
ORNL/TM-2009/165

Scalable Parallel Execution of an
Event-based Radio Signal Propagation

Model for Cluttered 3D Terrains

August 2009

Prepared by
Sudip K. Seal and Kalyan S. Perumalla

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S.

Department of Energy (DOE) Information Bridge.

 Web site http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public

from the following source.

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone 703-605-6000 (1-800-553-6847)
 TDD 703-487-4639
 Fax 703-605-6900
 E-mail info@ntis.gov
 Web site http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data

Exchange (ETDE) representatives, and International Nuclear Information System (INIS)
representatives from the following source.

 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831
 Telephone 865-576-8401
 Fax 865-576-5728
 E-mail reports@osti.gov
 Web site http://www.osti.gov/contact.html

This report was prepared as an account of work
sponsored by an agency of the United States
Government. Neither the United States Government nor
any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States
Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

ORNL/TM-2009/165

COMPUTATIONAL SCIENCES AND ENGINEERING DIVISION

SCALABLE PARALLEL EXECUTION OF AN EVENT-BASED
RADIO SIGNAL PROPAGATION MODEL FOR CLUTTERED 3D

TERRAINS

Sudip K. Seal
Kalyan S. Perumalla

Date Published: August 2009

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831-6283
Managed by

UT-BATTELLE, LLC
for the

U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

 iii

CONTENTS

Page
LIST OF FIGURES ... iv
ABSTRACT.. v
1. INTRODUCTION ... 1
2. VECTOR UPDATE FORMULATION... 4
3. LINEAR TIME REVERSE COMPUTATION ... 5
4. PARALLEL DISCRETE EVENT SCHEME.. 9
 4.1 FORWARD EXECUTION... 11
 4.2 REVERSE EXECUTION... 12
5. EXPERIMENTAL SETUP.. 15
6. PERFORMANCE RESULTS.. 16
7. COMPARISON WITH TRADITIONAL SYNCHRONOUS EXECUTION 18
8. CONCLUSIONS AND FUTURE WORK .. 20
ACKNOWLEDGEMENTS.. 21
REFERENCES .. 21
A. INITIALIZATION OF MODELS AND CONSISTENCY OF STATES A-1
B. SOME RESULTS ... B-1

 iv

LIST OF FIGURES

Figure Page

1. Voltage profile along the 15z = plane at 50t s= during a simulation with one voltage

source at the center of a 30 30 30× × domain .. 3
2. Voltage profile along the 15z = plane at 75t s= during a simulation with one voltage

source at the center of a 30 30 30× × domain .. 3
3. Structure of the connectivity matrix, A ... 6
4. A 2D illustration of the unique set UV (set of filled circles), the local set LX (set of bold

arrows) and remote set RX (set of dashed arrows) for the processor responsible 9
5. Optimistic parallel discrete event processing in an example with two processors 11
6. Forward execution. Numbers on the arrows indicate the order in which the indicated

steps are executed in a forward event o. The gray boxes indicate the arrays pointed to by
the write pointer before they are overwritten by the arrays in the white boxes 12

7. Reverse execution. Numbers on the arrows indicate the order in which the indicated steps
are executed during a reversal. The gray boxes indicate the arrays pointed to by the write
pointer before they are overwritten by the arrays in the white boxes 15

8. Speedup for various problem sizes, n=30, 80 and 130, with varying threshold and
number of processor cores ... 17

9. Percentage of total runtime that is spent on computation, communication and
synchronization on P = 8, 64, 512, 4096, 8000 and 17,576 with 3N ≈ million 19

10. Speedup comparison with threshold = -1 .. 20
11. Speedup comparison with threshold = 0.001... 20
A-1. A preprocessing stage is introduced in the algorithm to regularize the input A-2
A-2. Unregularized input state... A-3
A-3. Regularized input state .. A-3

 v

ABSTRACT

Radio signal strength estimation is essential in many applications, including the design of
military radio communications and industrial wireless installations. While classical
approaches such as finite difference methods are well-known, new event-based models of
radio signal propagation have been recently shown to deliver such estimates faster (via serial
execution) than other methods. For scenarios with large or richly-featured geographical
volumes however, parallel processing is required to meet the memory and computation time
demands. Here, we present a scalable and efficient parallel execution of a recently-
developed event-based radio signal propagation model. We demonstrate its scalability to
thousands of processors, with parallel speedups over 1000×. The speed and scale achieved by
our parallel execution enable larger scenarios and faster execution than has ever been
reported before.

