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ABSTRACT 

Radio signal strength estimation is essential in many applications, including the design of 
military radio communications and industrial wireless installations.  While classical 
approaches such as finite difference methods are well-known, new event-based models of 
radio signal propagation have been recently shown to deliver such estimates faster (via serial 
execution) than other methods. For scenarios with large or richly-featured geographical 
volumes however, parallel processing is required to meet the memory and computation time 
demands.  Here, we present a scalable and efficient parallel execution of a recently-
developed event-based radio signal propagation model. We demonstrate its scalability to 
thousands of processors, with parallel speedups over 1000×. The speed and scale achieved by 
our parallel execution enable larger scenarios and faster execution than has ever been 
reported before. 
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1. INTRODUCTION 

A novel event-based model was recently proposed1,2 for the prediction of signal strength  
in radio wave propagation. The proposed technique has been shown to yield accurate enough 
predictions without the high computational overhead of more traditional techniques such as 
finite difference time domain (FDTD) or ray-tracing methods.3,4 Validation studies2 have 
shown that the new model is more runtime efficient, albeit in the context of serial execution, 
compared to FDTD or ray-tracing methods. Parallelization of the above technique becomes 
necessary due to very large memory and computational time demands associated with 
simulations of radio signal propagation over large or richly-featured geographical areas, 
particularly when they need to be carried out in real-time. 

 
Motivation: Knowledge of radio signal path loss is of significant interest in the design and 
deployment of wireless communication networks.5 For example, in military scenarios, typical 
geographical terrains of interest are very large and often include physical features that range 
from buildings and mountains to natural reliefs and foliage. FDTD or ray-tracing models of 
radio wave propagation in such terrains is very intensive computationally, more so as the 
number of transmitters and receivers are increased. For scenarios with even a single source 
and a few receivers, traditional techniques exhibit large runtimes.2 In particular, faster 
turnaround times are needed for simulated mobile units (for example, when the transmitters 
and/or receivers are in moving vehicles). Efficient real time estimation of radio signal 
strength for such scenarios remains an area of on-going research.6,7 The reader is referred to 
references such as refs. 1–2 for additional details behind the motivation. 
 
Related Work: In FDTD methods, Maxwell's equations are discretized subject to specific 
boundary conditions and the resulting set of discrete equations are numerically solved.  Ray 
tracing methods are based on geometrical optics and are often more useful in scenarios where 
the feature sizes of the scatterers are large compared to the wavelength of the radio signals.  
Computing radio channel path loss predictions for deployment of large wireless networks 
using FDTD or ray-tracing requires huge grid sizes to ensure numerical accuracies of the 
final solutions. This makes the underlying computational problem very large. On the other 
hand, the input data that describes the physical geometry of the study site is very often of low 
precision and prone to large errors. As a result,  despite their large computational overhead, 
such high-precision techniques are unable to make accurate predictions. An alternative event 
driven approach that is based on a transmission line matrix (TLM) method was proposed1,2 to 
bridge the gap between low precision input data and accuracy considerations. In ref. 2 
authors have shown empirical results that indicate the runtime performance results of earlier 
traditional methods that clearly motivate the need for alternative models such as their new, 
event-based TLM model.  A TLM method uses equivalent electrical networks that are based 
on the link between field theory and circuit theory to solve certain types of partial differential 
equations stemming in EM field problems. Parallelizing the event driven TLM approach 
proposed in ref. 2 renders the methodology applicable to larger simulations of radio channel 
propagation that can include a greater number of receivers with extended geographical reach. 
For example, while serial execution is sufficient to deal with room-sized volumes, parallel 
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execution enables signal strength estimation from city block-sized urban scenarios to even 
larger volumes encountered in wider, mountainous terrains. A number of FDTD and ray-
tracing based methods are available for the simulation of radio signals. But, as mentioned 
earlier, inherent lack of precision in the input data renders such methods largely ineffective. 
An earlier attempt8 to parallelize the discrete event formulation of the TLM-based method 
described  in only exhibited limited scalability, with self-relative parallel speedup reported 
up to 25 processors. 
 
Model Description: The computational (simulation) domain is modeled by a three-
dimensional (3D) grid. Each grid point i  is a node that computes the time-varying electrical 
potential iV  of the wave that is traveling through the grid. Partial voltages ijx  and jix  are 
defined across each link in the grid that connects two neighboring nodes i  and j  in the 
directions i j→ and j i→ , respectively.  Partial voltages on the links capture information 
related to the permittivity and permeability constants of the medium, which in turn define the 
rate at which the wave travels between those two nodes. In this paper, the term voltage will 
always be used to refer to the total time-varying voltage defined at a node (grid point) while 
partial voltage will always be defined on links between two neighboring nodes. Note that an 
n n n× ×  grid contains 3n   grid points (voltages) and 36N n=  directional links (partial 
voltages).  When the power at any point in the simulation domain falls below a cut-off 
voltage,  a radio antenna cannot detect it. This effect is captured in terms of a threshold 
voltage below which a node is not required to transmit.  The TLM equations, as defined in 
ref. 2, that govern the propagation of  radio signals in terms of the total and partial voltages 
defined above are: 

 1

3 3

tt
jt t ti

ij ij ij ji ji

VVx R x T x+
⎛ ⎞⎛ ⎞

= − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (1) 
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where k  corresponds to the indices of the six neighbors of the grid point indexed by i , and 
t and 1t +  are consecutive units of discretized time. The constants ijR  and jiT  are the 
reflection and transmission coefficients that correspond to the links ij and ji , respectively. 
These constants encapsulate properties such as the permittivity and permeability of the 
medium that is modeled by the grid. We will use the term components of iV  to refer to the 
partial voltages that add up to yield iV  through Eq. (2).  A computation of the voltage profile 
[set of total voltages across all the 3n  nodes in the grid (Figs. 1–2)] at a time step t  requires 
the availability of all the partial voltages at the previous time step.   
 
Event-driven Execution: Temporal updates of the voltage profile can be either time-driven 
or event-driven. Time-driven approaches continuously update the set of partial and total 
voltages after the passage of each pre-defined time interval (which is often constrained by 
convergence requirements such as the aspect ratio of finite-difference schemes).  In event-
driven approaches, the state of a physical system changes only at certain instants of time 
through instantaneous transitions. An event is associated with each such transition. For 
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example, in the aforementioned problem, an event can be triggered every time a node 
exceeds the threshold voltage. Discrete event formulations, therefore, delink the necessity for 
a global clock from the evolution of the physical system and instead view the same 
simulation as a set of time-stamped events (containing temporal information about the 
physical state variables) that are processed as efficiently as possible without violating global 
causality. When these event-based simulations are distributed across multiple processors, 
preserving global causality becomes very challenging as data dependencies across processors 
are no longer guaranteed to be concurrent.  Parallelization of these discrete event algorithms 
have been known to be very complicated, often requiring causality control mechanisms that 
are highly challenging to scale well across a large number of processors. A more detailed 
discussion of parallel discrete event simulations (PDES) can be found in refs. (9–10). 
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   Fig. 1.  Voltage profile along the 15z =  plane at 

50t s=  during a simulation with one voltage 
source at the center of a 30 30 30× ×  domain. 

