
Reversible Computing Case Study: Finding the Square Root

of an Integer

Melissa A. Yu Kalyan S. Perumalla

August 8, 2013

1 Abstract

Here we consider a case study in reversible computing, namely, how to reversibly compute
the integer square root b

√
xc of an integer x. Starting with a simple linear time algorithm,

we show how a simple reversal technique can be used to avoid saving the original number
x in order to recover it. This reversal technique is shown to require half the memory that
would otherwise be needed to save x. The linear time algorithm is then refined to improve
the computation time to be only logarithmically dependent on the input size, giving a
O(log x) run time using 1

2(1 + blog2 xc) bits of memory.

2 A Simple Square Root Algorithm

We would like to compute y =
√
x, where x and y are non-negative integers, i.e., y = b

√
xc.

A simple linear algorithm (linear with respect to the square root value) for acomplishing
this task involves testing successive y values until y2 ≥ x, i.e., until dy = x− y2 ≤ 0:

y=1 dy1 = x− 12

y=2 dy2 = x− 22

. . .
y=n dyn = x− n2 ≤ 0

At this point, y can be found:

y =
√
x =

{
n if dyn = 0

n− 1 if dyn < 0

The linear time algorithm is shown in Algorithm 1.

1

Algorithm 1 Linear Algorithm for Finding the Square Root

y ← 1
x← non-negative integer input
while y2 < x do

y ← y + 1
end while
if y2 > x then

y ← y − 1
end if
return y

3 Reversible Square Root Algorithm

3.1 Two Approaches

Consider the reversibilty of the linear algorithm presented earlier. We must recover the
input x from the output n. Let us examine two methods of doing this:

• Memory-copying approach: Save x in addition to n at the end of the computation.

• Reversible computing approach: Because n =
√
x, then x = n2. However, dyn = x−n2

is not necessarily 0. Thus, for accurate recovery of x, save dyn along with n at the
end of the computation.

3.2 Analysis of Memory Usage

Comparing these methods, we find that the main diference between them is that one encodes
x while the other encodes dyn at the end of the calculation. Therefore, we can compare the
two by comparing the number of bits needed to encode dyn versus x.

If: n2 ≤ x < (n + 1)2, i.e., n2 ≤ x ≤ (n + 1)2 − 1

Then:

dyn = x− n2

≤ [(n + 1)2 − 1]− n2

≤ 2n

The number of bits needed to encode dyn and x (|dyn| and |x| respectively) is:

|dyn| = blog2 dync+ 1 |x| = blog2 xc+ 1

≤ blog2 2nc+ 1 ≥ blog2 n
2c+ 1

≤ blog2 nc+ 2 ≥ b2 log2 nc+ 1

2

Manipulating the above inequalities, we obtain the ratio of the number of bits needed to
encode x versus dyn:

|x|
|dyn|

=
blog2 xc
blog2 dync

≥ b2 log2 nc+ 1

blog2 nc+ 2

≥ 2

We can conlude that remembering dyn instead of x saves memory by a minimum factor
of about 2. This shows that the reversible computing approach is twice as memory-efficient
as the memory-copying approach.

Through this simple example, we have seen that the challenge in developing algorithms
for Reversible Computing is not in making them reversible, but in making them memory-
efficient–any algorithm can be made reversible by simply adding a line to save the inputs
at the end of the computation.

3.3 The Reversible Computing Algorithm

Now, let us consider how we might alter the basic forward-only square root algorithm
(procedure “P”) presented earlier to make it reversible using the Reversible Computing
Approach.

Input x
Procedure P
Output n

(a) Irreversible For-
ward, Forig

Input x
Procedure P
Output n, dyn

(b) Reversible Forward,
Frev

Input n, dyn
Procedure Q
Output x

(c) Reverse, Rrev

As shown, the irreversible and reversible foward algorithms are virtually identical, using
the same procedure P to carry out the calculation. However, the reversible foward stores
dyn in addition to n at the end of the calculation. In order to recover the input x from the
output dyn, we must define a new procedure Q: x = n2 + dyn.

3.4 Optimizing the Run-time of the Algorithm

The simple linear search algorithm we have used until now has been sufficient for us to see
the difficulty of developing a memory-efficient reversible algorithm. However, this algorithm
still needs to be optimized for speed. For large values of x, the algorithm would take a long
time.

Consider the variant shown in Algorithm 2 to speed up our search which uses a “dou-
bling approach” to save time by finding the general range of the square root before fine
tuning. To quantify the savings in computation time, we will start with the observation

3

Algorithm 2 Logarithmic Algorithm for Finding the Square Root

k ← 0
x← positive integer input
while 22k ≤ x do . Keep doubling y until y2 > x to find range for n

k ← k + 1
end while
k ← k − 1
y ← 2k . n must be somewhere between 2k and 2k+1

while k > 0 do . Search within range using doubling approach again
k ← k − 1
if [y + 2k]2 ≤ x then

y ← y + 2k

end if
end while
return y

that computation time is directly proprtional to the number of steps, and use this to find
the computation time for the doubling approach.

Tdoubling =

Total Doubling Approach Time︷ ︸︸ ︷
T1︸︷︷︸

Step 1 Time

+ T2︸︷︷︸
Step 2 Time

T1 = O(log
√
x)

T2 = O

(
log

√
x

2

)

Tdoubling = O(log
√
x) + O

(
log

√
x

2

)
= O(log

√
x)

Applying the same reasoning, we find the time taken by our original algorithm (Torig):

Torig = O(b
√
xc).

4 Summary of Findings

Given an integer input x that is w bits long, b
√
xc can be found reversibly using O(log

√
x)

steps and w
2 bits of memory.

4