 1

1. INTRODUCTION

A novel event-based model was recently proposed1,2 for the prediction of signal strength
in radio wave propagation. The proposed technique has been shown to yield accurate enough
predictions without the high computational overhead of more traditional techniques such as
finite difference time domain (FDTD) or ray-tracing methods.3,4 Validation studies2 have
shown that the new model is more runtime efficient, albeit in the context of serial execution,
compared to FDTD or ray-tracing methods. Parallelization of the above technique becomes
necessary due to very large memory and computational time demands associated with
simulations of radio signal propagation over large or richly-featured geographical areas,
particularly when they need to be carried out in real-time.

Motivation: Knowledge of radio signal path loss is of significant interest in the design and
deployment of wireless communication networks.5 For example, in military scenarios, typical
geographical terrains of interest are very large and often include physical features that range
from buildings and mountains to natural reliefs and foliage. FDTD or ray-tracing models of
radio wave propagation in such terrains is very intensive computationally, more so as the
number of transmitters and receivers are increased. For scenarios with even a single source
and a few receivers, traditional techniques exhibit large runtimes.2 In particular, faster
turnaround times are needed for simulated mobile units (for example, when the transmitters
and/or receivers are in moving vehicles). Efficient real time estimation of radio signal
strength for such scenarios remains an area of on-going research.6,7 The reader is referred to
references such as refs. 1–2 for additional details behind the motivation.

Related Work: In FDTD methods, Maxwell's equations are discretized subject to specific
boundary conditions and the resulting set of discrete equations are numerically solved. Ray
tracing methods are based on geometrical optics and are often more useful in scenarios where
the feature sizes of the scatterers are large compared to the wavelength of the radio signals.
Computing radio channel path loss predictions for deployment of large wireless networks
using FDTD or ray-tracing requires huge grid sizes to ensure numerical accuracies of the
final solutions. This makes the underlying computational problem very large. On the other
hand, the input data that describes the physical geometry of the study site is very often of low
precision and prone to large errors. As a result, despite their large computational overhead,
such high-precision techniques are unable to make accurate predictions. An alternative event
driven approach that is based on a transmission line matrix (TLM) method was proposed1,2 to
bridge the gap between low precision input data and accuracy considerations. In ref. 2
authors have shown empirical results that indicate the runtime performance results of earlier
traditional methods that clearly motivate the need for alternative models such as their new,
event-based TLM model. A TLM method uses equivalent electrical networks that are based
on the link between field theory and circuit theory to solve certain types of partial differential
equations stemming in EM field problems. Parallelizing the event driven TLM approach
proposed in ref. 2 renders the methodology applicable to larger simulations of radio channel
propagation that can include a greater number of receivers with extended geographical reach.
For example, while serial execution is sufficient to deal with room-sized volumes, parallel

 2

execution enables signal strength estimation from city block-sized urban scenarios to even
larger volumes encountered in wider, mountainous terrains. A number of FDTD and ray-
tracing based methods are available for the simulation of radio signals. But, as mentioned
earlier, inherent lack of precision in the input data renders such methods largely ineffective.
An earlier attempt8 to parallelize the discrete event formulation of the TLM-based method
described in only exhibited limited scalability, with self-relative parallel speedup reported
up to 25 processors.