   Fig. 2.  Voltage profile along the 15z =  plane at 
75t s=  during a simulation with one voltage 

source at the center of a 30 30 30× ×  domain. 

 
Parallel Execution Challenge: FDTD and related techniques conform to time-driven 
algorithms. Parallelization of the newer TLM-based model built on barrier methods results in 
the processors becoming too tightly coupled, thereby diminishing the returns of the event-
based paradigm. Parallelizing event-based algorithms, while relieving the tight coupling, 
exhibit a different challenge, most notably distributed causality preservation.  The state-of-
the-art solution to parallel event-based models is the use of optimistic simulation techniques 
employing “reverse computation” as the rollback method, for maximal parallelism with 
minimal overhead.  Problems such as our parallel event-based execution of TLM are best 
suited to utilize such as method. We use reverse computing techniques to minimize the now 
well-understood overheads associated with traditional PDES approaches.10,11 Another 
important parallelization challenge is the treatment of 3D, which imposes interesting 
dynamics coupled with event-based behavior and domain decomposition.  Our interest is in 
supporting full 3D scenarios with multiple domain decomposition schemes that scale across 
thousands of processors. In addition to those that are already inherent to PDES, the 
challenges undertaken in this work include designing and developing an efficient, perfectly-
reversible parallelization of the novel serial model in ref. 2, and realizing full 3D support 
under different parallel domain decomposition schemes. 
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Contributions in this paper: To the best of our knowledge, this paper presents the first 
parallel discrete event formulation of radio signal propagation that scales to thousands of 
processors. Our approach is based on a reverse computing technique with full 3D support for 
realistic scenarios. Though our algorithm can efficiently support multiple domain 
partitioning schemes, the results presented here are based on only one due to space 
limitations. It may also be noted that our algorithm exhibits potential for vector processing. 
In addition, its applicability is not confined to only TLM-based problems such as the one 
described above.  Finite differencing parabolic partial differential equations (e.g., diffusion 
equations) that arise in a multitude of scientific applications can also be solved within the 
parallel execution framework presented here. We implement our algorithm on a Cray XT4 
platform and demonstrate its scalability to thousands of processors with speedups over 
1000× . This enables real-time deployment capability with turn around times that are 
commensurate with time scales for mobile wireless signal strength predictions. 

The rest of the report is organized as follows. Section 2 presents a vector update 
formulation of the TLM problem as described in Sect. 1. In Sect. 3, we derive the reversal 
equations explicitly to prove that each reversal can be carried out in linear time. Section 4 
describes the parallel discrete event scheme underlying our algorithm. Our experimental 
setup and performance results are discussed in Sect. 5–7 followed by a discussion of the 
future scope of this work in Sect.8. 

 
 

2. VECTOR UPDATE FORMULATION 

Let the linear mapping of the 3D Cartesian coordinates to a 1D array be carried out using 
the mapping 2( , , )f i j k i knj n= + +  where ( , , )i j k  are the 3D coordinates of a node. The 
simulation based on the TLM equations proceeds as follows: 

 
Algorithm 1: TLM Simulation 

 
1. (0)ijx ← initial values 3, [0, , 1]i j n∀ ∈ −  
2. (0)iV ← initial values 3[0, , 1]i n∀ ∈ −  
3. for 0t =  to 1T −  do 
4. Compute ( 1)ijx t +  3, [0, , 1]i j n∀ ∈ −  
5. Compute ( 1)iV t +  3[0, , 1]i n∀ ∈ −  
6. end for 

 
It is evident from the above TLM equations that the total voltage is an intermediate 

variable that can be completely eliminated by substituting Eq. (2) in Eq. (1) (or vice-versa). 
The resulting set of equations is generally cast into a matrix-vector update form: 

 
 1 ·t tX A X+ =   , (3) 

where the matrix A , called the connectivity matrix, has a linear number of non-zero elements 
(reflection and transmission coefficients).  A simulation of the signal propagation proceeds 
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by updating the vector X  of partial voltages at each time step through a ( )O N  matrix-vector 
multiplication. 

In principle, the forward simulation defined by Eq. (3) can be reversed by computing the 
inverse matrix-vector multiplication: 

 
 1 1·t tX A X− +=    . (4) 

Note that the structure of the connectivity matrix A  depends on the structure of the vector 
X . As such, care needs to be exercised because a naïve formulation could result in: (a) cubic 
work for the matrix inversion computation (though computed only once) and (b) quadratic 
work for each inverse matrix-vector multiplication during rollback stemming from the fact 
that the inverse of a sparse matrix need not necessarily be sparse. In fact, when X  is 
constructed by concatenating six smaller vectors, , , , ,x y z x yX X X X X+ + + − − and zX − , each of 

length 3n  and containing all the partial voltages along the directions indicated by the 
subscript, the inverse of the resulting connectivity matrix can be shown to be dense thus 
requiring quadratic work for each reversal, even though the forward matrix-vector 
multiplication is linear. As a result, each application of the inverse matrix-vector 
multiplication would require 2( )O n  work, thereby degrading the performance of speculative 
execution using reverse computing. In addition, the cost of computing the inverse matrix, 
though carried out only once, is 3( )O n . 

In summary, using a vector update representation, the TLM based simulation can be 
shown to be reversible though the complexity of each reverse computation can potentially 
become greater than that of the forward computation by one to two orders of magnitude. 

