	on	the	global	scope,	but	that’s	simply	for	best	
practices.	There’s	nothing	about	the	language	that	would	require	it.	If	I	have	a	
variable	named	“test”	and	I	have	two	event	handlers	that	can	see	it	in	their	scope,	
then	both	of	them	have	full	access	to	it	just	as	if	they	were	in	the	same	thread.	It	is	
this	combination	of	native	language	features	that	makes	JavaScript	so	attractive.	The	
power,	the	flexibility,	and	the	ease	of	writing	for	the	development	process.	It	does	
add	a	layer	of	abstraction	over	the	native	code,	but	the	potential	gains	far	outweigh	
that.	That	is	the	real	reason,	the	motivation,	behind	interfacing	JavaScript	and	MPI	
for	use	in	HPCs.	

Technical Approach
In order to interpret the Javsacript code, Node.js was chosen.

Node.js is a modified version of the Javascript engine from the Chrome
web browser and it runs like any other C/C++ program in the console.
You feed it the name of a Javascript file as an argument and it simply
begins with the first line for excecution instead of requiring a main
function. It also includes a module loader called require.js which is used
to pull in more Javascript files for excecuting on the fly. There is no
compile or linking process, so all files must be present and in their
expected file paths in order for the it execute. Node does offer a nice
feature, however. It has it’s own package manager called “Node Package
Manager” or NPM that allows you to download dependencies from their
repo. With this, it creates a folder called node_modules that acts like the
/bin folder so Node always knows to check it for any files that require.js
is requesting.

Open MPI (short of “Open Message Passing Interface”) is a library
written in both C and Fortran that is designed for moving data between
processes of a program via “messages”. These messages are
implemented in the form of function calls. The sending process calls a
send function and the receiving process calls a receive function. The
receiving process must know/expect messages to be sent to it at any
time.

“Foreign Function Interface” or FFI is a Nodejs module that acts as
the “glue” layer between Javascript and native C. It is provided the name
of a C shared object file and it dlopen’s it at runtime. There is not a way
to statically link C libraries; however, it does allow for full compatibility
between the two languages. C functions can be called from Javascript no

problem. The returnable data is also passed back into Javascript with
ease. FFI even has additional smaller modules that allow for pointers to
be used in Javascript so as to allow any C code to work out of the box.	

Challenges Faced
After much testing, it was determined that a variable in Open MPI

was not compatible with Node.js’s environment. Some value called
*best_component was being cleared during Node.js’s initialization
preventing Open MPI from properly initializing. This was solved
temporarily by editing Node.js’s source code and adding a line that called
MPI_Init() from inside C instead of from Javascript.	

Status
The project is still created in such a way that it requires the source

of Node.js and Open MPI to be edited. Ideally it would run without
needing to change anything about those two codebases. More testing
needs to be done, but it is believed to not be as fast as native code due
to all of the layers of abstraction between Javascript and Open MPI’s C
code.	

Future Work
In the future, a production-ready version would vastly improve the

practicality and usefulness of this project.

Install Node.js
INSTALL OPEN MPI WITH NODE.JS COMPATIBILITY

Assumptions:
 - Debian-based Linux OS (min ver: 7.8.0)
 - sudo command pre-installed
 - Internet access to download files
 - At least 1gb of free space

Installation Steps:
 - Install build-essential
 $ cd /home/user
 $ sudo apt-get install build-essential
 - Install Open MPI
 $ cd /home/user
 $ wget http://www.open-mpi.org/software/ompi/v1.8/downloads/openmpi-
1.8.5.tar.gz
 $ tar -xvf openmpi-1.8.5.tar.gz
 $ cd openmpi-1.8.5

 $./configure
 $ make
 $ sudo make install
- Install Node.js and Node Package Manager
 $ cd /home/user
 // Note: the following command must not be executed prior to
configuring MPI
 // For reasons I can’t explain, it causes MPI to fail compiling.
But, once
 // ./configure is run on MPI, you can feel free to in stall these
other
 // packages since make and make install run just fine.
 $ sudo apt-get install git-core openssl libssl-dev pkg-config
 $ wget http://nodejs.org/dist/v0.12.4/node-v0.12.4.tar.gz
 $ tar -xzf node-v0.12.4.tar.gz
 $ cd node-v0.12.4
 $ (export CC=/usr/local/bin/mpicc; ./configure)
 $ vi src/node_main.cc
 // Insert “MPI_Init(&argc, &argv);“ into both main() and wmain()
 $ make
 $ sudo make install
- Install Node’s dependancies
 $ cd /home/user
 $ sudo npm install node-gyp ffi ref ref-struct ref-array

From here, you can execute “mpirun node <filename>.js” from the user’s
home folder
and it should work just fine.

Install Our MPI.js
OPENMPI WITH NODE.JS
- Install build-essential
 $ cd /home/user
 $ sudo apt-get install build-essential git-core openssl libssl-dev
pkg-config

 - Install Open MPI as usual

 - Install Node.js and npm from nodejs.org
 $ cd ~/Downloads/node-...
 $ mkdir $HOME/nodejs
 $./configure --prefix=$HOME/nodejs
 $ make
 $ make install (no sudo needed because it installs to ~/nodejs)

 - export NODE_PATH=$HOME/nodejs

 - Specially compile node/src/node_main.cc to invoke MPI_Init from its
main()
 $ Edit src/node_main.cc to insert “MPI_Init(&argc, &argv);“ into
main() and wmain()
 $ Compile src/node_main.cc with mpicc
 $ Link manually, replacing gcc with mpicc for the link command
 $ make install

 - Generate mpi.js
 $ sudo apt-get install clang-dev
 $ ln -s /usr/lib/x86_64-linux-gnu/libclang-3.4.so ./libclang.so
 $ ~/nodejs/node_modules/.bin/ffi-generate -f
/usr/local/include/mpi.h -l /usr/local/lib/libmpi.so -L . > mpi.js
 $ Edit mpi.js to change "exports./usr/local/lib/libmpi.so" to
"exports.mpi"
 $ mv mpi.js $NODE_PATH/node_modules

 - Install Node’s dependancies
 $ cd $NODE_PATH
 $ sudo npm install node-gyp ffi ref ref-struct ref-array

 - Run mpitest ("var mpi = require('mpi');
mpi.mpi.MPI_Init(null(null,null); mpi.mpi.MPI_Finalize();"
 $ Sequential: $NODE_PATH/bin/node mpitest.js
 $ Parallel: mpirun $NODE_PATH/bin/node mpitest.js	