Model Description: The computational (simulation) domain is modeled by a three-
dimensional (3D) grid. Each grid point i is a node that computes the time-varying electrical
potential iV of the wave that is traveling through the grid. Partial voltages ijx and jix are
defined across each link in the grid that connects two neighboring nodes i and j in the
directions i j→ and j i→ , respectively. Partial voltages on the links capture information
related to the permittivity and permeability constants of the medium, which in turn define the
rate at which the wave travels between those two nodes. In this paper, the term voltage will
always be used to refer to the total time-varying voltage defined at a node (grid point) while
partial voltage will always be defined on links between two neighboring nodes. Note that an
n n n× × grid contains 3n grid points (voltages) and 36N n= directional links (partial
voltages). When the power at any point in the simulation domain falls below a cut-off
voltage, a radio antenna cannot detect it. This effect is captured in terms of a threshold
voltage below which a node is not required to transmit. The TLM equations, as defined in
ref. 2, that govern the propagation of radio signals in terms of the total and partial voltages
defined above are:

 1

3 3

tt
jt t ti

ij ij ij ji ji

VVx R x T x+
⎛ ⎞⎛ ⎞

= − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (1)

5

1

0

1 t
ik

t
i

k
xV ++

=

=∑ , (2)

where k corresponds to the indices of the six neighbors of the grid point indexed by i , and
t and 1t + are consecutive units of discretized time. The constants ijR and jiT are the
reflection and transmission coefficients that correspond to the links ij and ji , respectively.
These constants encapsulate properties such as the permittivity and permeability of the
medium that is modeled by the grid. We will use the term components of iV to refer to the
partial voltages that add up to yield iV through Eq. (2). A computation of the voltage profile
[set of total voltages across all the 3n nodes in the grid (Figs. 1–2)] at a time step t requires
the availability of all the partial voltages at the previous time step.

Event-driven Execution: Temporal updates of the voltage profile can be either time-driven
or event-driven. Time-driven approaches continuously update the set of partial and total
voltages after the passage of each pre-defined time interval (which is often constrained by
convergence requirements such as the aspect ratio of finite-difference schemes). In event-
driven approaches, the state of a physical system changes only at certain instants of time
through instantaneous transitions. An event is associated with each such transition. For

 3

example, in the aforementioned problem, an event can be triggered every time a node
exceeds the threshold voltage. Discrete event formulations, therefore, delink the necessity for
a global clock from the evolution of the physical system and instead view the same
simulation as a set of time-stamped events (containing temporal information about the
physical state variables) that are processed as efficiently as possible without violating global
causality. When these event-based simulations are distributed across multiple processors,
preserving global causality becomes very challenging as data dependencies across processors
are no longer guaranteed to be concurrent. Parallelization of these discrete event algorithms
have been known to be very complicated, often requiring causality control mechanisms that
are highly challenging to scale well across a large number of processors. A more detailed
discussion of parallel discrete event simulations (PDES) can be found in refs. (9–10).

0

10

20

30

0

10

20

30
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0

10

20

30

0

10

20

30
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

 Fig. 1. Voltage profile along the 15z = plane at

50t s= during a simulation with one voltage
source at the center of a 30 30 30× × domain.

 Fig. 2. Voltage profile along the 15z = plane at
75t s= during a simulation with one voltage

source at the center of a 30 30 30× × domain.

Parallel Execution Challenge: FDTD and related techniques conform to time-driven
algorithms. Parallelization of the newer TLM-based model built on barrier methods results in
the processors becoming too tightly coupled, thereby diminishing the returns of the event-
based paradigm. Parallelizing event-based algorithms, while relieving the tight coupling,
exhibit a different challenge, most notably distributed causality preservation. The state-of-
the-art solution to parallel event-based models is the use of optimistic simulation techniques
employing “reverse computation” as the rollback method, for maximal parallelism with
minimal overhead. Problems such as our parallel event-based execution of TLM are best
suited to utilize such as method. We use reverse computing techniques to minimize the now
well-understood overheads associated with traditional PDES approaches.10,11 Another
important parallelization challenge is the treatment of 3D, which imposes interesting
dynamics coupled with event-based behavior and domain decomposition. Our interest is in
supporting full 3D scenarios with multiple domain decomposition schemes that scale across
thousands of processors. In addition to those that are already inherent to PDES, the
challenges undertaken in this work include designing and developing an efficient, perfectly-
reversible parallelization of the novel serial model in ref. 2, and realizing full 3D support
under different parallel domain decomposition schemes.