 
 

3. LINEAR TIME REVERSE COMPUTATION 

Though a naïve approach such as the one outlined above results in a connectivity matrix 
whose inverse is dense, there is no a priori reason to assume there does not exist such a 
matrix-vector representation whose inverse is linear. For our purpose, it suffices to 
demonstrate that there exists at least one such case. For this purpose, let us define the 
variable: 

 ( )( ) ( )
3

i
ij ij

V ty t x tα α⎡ ⎤= −⎢ ⎥⎣ ⎦     ,
 (5) 

where the superscript α  denotes one of the six possible directions along which the node j is 
a nearest neighbor of the node i . We use the notation α−  to denote the direction opposite 
toα . Eq. (1)  can now be rewritten as: 
 

 ( )) )( (1ij ij ij ji jiy t T y tx t R α α αα α − −+ = +    . (6) 

Let  denote the concatenation operation. For further ease of presentation, we adopt the 
following notations:  

 , yij ji ij jix x yα α α α− −= =  
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0 1 2 1

0 0 0 0
0 1, 2, 1,0,( ) ( ), ( ), , ( ), ( )

m mmj j j jmY t y t y t y t y t
− −− −⎡ ⎤= ⎣ ⎦  

 
0 1 2 11, 2, 1,

1 1 1 1
1 0,( ) ( ), ( ), , ( ), ( )

m mmj j j jmY t y t y t y t y t
− −− −⎡ ⎤= ⎣ ⎦   

 
0 1 2 11, 2, 1,

2 2 2 2
2 0,( ) ( ), ( ), , ( ), ( )

m mmj j j jmY t y t y t y t y t
− −− −⎡ ⎤= ⎣ ⎦  

 
0 1 2 1

0 0 0 0
0 1, 2, 1,0,( ) ( ), ( ), , ( ), ( )

m mmj j j jmY t y t y t y t y t
− −− −⎡ ⎤= ⎣ ⎦  

 
0 1 2 11, 2, 1,

1 1 1 1
1 0,( ) ( ), ( ), , ( ), ( )

m mmj j j jmY t y t y t y t y t
− −− −⎡ ⎤= ⎣ ⎦  

 
0 1 2 11, 2, 1,

2 2 2 2
2 0,( ) ( ), ( ), , ( ), ( )

m mmj j j jmY t y t y t y t y t
− −− −⎡ ⎤= ⎣ ⎦   . 

 

 
Fig.  3. Structure of the connectivity matrix, A . 

 
 
Consider the vector ( )Y t  defined by: 

 0 2 21 0 1( ) ( ) ( ) ( ) ( ) ( ) ( )
T

Y t Y t Y t Y t Y t Y t Y t⎡ ⎤= ⎣ ⎦ .
 (7) 

In terms of the above definitions, Eq. (1) can be written as a vector update problem of the 
form represented by Eq. (3) but with X replaced by Y and the connectivity matrix A  taking 
the form as shown in. Fig.  3.  In Fig.  3, the like colored elements participate in a single 
partial voltage computation. Note that A  is composed of 3n  independent 2 2×  matrices, 
each of the form: 

 , , 3
,

3 , 3 , 3

i i i i mij ji
i j

i m i i m i mij ji

a aR T
R a a

A
T

α α
α

α α

−
+

−
+ + +

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦   ,

 (8) 

and defined for each nearest neighbor pair ( , )i j  in a direction α  with respect to i . Note that 
any 2 2×  matrix A  and its inverse 1A−  are related through the following: 
 

 00 01 11 011

10 11 10 0000 11 01 10

1
( )

a a a a
A A

a a a aa a a a
− −⎡ ⎤ ⎡ ⎤

= ⇔ =⎢ ⎥ ⎢ ⎥−−⎣ ⎦ ⎣ ⎦   .
 (9) 
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Based on this, 1A− can be constructed by simply multiplying each off-diagonal element of A  
by -1 and exchanging the elements , , 3i i i i nA A +↔  of A  for all 0 3i m≤ < , in both cases 
remembering to multiply each modified element by the corresponding determinant 

, 3 , 3 , 3 3 ,1 / ( )i i i m i m i i m i m ia aa a+ + + +− . Clearly, 1A− can be computed in ( )NΘ time. In addition, the 
structures of the matrix and its inverse are identical implying that the inverse matrix vector 
multiplication can also be accomplished in linear time. 

In particular, for the above TLM equations, the reflection and transmission coefficients 
for any nearest neighbor pair ( , )i j  are related as follows: 

 and 1ij ji ij jiR R R Tα α α α− −= − + =   .   (10) 

As such, the determinant of the corresponding ,i jA  matrix is: 

 , (1 )(1 ) 1 1i j ij ji ji ij ij ji ij ji ij jiA R R T T R R R R R R⎡ ⎤= − = − − − = − + + = −⎣ ⎦   .
 (11) 

As above, from here on we will suppress the superscript with the understanding that for each 
neighbor pair  ( , )i j , the subscript ij  is associated with the direction α  w.r.t  point i  and the 
subscript ji  is associated with the direction α−  w.r.t  point j. Therefore: 

 1
, ,

,

1
| |

ji ji ji ji ij ji
i j i j

ij ij ij ij ij jii j

R T R T R T
A

T R T R RM
A

T
−

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (12) 

for every nearest neighbor pair ( , )i j  which in turn implies that M  is its own inverse ! 

A closer look at the forward computation reveals that it can be decomposed into three 
stages denoted by the following three operations: 

 
• operation ⊕  : compute ( 1) ( 1)i ij

j
V t x t+ = +∑ i∀ . 

• operation  : compute ( )( ) ( )
3

i
ij ij

V ty t x t⎡ ⎤= −⎢ ⎥⎣ ⎦
 ,i j∀ . 

• operation M  : compute ( 1) · ( )X t M Y t+ = . 
 

Pictorially, this can be shown as: 

 { } { }(0), (0) (0) (1) (1) (1) (2) (2) (2)
B B B

X V Y X V Y X V Y
⊕ ⊕

→ → →→ → → → →  

The reverse code should therefore achieve the following: 

 
1 1 1 1 1 1

( 2) ( 1) ( 1) ( 1) ( )
B B

Y t X t V t Y t X t
− − − − − −⊕ ⊕⎧ ⎫
← − ← − ← − ← − ← ←⎨ ⎬

⎩ ⎭
 

The input to the reverse procedure is therefore ( )X t . In the above we showed that the inverse 
operation 1A−  can be performed in linear time. Consider a pair ( , )i j  of neighboring points. 
The corresponding x  and y  variables are related in the following manner: 
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( ) ( 1)
( ) ( 1)

ij ij ji ij

ji ij ji ji

x t R T y t
x t T R y t

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦    .

 (13) 

 
Since 1A A−= , we have: 

 
( 1) ( )
( 1) ( )

ij ij ji ij

ji ij ji ji

y t R T x t
y t T R x t

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (14) 

From Eqn.(5), summing up over all the neighbors of point i , we get: 
 

 [ ]( 1) ( 1) ( ) ( )i ik ik ik ki ki
k k

V t y t R x t T x t− = − = +∑ ∑  (15) 

which constitutes the operation 1− .  Equation (13) reads as: 

 
( 1)( 1)( ) ( 1) ( 1)

3 3
ji

ij ij ij ji ji

V tV tx t R x t T x t
−⎡ ⎤−⎡ ⎤= − − + − −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦   ,

 

 
( 1)( 1)( ) ( 1) ( 1)

3 3
ji

ji ij ij ji ji

V tV tx t T x t R x t
−⎡ ⎤−⎡ ⎤= − − + − −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦   .

 

At this point, ( ), ( ), ( 1)ij ji ix t x t V t −  and ( 1)jV t −  are known. The only unknowns are ( 1)ijx t −  
and ( 1)jix t −  which can be computed by solving the above pair of simultaneous equations. 
For convenience, we first compute two constants: 

 ( )1( 1) ( 1) ( 1) ( )
3ij ij i ji j ijC t R V t T V t x t− = − + − −

 ,
 

 ( )1( 1) ( 1) ( 1) ( )
3ji ji j ij i jiC t R V t T V t x t− = − + − −

  .
 

In terms of these constants, we obtain: 
 ( 1) ( 1) ( 1)ij ij ij ji jit R C tx T C t− = − + −   , (16) 

 ( 1) ( 1( )1)ji ij ij ji jix tt T C R C t− = −− +   . (17) 

The above two equations constitute the operation 1−⊕ . Thus, using the inverse 
operations 1A− , 1−  and 1−⊕  in that order, it can be easily seen that the cost of reverse 
computing from ( )X t  to ( 1)X t −  takes linear time. 

In this section, we have explicitly derived the reversal equations and shown that the time 
to restore a state at a time step t from a time step t+1 takes a linear amount of work. 
However, this work is serial. When data is distributed across processors, special care needs 
to be taken to ensure that relevant data needed for the above reversal to work is not 
irrecoverably lost due to destructive assignments. The following table summarizes the 
reversal steps in a nutshell. 
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Reversal Steps in a Nutshell 
 
1. ( 1) ( ) ( )i ij ij ji ji

j
V t R x t T x t⎡ ⎤− ← +⎣ ⎦∑  

2. ( )1( 1) ( 1) ( 1) ( )
3ij ij i ji j ijC t R V t T V t x t− ← − + − −  

3. ( )1( 1) ( 1) ( 1) ( )
3ji ji j ij i jiC t R V t T V t x t− ← − + − −  

4. ( 1) ( 1) ( 1)ij ij ij ji jix t R C t T C t− ← − + −  
5. ( 1) ( 1) ( 1)ji ij ij ji jix t T C t R C t− ← − + −    
 
 

4. PARALLEL DISCRETE EVENT SCHEME 

Domain Decomposition: It is clear from Eq. (1–2), which we will refer to as the forward 
equations, that a good parallel domain decomposition for this problem is one in which: (a) 
for each ijx  that is local to a processor, jix is also local and (b) for each iV  that is local to a 
processor, as many components of iV  are local as is possible. Guided by this observation, we 
block partition the 3D grid across P  processors arranged in a Cartesian x y zP P P× ×  topology. 

Each processor is therefore responsible for 3 3/ /x y zn P P P n P=  voltages (one for each local 
node). For each local node, a processor is responsible for the six partial voltages defined on 
the links connecting it to its nearest neighbors along the positive ,x y  and z  directions only. 
 Thus, each processor is responsible for 36 / /n P N P=  number of partial voltages. 

 
 

For ease of presentation, we use a 2D example in    Fig.  4 to illustrate the following 
notation that will be adopted in the remainder of this paper: 

 
   Fig.  4.   A 2D illustration of the unique set UV  (set of filled circles), the local set LX  (set of bold 

arrows) and remote set RX (set of dashed arrows) for the processor responsible. 
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• LX : set of all partial voltages local to a processor (bold arrows in    Fig. 1). 
• LV : set of all total voltages local to a processor (black circles in    Fig.  4). 
• RV : set of all remote total voltages required for the computation of all ij Lx X∈  (gray 

circles in    Fig.  4). 
• UV : L RV V∪ . 
• RX : set of all remote partial voltages required for the computation of all UV V∈  

(dashed arrows in    Fig.  4). 
 
The preceding parallel domain decomposition guarantees that 
 

(a) for each local  partial voltage ij Lx X∈ , the reverse partial voltage jix  is also local. 
(b) for each total voltage i LV V∈ , its components along the positive directions are guaranteed 
to belong to LX  , 
(c) the number of sending and receiving processors are both constants, 
(d) the partial voltages defined on links that cut a processor’s domain  boundaries along the 
positive directions are local, and 
(e) the inter-processor communication bandwidth is proportional to the surface area of each 
block partition and, hence, ( )2/3 2/3/ PO N . 

In our formulation, the partial voltages which are mapped to a processor are evolved 
through two types of event processing, namely, self-update events (sue) and threshold-cross 
events (tce). An example with two processors is shown in Fig. 5. Self-update events are 
processed at integral time-stamps t  while threshold-cross events are processed at half-integer 
time-stamps 1/ 2t + . When a self-update event is processed, each ij Lx X∈  is updated though 
Eq. (1). Those local updates for which the results vary by more than a pre-defined threshold 
value are sent to the appropriate destination processors in a message time-stamped with 

1/ 2t + . This style of sending conditionally will be referred to as selective sends.  The 
receiving processors process the arrival of the updates as threshold-cross events.  Processing 
a threshold-cross event involves modifying the set RX  according to the updates received. 
Note that these selective sends result in an asynchronous communication pattern. A 
numerically correct self-update of LX  requires concurrent values of ,i j UV V V∈ . However, 

iV and jV  may depend on remote partial voltages ik Rx X∈ . Thus, correctness of self-updates 
depend upon the concurrency of the sets ,L RX X  and UV . 
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Fig. 5.  Optimistic parallel discrete event processing in an example with two processors. 

 
In our approach, forward execution is carried out optimistically [i.e., each processor 

continues to execute forward in simulation time under the assumption that the set $X_R$ that 
contains the remote data necessary for local forward computations (via self-update events) 
are locally-usable], correct values until a threshold cross event with a more recent timestamp 
is processed. As part of processing such a threshold-cross event, a rollback to the appropriate 
simulation time in the past is initiated.  

The state variables defined by the sets LX , RX , and UV  contain complete information 
about the local portion of the domain for which a processor is responsible. These sets are 
stored as arrays. Note that | | ( / )UV N P= Θ  and| | ( / )L RX X N P∪ = Θ . In addition, two 
pointers, labeled read and write pointers are maintained. At any given simulation time t , each 
processor maintains the following state variables: 2 1,t t

U LV X− − , and 1t
RX −  that are pointed to by 

the read pointer and 1,t t
U LV X− , and t

RX  that are pointed to by the write pointer (see    Fig. 6). 
The above two pointers are maintained by each processor in order to facilitate reverse 
computing for rollbacks, as will become clearer in the next section. Operations performed 
during a forward execution overwrite the arrays pointed to by the write pointers. In    Fig. 6, 
the arrays that are overwritten are indicated by the gray boxes pointed to by the write 
pointers. 