 4

Contributions in this paper: To the best of our knowledge, this paper presents the first
parallel discrete event formulation of radio signal propagation that scales to thousands of
processors. Our approach is based on a reverse computing technique with full 3D support for
realistic scenarios. Though our algorithm can efficiently support multiple domain
partitioning schemes, the results presented here are based on only one due to space
limitations. It may also be noted that our algorithm exhibits potential for vector processing.
In addition, its applicability is not confined to only TLM-based problems such as the one
described above. Finite differencing parabolic partial differential equations (e.g., diffusion
equations) that arise in a multitude of scientific applications can also be solved within the
parallel execution framework presented here. We implement our algorithm on a Cray XT4
platform and demonstrate its scalability to thousands of processors with speedups over
1000× . This enables real-time deployment capability with turn around times that are
commensurate with time scales for mobile wireless signal strength predictions.

The rest of the report is organized as follows. Section 2 presents a vector update
formulation of the TLM problem as described in Sect. 1. In Sect. 3, we derive the reversal
equations explicitly to prove that each reversal can be carried out in linear time. Section 4
describes the parallel discrete event scheme underlying our algorithm. Our experimental
setup and performance results are discussed in Sect. 5–7 followed by a discussion of the
future scope of this work in Sect.8.

2. VECTOR UPDATE FORMULATION

Let the linear mapping of the 3D Cartesian coordinates to a 1D array be carried out using
the mapping 2(, ,)f i j k i knj n= + + where (, ,)i j k are the 3D coordinates of a node. The
simulation based on the TLM equations proceeds as follows:

Algorithm 1: TLM Simulation

1. (0)ijx ← initial values 3, [0, , 1]i j n∀ ∈ −
2. (0)iV ← initial values 3[0, , 1]i n∀ ∈ −
3. for 0t = to 1T − do
4. Compute (1)ijx t + 3, [0, , 1]i j n∀ ∈ −
5. Compute (1)iV t + 3[0, , 1]i n∀ ∈ −
6. end for

It is evident from the above TLM equations that the total voltage is an intermediate

variable that can be completely eliminated by substituting Eq. (2) in Eq. (1) (or vice-versa).
The resulting set of equations is generally cast into a matrix-vector update form:

 1 ·t tX A X+ = , (3)

where the matrix A , called the connectivity matrix, has a linear number of non-zero elements
(reflection and transmission coefficients). A simulation of the signal propagation proceeds

 5

by updating the vector X of partial voltages at each time step through a ()O N matrix-vector
multiplication.

In principle, the forward simulation defined by Eq. (3) can be reversed by computing the
inverse matrix-vector multiplication:

 1 1·t tX A X− += . (4)

Note that the structure of the connectivity matrix A depends on the structure of the vector
X . As such, care needs to be exercised because a naïve formulation could result in: (a) cubic
work for the matrix inversion computation (though computed only once) and (b) quadratic
work for each inverse matrix-vector multiplication during rollback stemming from the fact
that the inverse of a sparse matrix need not necessarily be sparse. In fact, when X is
constructed by concatenating six smaller vectors, , , , ,x y z x yX X X X X+ + + − − and zX − , each of

length 3n and containing all the partial voltages along the directions indicated by the
subscript, the inverse of the resulting connectivity matrix can be shown to be dense thus
requiring quadratic work for each reversal, even though the forward matrix-vector
multiplication is linear. As a result, each application of the inverse matrix-vector
multiplication would require 2()O n work, thereby degrading the performance of speculative
execution using reverse computing. In addition, the cost of computing the inverse matrix,
though carried out only once, is 3()O n .

In summary, using a vector update representation, the TLM based simulation can be
shown to be reversible though the complexity of each reverse computation can potentially
become greater than that of the forward computation by one to two orders of magnitude.

3. LINEAR TIME REVERSE COMPUTATION

Though a naïve approach such as the one outlined above results in a connectivity matrix
whose inverse is dense, there is no a priori reason to assume there does not exist such a
matrix-vector representation whose inverse is linear. For our purpose, it suffices to
demonstrate that there exists at least one such case. For this purpose, let us define the
variable:

 ()() ()
3

i
ij ij

V ty t x tα α⎡ ⎤= −⎢ ⎥⎣ ⎦ ,
 (5)

where the superscript α denotes one of the six possible directions along which the node j is
a nearest neighbor of the node i . We use the notation α− to denote the direction opposite
toα . Eq. (1) can now be rewritten as:

 ()))((1ij ij ij ji jiy t T y tx t R α α αα α − −+ = + . (6)

Let denote the concatenation operation. For further ease of presentation, we adopt the
following notations:

 , yij ji ij jix x yα α α α− −= =

 6

0 1 2 1

0 0 0 0
0 1, 2, 1,0,() (), (), , (), ()

m mmj j j jmY t y t y t y t y t
− −− −⎡ ⎤= ⎣ ⎦

0 1 2 11, 2, 1,

1 1 1 1
1 0,() (), (), , (), ()

m mmj j j jmY t y t y t y t y t
− −− −⎡ ⎤= ⎣ ⎦

0 1 2 11, 2, 1,

2 2 2 2
2 0,() (), (), , (), ()

m mmj j j jmY t y t y t y t y t
− −− −⎡ ⎤= ⎣ ⎦

0 1 2 1

0 0 0 0
0 1, 2, 1,0,() (), (), , (), ()

m mmj j j jmY t y t y t y t y t
− −− −⎡ ⎤= ⎣ ⎦

0 1 2 11, 2, 1,

1 1 1 1
1 0,() (), (), , (), ()

m mmj j j jmY t y t y t y t y t
− −− −⎡ ⎤= ⎣ ⎦

0 1 2 11, 2, 1,

2 2 2 2
2 0,() (), (), , (), ()

m mmj j j jmY t y t y t y t y t
− −− −⎡ ⎤= ⎣ ⎦ .

Fig. 3. Structure of the connectivity matrix, A .

Consider the vector ()Y t defined by:

 0 2 21 0 1() () () () () () ()
T

Y t Y t Y t Y t Y t Y t Y t⎡ ⎤= ⎣ ⎦ .
 (7)

In terms of the above definitions, Eq. (1) can be written as a vector update problem of the
form represented by Eq. (3) but with X replaced by Y and the connectivity matrix A taking
the form as shown in. Fig. 3. In Fig. 3, the like colored elements participate in a single
partial voltage computation. Note that A is composed of 3n independent 2 2× matrices,
each of the form:

 , , 3
,

3 , 3 , 3

i i i i mij ji
i j

i m i i m i mij ji

a aR T
R a a

A
T

α α
α

α α

−
+

−
+ + +

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦ ,

 (8)

and defined for each nearest neighbor pair (,)i j in a direction α with respect to i . Note that
any 2 2× matrix A and its inverse 1A− are related through the following:

 00 01 11 011

10 11 10 0000 11 01 10

1
()

a a a a
A A

a a a aa a a a
− −⎡ ⎤ ⎡ ⎤

= ⇔ =⎢ ⎥ ⎢ ⎥−−⎣ ⎦ ⎣ ⎦ .
 (9)

 7

Based on this, 1A− can be constructed by simply multiplying each off-diagonal element of A
by -1 and exchanging the elements , , 3i i i i nA A +↔ of A for all 0 3i m≤ < , in both cases
remembering to multiply each modified element by the corresponding determinant

, 3 , 3 , 3 3 ,1 / ()i i i m i m i i m i m ia aa a+ + + +− . Clearly, 1A− can be computed in ()NΘ time. In addition, the
structures of the matrix and its inverse are identical implying that the inverse matrix vector
multiplication can also be accomplished in linear time.

In particular, for the above TLM equations, the reflection and transmission coefficients
for any nearest neighbor pair (,)i j are related as follows:

 and 1ij ji ij jiR R R Tα α α α− −= − + = . (10)

As such, the determinant of the corresponding ,i jA matrix is:

 , (1)(1) 1 1i j ij ji ji ij ij ji ij ji ij jiA R R T T R R R R R R⎡ ⎤= − = − − − = − + + = −⎣ ⎦ .
 (11)

As above, from here on we will suppress the superscript with the understanding that for each
neighbor pair (,)i j , the subscript ij is associated with the direction α w.r.t point i and the
subscript ji is associated with the direction α− w.r.t point j. Therefore:

 1
, ,

,

1
| |

ji ji ji ji ij ji
i j i j

ij ij ij ij ij jii j

R T R T R T
A

T R T R RM
A

T
−

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (12)

for every nearest neighbor pair (,)i j which in turn implies that M is its own inverse !