 
4.1  FORWARD EXECUTION 

 
Forward execution of our discrete event approach in terms of self-update and threshold-

cross events are shown in    Fig. 6. The following operations execute the forward code: 
 
1. SWAP (read,write) : The pointers to the read and write copies of the state variables 

are swapped. 
2. UPDATE- 1t

UV −  : 1t
UV −  is computed using 1t

LX −  and 1t
RX −  through Eq. (2). 

3. COMPUTE- t
LX  : t

LX is computed from the 1t
LX −  and 1t

UV −  using Eq. (1). 
4. SELECTIVE-SEND : To each processor that needs t t

ij Lx X∈ , send t
ijx  if and only if 

1t t
ij ijx x δ−− ≥∣ ∣ , where δ  is a pre-defined threshold. All such partial voltages that are 

destined for a particular destination are collected and sent in a single message. 
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5. COPY- RX  : Copy 1t
RX −  to t

RX . 
6. PROCESS-TCE : This operation is performed if and only if there is a pending 

threshold-cross event. The operation SWAP ( ,R TX X ) is performed when the pending 
threshold-cross event has a current time-stamp. In this operation, partial voltages 

t t
ij Tx X∈  that are received from the sending processors are swapped with the 

corresponding values in t
RX  (   Fig. 6). A threshold-cross event with a future time-

stamp is held in queue to be processed later. If the pending threshold-cross event has 
a past time-stamp, then a rollback is carried out to restore the state variables to their 
values at that time. We discuss rollbacks in the next section. 
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   Fig. 6.  Forward execution. Numbers on the arrows indicate the order in which the indicated steps are 
executed in a forward event o. The gray boxes indicate the arrays pointed to by the write pointer before 

they are overwritten by the arrays in the white boxes. 

 

4.2  REVERSE EXECUTION 

In our implementation, restoration of state upon rollbacks is realized through reverse 
computing. Recall that when a rollback is initiated by a threshold-cross event that is 
processed at time-stamp 1/ 2t + , the physical system needs to be restored to that 
corresponding to simulation time t  which is defined by the arrays 2 1,t t

U LV X− − , and 1t
RX −  

pointed to by the read pointers and the arrays 1,t t
U LV X− , and t

RX  pointed to by the write 
pointers. The following operations perform the reverse execution as illustrated in     Fig. 7: 
 

1. UNDO-PROCESS-TCE: Note that due to the most recent SWAP (read,write) 
operation in the forward execution, the arrays 1t

UV −  and t
LX  currently pointed to by the read  
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pointer hold the same elements as the arrays 1t
UV −  and t

LX  when it was pointed to by the 
write pointer in the preceding time-stamp (    Fig. 7). The array t

RX , however, may need to be 
restored explicitly since the most recent threshold-cross event, if there was one, could have 
swapped out some of its elements with t

TX . Thus, reversing the forward threshold-cross event 
involves swapping back the values of t

RX  with those in t
TX  thereby restoring t

RX .  
2. RESTORE- RX  : The array t

RX  is copied to the array 1t
RX +  pointed to by the write 

pointer. This reverses the operation in step 5 of Sect. 4.1 and restores 1t
RX − . 

3. RESTORE- 1t
LX − : Note that in the forward execution, the local partial voltages t

LX  are 
computed from 1t

LX −  and 1t
UV − . Therefore, we need a function g  such that 1 1( , )t t t

L L UX g X V− −= .  
To find g , we treat 1t

ijx −  and 1t
jix −  as two unknowns and solve the following two forward 

equations: 
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1 1

1 1
1 1

3 3

3 3

tt
jt t ti

ij ij ij ji ji

t t
jt t ti

ji ji ji ij ij

VVx R x T x

V Vx R x T x

−−
− −

− −
− −

⎡ ⎤⎡ ⎤
= − + −⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= − + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 

 
which can be re-written as: 

 1 11
3

t t tMX MV X− −= −  , 

 
where 

 
1 1

1
1 1, , ,

t t t
ij ji ij i ijt t t

t t t
ij ji ji j ji

R T x V x
M X V X

T R x V x

− −
−

− −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  . 

 
The above equation can be solved to yield: 

 1 11
3

t t tX V MX− −= −   . 

 
Thus, the reversal equation to restore 1t

LX −  using t
LX  and 1t

UV −  is:  
 

 
1

1

3

t
t t ti
ij ij ij ji ji

Vx R x T x
−

− ⎡ ⎤
← − −⎢ ⎥

⎣ ⎦
  . 



 

 14

At this point, the read pointers point to the correct values of 1,t t
U LV X− , and t

RX  and write 
pointers point to the correct values of 1t

LX −  and 1t
RX − . The correct values of 2t

UV −  still need to 
be restored. 

4. RESTORE- 2t
UV −  : Consider the following equations for a pair ( , )i j  of nearest 

neighbors:  

 
1 2 2

1 2 2

t t t
ij ij ij ji ji

t t t
ji ij ij ji ji

x R y T y

x T y R y

− − −

− − −

= +

= +
  , 

where
3

t
t ti
ij ij

Vy x
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

. Solving the above equations for the two unknowns 2t
ijy −  and 2t

jiy −  

yields: 
 2 1 1t t t

ij ij ij ji jiy R x T x− − −= +   . 

Summing up over all the neighbors of point i , we get: 
 

 

1 1

2
2 1 1

2

2 1 1

3

t t
ik ik ki ki

k k

t
t t ti
ik ik ik ki ki

k k

t t t
i ik ik ki ki

k

t
ik R x T x

V x R x T x

V R x

y

T x

− −

−
− − −

− −

−

−

⎡ ⎤= +⎣ ⎦

⎛ ⎞
⎡ ⎤− = +⎜ ⎟ ⎣ ⎦

⎝ ⎠
⎡ ⎤= +⎣ ⎦

∑ ∑

∑ ∑

∑

 

Thus, we have: 
 2 1 1t t t

i ik ik ki ki
k

V R x T x− − −⎡ ⎤= +⎣ ⎦∑   . (18) 

At this point, the read pointer points to the correct arrays 1,t t
U LV X− , and t

RX  and the write 
pointer points to the correct arrays 2 1,t t

U LV X− − , and 1t
RX − . 

5. SWAP (read,write) : The read and write pointers are swapped to restore the state to 
the previous time-stamp (    Fig. 7). 

Since each partial voltage is updated exactly once, the runtime for each reversal (steps 1–
5 above) is ( / )O N P , as it is for each forward execution phase. 
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    Fig. 7.  Reverse execution. Numbers on the arrows indicate the order in which the indicated steps are 

executed during a reversal. The gray boxes indicate the arrays pointed to by the write pointer before they 
are overwritten by the arrays in the white boxes. 