A closer look at the forward computation reveals that it can be decomposed into three
stages denoted by the following three operations:

• operation ⊕ : compute (1) (1)i ij

j
V t x t+ = +∑ i∀ .

• operation : compute ()() ()
3

i
ij ij

V ty t x t⎡ ⎤= −⎢ ⎥⎣ ⎦
 ,i j∀ .

• operation M : compute (1) · ()X t M Y t+ = .

Pictorially, this can be shown as:

 { } { }(0), (0) (0) (1) (1) (1) (2) (2) (2)
B B B

X V Y X V Y X V Y
⊕ ⊕

→ → →→ → → → →

The reverse code should therefore achieve the following:

1 1 1 1 1 1

(2) (1) (1) (1) ()
B B

Y t X t V t Y t X t
− − − − − −⊕ ⊕⎧ ⎫
← − ← − ← − ← − ← ←⎨ ⎬

⎩ ⎭

The input to the reverse procedure is therefore ()X t . In the above we showed that the inverse
operation 1A− can be performed in linear time. Consider a pair (,)i j of neighboring points.
The corresponding x and y variables are related in the following manner:

 8

() (1)
() (1)

ij ij ji ij

ji ij ji ji

x t R T y t
x t T R y t

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ .

 (13)

Since 1A A−= , we have:

(1) ()
(1) ()

ij ij ji ij

ji ij ji ji

y t R T x t
y t T R x t

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (14)

From Eqn.(5), summing up over all the neighbors of point i , we get:

 [](1) (1) () ()i ik ik ik ki ki
k k

V t y t R x t T x t− = − = +∑ ∑ (15)

which constitutes the operation 1− . Equation (13) reads as:

(1)(1)() (1) (1)

3 3
ji

ij ij ij ji ji

V tV tx t R x t T x t
−⎡ ⎤−⎡ ⎤= − − + − −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ,

(1)(1)() (1) (1)

3 3
ji

ji ij ij ji ji

V tV tx t T x t R x t
−⎡ ⎤−⎡ ⎤= − − + − −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ .

At this point, (), (), (1)ij ji ix t x t V t − and (1)jV t − are known. The only unknowns are (1)ijx t −
and (1)jix t − which can be computed by solving the above pair of simultaneous equations.
For convenience, we first compute two constants:

 ()1(1) (1) (1) ()
3ij ij i ji j ijC t R V t T V t x t− = − + − −

 ,

 ()1(1) (1) (1) ()
3ji ji j ij i jiC t R V t T V t x t− = − + − −

 .

In terms of these constants, we obtain:
 (1) (1) (1)ij ij ij ji jit R C tx T C t− = − + − , (16)

 (1) (1()1)ji ij ij ji jix tt T C R C t− = −− + . (17)

The above two equations constitute the operation 1−⊕ . Thus, using the inverse
operations 1A− , 1− and 1−⊕ in that order, it can be easily seen that the cost of reverse
computing from ()X t to (1)X t − takes linear time.

In this section, we have explicitly derived the reversal equations and shown that the time
to restore a state at a time step t from a time step t+1 takes a linear amount of work.
However, this work is serial. When data is distributed across processors, special care needs
to be taken to ensure that relevant data needed for the above reversal to work is not
irrecoverably lost due to destructive assignments. The following table summarizes the
reversal steps in a nutshell.