 
 

5. EXPERIMENTAL SETUP 

Software Platform: We implemented the discrete event execution using the μ sik engine.12 
μ sik provides an application programming interface in the C++ language that supports the 
concept of logical processes, events for exchanging time-stamped messages among logical 
processes, and virtual time-synchronized delivery of events to logical processes.  The API 
invokes a callback method into the logical processes when an event is to be processed.  
Another callback method is invoked if and when an event is to be undone, which could be 
either due to violation of timestamp order as a result of optimistic processing or due to 
cancellation of an event by the sender of that event.  We use the event handler and undo 
handler to realize the forward and reverse execution portions of the updates to partial and 
total voltages. The send primitive is used to send threshold crossing events to remote 
processors, and also to schedule a self update to advance the local partial voltages.  Specific 
care is taken to only pack data corresponding to the local data that have actually exceeded 
the threshold since the last update sent to neighboring processors.  This ensures that the 
number of updates across processors is minimized while keeping the performance 
competitive with non-event-based execution. 

Our implementation allows for any number of partial voltages to be mapped to the same 
logical process.  This feature is critical to minimize the event processing overhead.  In a 
simpler scheme adopted before,2,8 only one grid point is mapped to a logical process which 
can make the event overhead a significant part of the total runtime.  Our scheme allows for 
multiple partial voltages to be updated as a block, making it competitive with an optimized, 
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sequential execution.  Please note that reverse execution is more challenging in our scheme, 
as we cannot rely on expensive state-copying primitives to restore state upon rollback. 

For the best performance, we map one logical process per processor core, which is 
empirically observed to deliver better performance compared to when more than one logical 
processes are instantiated per core. μ sik internally handles inter-processor communication 
to exchange time-stamped events across processors and to synchronize global virtual time. 
We configured μ sik to use the vendor-supplied Message Passing Interface (MPI) 
implementation native to the hardware platform. 
Performance Metric: It is important to note that the traditional “event rate”' performance 
metric of discrete event simulators is not relevant for the purposes of measuring efficiency in 
this application.  Since events can be defined in many ways (consequently, with different 
granularity), the number of events is misleading.  Instead, we use the more appropriate 
measure, namely, the speedup achieved by a parallel execution, relative to the execution time 
on the smallest core count that can be used to execute the scenario. 
Hardware Platform: Our hardware platform is a Cray XT4 machine in which each compute 
node contains a quad-core 2.1 GHz AMD Opteron processor with 8 GB of memory.  The 
nodes are connected via a high-bandwidth SeaStar interconnect. Internally, the MPI 
implementation is based on Cray's implementation of Portals 3.3 messaging interface. 
 
 

6. PERFORMANCE RESULTS 

Scenarios: In the experiments, we exercised our scheme with three grid sizes, corresponding 
to increasingly larger volumes encountered in wireless applications. The first is a medium-
sized grid with 30n = , giving 27000 total voltages and 162,000 partial voltages.  The second 
is a larger-sized grid with 80n = , giving roughly half a million total voltages and 3 M partial 
voltages.  The third, which is a very large scenario with 130n = , yields roughly 2 M total 
voltages and 13 M partial voltages. These grid sizes were tested with different threshold 
values, to exercise the performance effects of selective sends (asynchronous 
communications). 
Speedup Analysis: Speed-up plots for the different scenarios are shown in     Fig. 8. It 
demonstrates parallel speedups over 1000×  for large scale scenarios on thousands of 
processors. As described before, the communication pattern of our algorithm is intimately 
dependent on the threshold voltage value. When threshold=-1, every self-update event 
triggers a threshold-cross event resulting in a very synchronous communication pattern. This 
is akin to a time-driven algorithm. As the threshold increases, communication becomes 
increasingly asynchronous due to selective sends. Increasing selectivity of sends increases 
concurrent computations while decreasing the total communication. This, in turn, improves 
the performance of the algorithm. Performance advantages of selective sends with increasing 
number of processors can be seen in     Fig. 8 for all three scenarios. When the threshold 
becomes large, the wave propagates shorter grid cell distances.†  This effect is seen from the  

                                                 
 
† When the asymptotic limit with threshold=∞  in considered, the simulation ends after the very first self-
update event (since the difference between the new and old value of the partial voltages will always be less 
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    Fig. 8.  Speedup for various problem sizes,  n=30, 80, and 130, with varying threshold and number of 

processor cores. 

speedups at threshold = 0.01 for 80n =  and 130n = . For relatively large problem sizes on 
small number of processors, computations remain highly concurrent and the computation-to-

                                                                                                                                                       
 
than∞ ). 
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communication ratio is large. For such cases, the parallel runtimes remain largely unaffected 
by selective sends. This is evident from the near insensitivity of the speedups for the three 
scenarios on 64p = . 

 
Efficiency (defined canonically as /speedup P ) of the algorithm exhibits very good 

improvements when problem sizes are increased for a fixed number of processors. For 
example, efficiency of the parallel execution on 512p =  increases from 34% to 53% when 
the scenario changes from a medium sized grid to a large one ( n changes from 30 to 80) 
while it increases to 21% from 4% on 4096p =  for the same change in the problem size. 
This trend continues across all the threshold values that were tested. 

 
Implications: The demonstrated parallel speedup of the algorithm makes it possible for real 
time prediction of radio signal strength. For example, a serial computation based prediction 
for a scenario with 80n =  (roughly half a million total voltages) has a turn around time of 
about 3.5 h but only about 6 s on 8000p =  processors using the above algorithm. This is 
well within the scope of real time predictions of mobile wireless signal strength.  
 
 

7. COMPARISON WITH TRADITIONAL SYNCHRONOUS EXECUTION 

A time-stepped simulation can be efficiently executed using the following parallel 
algorithm. 
 
Algorithm 2: Synchronous Simulation of Radio Wave Propagation 
 

1: initialization and parallel decomposition 
2: for 0; endtime;t t t t t= < = + Δ do 
3: update LX  
4: synchronize 
5: selectively send Lx X∈ needed in remote processors 
6: receive Rx X∈  
7: update UV  
8: end for 

 
When the runtime pt  of parallel algorithms is viewed as a sum of computation cost compt , 

communication cost commt  and synchronization cost syncht , scaling of traditional time-stepped 
algorithms is adversely affected at large processor counts due to the amount of time needed 
for the algorithm to synchronize amongst increasing number of processors. This can be seen 
in    Fig. 9 where the computation, communication and synchronizations costs have been 
presented for a problem of size 3N ≈ million against varying number of processors. It is 
clear that computation time dominates the total runtime for smaller number of processors. 
However, synchronization overhead continues to grow and finally exceeds both computation 
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and communication costs after around 1K processors. Beyond 1K processors, the 
synchronization overhead of the time-stepped approach accounts for almost 75% of the total 
runtime. 