 9

Reversal Steps in a Nutshell

1. (1) () ()i ij ij ji ji

j
V t R x t T x t⎡ ⎤− ← +⎣ ⎦∑

2. ()1(1) (1) (1) ()
3ij ij i ji j ijC t R V t T V t x t− ← − + − −

3. ()1(1) (1) (1) ()
3ji ji j ij i jiC t R V t T V t x t− ← − + − −

4. (1) (1) (1)ij ij ij ji jix t R C t T C t− ← − + −
5. (1) (1) (1)ji ij ij ji jix t T C t R C t− ← − + −

4. PARALLEL DISCRETE EVENT SCHEME

Domain Decomposition: It is clear from Eq. (1–2), which we will refer to as the forward
equations, that a good parallel domain decomposition for this problem is one in which: (a)
for each ijx that is local to a processor, jix is also local and (b) for each iV that is local to a
processor, as many components of iV are local as is possible. Guided by this observation, we
block partition the 3D grid across P processors arranged in a Cartesian x y zP P P× × topology.

Each processor is therefore responsible for 3 3/ /x y zn P P P n P= voltages (one for each local
node). For each local node, a processor is responsible for the six partial voltages defined on
the links connecting it to its nearest neighbors along the positive ,x y and z directions only.
 Thus, each processor is responsible for 36 / /n P N P= number of partial voltages.

For ease of presentation, we use a 2D example in Fig. 4 to illustrate the following
notation that will be adopted in the remainder of this paper:

 Fig. 4. A 2D illustration of the unique set UV (set of filled circles), the local set LX (set of bold

arrows) and remote set RX (set of dashed arrows) for the processor responsible.

 10

• LX : set of all partial voltages local to a processor (bold arrows in Fig. 1).
• LV : set of all total voltages local to a processor (black circles in Fig. 4).
• RV : set of all remote total voltages required for the computation of all ij Lx X∈ (gray

circles in Fig. 4).
• UV : L RV V∪ .
• RX : set of all remote partial voltages required for the computation of all UV V∈

(dashed arrows in Fig. 4).

The preceding parallel domain decomposition guarantees that

(a) for each local partial voltage ij Lx X∈ , the reverse partial voltage jix is also local.
(b) for each total voltage i LV V∈ , its components along the positive directions are guaranteed
to belong to LX ,
(c) the number of sending and receiving processors are both constants,
(d) the partial voltages defined on links that cut a processor’s domain boundaries along the
positive directions are local, and
(e) the inter-processor communication bandwidth is proportional to the surface area of each
block partition and, hence, ()2/3 2/3/ PO N .

In our formulation, the partial voltages which are mapped to a processor are evolved
through two types of event processing, namely, self-update events (sue) and threshold-cross
events (tce). An example with two processors is shown in Fig. 5. Self-update events are
processed at integral time-stamps t while threshold-cross events are processed at half-integer
time-stamps 1/ 2t + . When a self-update event is processed, each ij Lx X∈ is updated though
Eq. (1). Those local updates for which the results vary by more than a pre-defined threshold
value are sent to the appropriate destination processors in a message time-stamped with

1/ 2t + . This style of sending conditionally will be referred to as selective sends. The
receiving processors process the arrival of the updates as threshold-cross events. Processing
a threshold-cross event involves modifying the set RX according to the updates received.
Note that these selective sends result in an asynchronous communication pattern. A
numerically correct self-update of LX requires concurrent values of ,i j UV V V∈ . However,

iV and jV may depend on remote partial voltages ik Rx X∈ . Thus, correctness of self-updates
depend upon the concurrency of the sets ,L RX X and UV .

 11

0.0 0.5 1.0 1.5 2.0 2.5 3.0

P0 tsim

tsim

sue tce sue tce sue tce sue

P1

Fig. 5. Optimistic parallel discrete event processing in an example with two processors.

In our approach, forward execution is carried out optimistically [i.e., each processor

continues to execute forward in simulation time under the assumption that the set X_R that
contains the remote data necessary for local forward computations (via self-update events)
are locally-usable], correct values until a threshold cross event with a more recent timestamp
is processed. As part of processing such a threshold-cross event, a rollback to the appropriate
simulation time in the past is initiated.