 
Fig. 10 compares the speedup (relative to execution time on 8 cores – smallest available 

core count) of the time-stepped and event-driven executions on P=8, 64, 512, 4096, and 
8000. The time-stepped execution out-performs the event-driven approach as P grows to 
about 1K processors due to the extra computational overhead of event scheduling and global 
virtual time management necessary in any event-driven execution. Note that both types of 
executions were carried out with: 

 
(a) threshold = -1, 
(b) identical global linear ordering of the partial voltages, and 
(c) identical parallel domain decomposition.  
 
When threshold = -1, every update of a local partial voltage triggers a threshold –cross event 
at every half-integer time-step which forces the event-driven simulation to execute 
conservatively rather than speculatively. This ensures that there is no reverse computing 
overhead for the event-driven execution shown in Fig. 10. Same linear ordering of the partial 
voltages and identical parallel domain decomposition scheme ensures identical data 
distribution as well as identical number and volume of communication for both cases. As a 
result, compt  and commt  in pt  are equal for both types of executions. The remaining component 
of the total runtime is syncht  which is identically equal to zero in the event-driven simulation. 
Consequently, it out-performs the  time-stepped  algorithm as P grows.  This is  evident in 
Fig. 10. For non-negative thresholds, the only difference in the arguments above is that the 
computation cost of the event-driven execution increases due to reverse computing overhead. 

1 10 100 1000 10000 100000
0

10

20

30

40

50

60

70

80

90

100
Time−stepped Execution

Processors

%
 o

f 
T

o
ta

l P
ar

al
le

l R
u

n
ti

m
e

computation
communication
synchronization

 
   Fig. 9.  Percentage of total runtime  that is spent on computation, communication and 

synchronization on P = 8, 64, 512, 4096, 8000, and 17,576 with 3N ≈ M. 
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But this added cost is proportion to the forward computation volume which only decreases as 
the processor number grows and continues to remain smaller than syncht  of the time-stepped 
execution. As a result, the event-driven simulation scales to a much larger number of 
processors when compared to the time-stepped simulation. This is evident from    Fig. 11 in 
which threshold = 0.001 on P = 8, 64, 512, 4096, 8000, and 12,000. 
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Fig. 10.  Speedup comparison with threshold = -1.    Fig. 11.  Speedup comparison with threshold = 
0.001. 

 
 

8. CONCLUSIONS AND FUTURE WORK 

An efficient parallelization and implementation of a recently-developed discrete-event 
based serial algorithm for the estimation of radio wave signal strength was presented.  A 
reverse computing based discrete event approach for this problem, aimed at circumventing 
other PDES approaches that are known to suffer from overheads that do not scale well to 
large processors counts has been used. The reversal equations that were subsequently used 
for rollbacks to restore the state of the system to a desired time in the past were explicitly 
derived.. The authors have demonstrated that such reverse computing based rollbacks can 
deliver unprecedented speedup for this problem.  To the best of their knowledge, the results 
are also among the first to demonstrate 1000×  parallel speedup for any non-synthetic PDES 
application that is based on reverse computation. Also, such speedups for EM wave 
simulators have never been reported before. It has been shown that the algorithm presented 
in this paper brings real time signal strength predictions well within the turnaround time 
scales needed for mobile wireless deployment simulations and design problems. 
Additionally, the effect of varying threshold values on the performance of the algorithm was 
studied systematically to understand their effect on the performance.  The algorithm supports 
full 3D scenarios with support for rich heterogeneity. 

An exhaustive performance comparison of conventional time-driven parallel approaches 
with the event-driven parallel algorithm has been presented. The comparison clearly revealed 
that, unlike discrete event based schemes, barriered time-driven algorithms are prone to large 
synchronization overheads that grow as the number of processors increase. This point of 
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comparison is particularly poignant in an era of petascale computers to demonstrate the fact 
that synchronization overheads drastically hinder the performance of barriered time-driven 
codes. Convincing empirical results illustrative of the advantages of asynchronous 
speculative execution over synchronous time-stepped for the simulation of radio signal 
propagation have been provided. 
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Appendix  A.  INITIALIZATION OF MODELS AND CONSISTENCY OF STATES 

 
At every time step, we can define the state ( )S t  of the system as the set ( ) [ ( ), ( )]S t X t V t=  
where ( )X t  and ( )V t  are related to each other through the TLM equations that define the 
model being simulated. At any given time step t , ( )S t  contains complete information about 
all the partial voltages ( )X t  defined on the links of the grid and the total voltages ( )V t  
defined on each node. In the example above, a 3 3 3× ×  grid with periodic boundary condition 
was used. A non-zero voltage source of magnitude sV  was placed at the center of the grid at 
time 0t = , that is, /2 (0) 0n sV V⎢ ⎥⎣ ⎦

= ≠ . Execution of the simulation, began with initializations 

(0) 0X =  and (0) 0iV =  at all nodes except at the center where /2 snV V⎢ ⎥⎣ ⎦
=  [i.e., 

(0) [0,0, , , ,0,0]sV V= ]. It is clear that such an initial state does not respect the mutual 
relationships between (0)X  and (0)V  as defined by the TLM equations since 

/2 /2(0) (0) 0n ns xV V α

α
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= ≠ =∑ .We refer to such a state as an inconsistent state. A state ( )S t  

at a time t  is called consistent if all the partial and total voltages at the time step t  respect 
both the TLM equations simultaneously. 
When the state of the system is evolved using the forward TLM equations and the system is 
brought from the state, (0)S to the state, (1)S , a careful look will reveal that using the 
reversal equations on (1)S  will not restore (0)S . This is because (1)S  is a consistent state but 

(0)S  is not. The initial state was, in some sense, “arbitrary” though it was chosen to best 
reflect the physical condition of the system at 0t =  which may not necessarily be consistent 
with the mutual relationships amongst the state variables for 0t >  

A.1.  PROPAGATION OF INCONSISTENCY AND CONVERSION POINT 

The lesson learned from the previous section is that even if the model that drives a 
simulation is reversible, an inconsistency is injected into it due to initialization(s) which can 
potentially render it irreversible. The resulting inconsistency can potentially propagate 
through the time steps until such an iteration ct  when the system state reaches consistency 
We refer to such a time iteration as the critical point, ct .  

In order to be able to use reverse computing techniques, one therefore needs to detect the 
critical point at runtime. To do this, when the simulation advances from iteration t  to 1t + , 
that is, the system evolves from ( ) ( 1)f fS t S t→ +  where the subscript indicates that the state 
was obtained during a forward computation, the reverse equations R  can be used on 

( 1)fS t +  to restore the previous state, ( )rS t and checked to see if 
: ( 1) ( ) ( )f r fR S t S t S t+ → = .  If ( ) ( )r fS t S t≠ , we mark time step t , as belonging to the 

inconsistent phase of the simulation; otherwise, we mark it as consistent. If the state is 
inconsistent, information about it will need to be stored in memory before the simulation is 
advanced. During a rollback to iteration t , reverse computing can be applied if ct t≥  and a 
combination of reverse computing and state saving will be needed if ct t< . We will refer to 
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this algorithm as the toggle forward algorithm. Clearly, the memory needed to store state 
information in such an algorithm will be proportional to max/ct t , where maxt  is the maximum 
simulation time. The advantages of reverse computing are limited by this ratio. 

A.2.  GENERALIZATION 

Clearly, the strategy outlined above to address the irreversibility that is artificially 
introduced into the model by initialization artifacts can only be of limited usefulness. When 

maxct t> , information about all the states during the simulation will need to be stored. This 
reduces the rollback mechanism in a speculative execution to the memory intensive state 
saving approach which we wish to improve upon through reverse computing. 

To address this issue, we propose introduction of an additional pre-processing stage, 
which we call input regularization, in the computation path. This modification is 
schematically shown in Fig. A-12. Since the source of the irreversibility is an artifact of 
inconsistent initializations, the regularization procedure takes the original input set of 
variables that defined the starting state (0)S  and converts them into another set of variables 
that satisfy the consistency conditions of the model. These modified variables define the new 
starting state (0)RS that is used to simulate the system of interest. This implies that 0ct =  
which in turn ensures that no state information need be stored, thereby restoring the merits of 
using reverse computing in lieu of state saving. 
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Fig. A-12. A preprocessing stage is introduced in the algorithm to regularize the input. 

 
The regularization procedure should retain the description of the system state at 0t =  

with the additional constraint that the state variables are consistent with the forward 
computation relations. 

A.2.2  Example of Input Regularization for the EM Problem 

At any given time step t , the consistency condition for the total and partial voltages can 
be defined using Eq.(1) and Eq.(2) as: 

 

 
( 1) ( 1)

( ) ( ) ( 1) ( 1)
3

i j
ij ji ij ji

V t V t
x t x t x t x t

− + −
⎡ ⎤+ = − − + −⎣ ⎦          (A.1) 

Clearly, at 0t < , ( ) ( ) 0 ,i ijV t x t i j= = ∀ . This yields the following consistency conditions for 
the initial state (0)S : 
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x (0)=-x (0

(0 ( )

)

) 0
ij ji

i ik
k

V x=∑  (A.2) 

Note that the magnitude and position of the source voltages at 0t =  are dictated by the 
physical problem and, hence, considered fixed. However, the partial voltages are an artifact 
of the TLM model that is used to describe the system and used to simulate its evolution. As 
such, any assignment of the partial voltages that satisfies the consistency conditions given by 
Eq. (A.2) constitutes a valid initial state. Keeping this in mind, the input regularization for 
the 3D-EM procedure can be defined by the following problem statement: 

 
Problem: Given a periodic n n n× ×  array of nodes with weights ( )W i  assigned to each 
node i , find an assignment of weights ( , )w i j  to each link ( , )i j  such that: 

 
( , ) ( , )
( ) ( , ) , { }

=-

k

w i j w j i
W i w i k k nearest neighbors of i= ∀ ∈∑  (21) 

Fig. A-2–A-3 illustrate the input regularization of the TLM model in two dimensions with 
periodic boundary conditions. The direction of the links along which the indicated link 
weights are assigned is shown by the arrows. At 0t = , voltage sources of magnitude 1 and -1 
are placed at the center and top left corner of a square domain that is decomposed into a 
3 3 3× ×  array of grid points. The original input to the model is shown in Fig. A-2. Clearly, 
this state is inconsistent since the sums of the partial voltages do not equal the total voltages 
at the grid points to which the source voltages are assigned. Regularizing this input yields the 
assignment of partial voltages as shown in Fig. A-3. in which the total voltages at all the 
nodes are the same as those in the original with the additional property that the new set of 
partial voltages satisfy both consistency conditions ensuring that the initial state is consistent. 
This, in turn, implies that 0ct = . 
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Fig. A-2.  Un-regularized input state. Fig. A-3.  Regularized input state. 
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Appendix B.  SOME RESULTS 
 
Observation: Voltages after reversals are exactly equal to their values from forward 
computations. 
 
Proof: let ( )iV t  and ( )ijx t denote the total voltage and partial voltage at time step t  computed 
at the grid point i  using the reversal equations. From Eq. (15), we get: 

 
[ ]

2 2

( ) ( 1) ( 1)

( ) ( )( ) ( )
3 3

( ) ( )( ) ( )
3 3

( ) ( )( ) (1 ) ( )
3 3

i ik ik ki ki
k

i
ik ik ik ik

k
ki ki

k
ki ki

k i
ki

i
ik ik ik

ki ik ik

i
ik

V t R x t T x t

V t V tR R x t R x t

V t V tT R x t T x t

V t V tR x t R x t

T

T

= + + +

⎡ ⎤⎛ ⎞ ⎛ ⎞− + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥=
⎢ ⎥⎛ ⎞ ⎛ ⎞+ − + −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞= − + − −⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

∑

∑

( ) ( ) 2 ( ) ( ) ( )
3

i
ik

k

i i i
k

V t x t V t V t V t

⎡ ⎤
⎟⎢ ⎥

⎣ ⎦
⎡ ⎤⎛ ⎞= − = − =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑

 

 
Observation: Partial voltages after reversals satisfy the same consistency equations as in the 
forward computation.  
 
Proof: Remember that 1ij jiTR + =  and ji ijR R= − . Then: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1[ ( ) ( )] ( 1) [ ( ) ( )] ( 1)
3 3
1[ ( ) ( )] [ ( 1) ( 1)]
3
1[ ( ) ( ) ( ) ( )] [ (
3

ji j ij i j

ij ji ij ij ji ji ji ji ij ij ij ji

ij i ji j ij

i ij ji

i i j i

i

j

j

j

x t x t R C t T C t R C t T C t C t C t

R V t T V t x t R V t T V t x t

V t V t x t x t

V t V t V t V t x t

+ = + + + = +

= + − + + + − +

= + − + + +

= − + − + ) ( )]

( 1) ( 1)
( ) ( ) [ ( 1) ( 1)]

3

ji

i j
ij ji ij ji

x t

V t V t
x t x t x t x t

+

− + −
= + = − − + −

 
 

which is the same as Eq. (A.1). 
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