The state variables defined by the sets LX , RX , and UV contain complete information
about the local portion of the domain for which a processor is responsible. These sets are
stored as arrays. Note that | | (/)UV N P= Θ and| | (/)L RX X N P∪ = Θ . In addition, two
pointers, labeled read and write pointers are maintained. At any given simulation time t , each
processor maintains the following state variables: 2 1,t t

U LV X− − , and 1t
RX − that are pointed to by

the read pointer and 1,t t
U LV X− , and t

RX that are pointed to by the write pointer (see Fig. 6).
The above two pointers are maintained by each processor in order to facilitate reverse
computing for rollbacks, as will become clearer in the next section. Operations performed
during a forward execution overwrite the arrays pointed to by the write pointers. In Fig. 6,
the arrays that are overwritten are indicated by the gray boxes pointed to by the write
pointers.

4.1 FORWARD EXECUTION

Forward execution of our discrete event approach in terms of self-update and threshold-

cross events are shown in Fig. 6. The following operations execute the forward code:

1. SWAP (read,write) : The pointers to the read and write copies of the state variables

are swapped.
2. UPDATE- 1t

UV − : 1t
UV − is computed using 1t

LX − and 1t
RX − through Eq. (2).

3. COMPUTE- t
LX : t

LX is computed from the 1t
LX − and 1t

UV − using Eq. (1).
4. SELECTIVE-SEND : To each processor that needs t t

ij Lx X∈ , send t
ijx if and only if

1t t
ij ijx x δ−− ≥∣ ∣ , where δ is a pre-defined threshold. All such partial voltages that are

destined for a particular destination are collected and sent in a single message.

 12

5. COPY- RX : Copy 1t
RX − to t

RX .
6. PROCESS-TCE : This operation is performed if and only if there is a pending

threshold-cross event. The operation SWAP (,R TX X) is performed when the pending
threshold-cross event has a current time-stamp. In this operation, partial voltages

t t
ij Tx X∈ that are received from the sending processors are swapped with the

corresponding values in t
RX (Fig. 6). A threshold-cross event with a future time-

stamp is held in queue to be processed later. If the pending threshold-cross event has
a past time-stamp, then a rollback is carried out to restore the state variables to their
values at that time. We discuss rollbacks in the next section.

Xt−2
L

Xt
T Xt+1

T

Xt+1
TXt

T

V t−2
U

Xt−1
R

3

3

Xt−1
L

read write

Xt
L

Xt
R

V t−1
U

3

3

read write

1
SWAP(read,write)

1

t + 1t

4 4

Xt
R

Xt
L

V t−1
U V t

U

Xt+1
L

Xt+1
R

Xt−2
R

V t−2
U

Xt−1
L

Xt−1
R

6

5

2

2

2

2

6

5

V t−3
U

 Fig. 6. Forward execution. Numbers on the arrows indicate the order in which the indicated steps are
executed in a forward event o. The gray boxes indicate the arrays pointed to by the write pointer before

they are overwritten by the arrays in the white boxes.

4.2 REVERSE EXECUTION

In our implementation, restoration of state upon rollbacks is realized through reverse
computing. Recall that when a rollback is initiated by a threshold-cross event that is
processed at time-stamp 1/ 2t + , the physical system needs to be restored to that
corresponding to simulation time t which is defined by the arrays 2 1,t t

U LV X− − , and 1t
RX −

pointed to by the read pointers and the arrays 1,t t
U LV X− , and t

RX pointed to by the write
pointers. The following operations perform the reverse execution as illustrated in Fig. 7:

1. UNDO-PROCESS-TCE: Note that due to the most recent SWAP (read,write)
operation in the forward execution, the arrays 1t

UV − and t
LX currently pointed to by the read

 13

pointer hold the same elements as the arrays 1t
UV − and t

LX when it was pointed to by the
write pointer in the preceding time-stamp (Fig. 7). The array t

RX , however, may need to be
restored explicitly since the most recent threshold-cross event, if there was one, could have
swapped out some of its elements with t

TX . Thus, reversing the forward threshold-cross event
involves swapping back the values of t

RX with those in t
TX thereby restoring t

RX .
2. RESTORE- RX : The array t

RX is copied to the array 1t
RX + pointed to by the write

pointer. This reverses the operation in step 5 of Sect. 4.1 and restores 1t
RX − .

3. RESTORE- 1t
LX − : Note that in the forward execution, the local partial voltages t

LX are
computed from 1t

LX − and 1t
UV − . Therefore, we need a function g such that 1 1(,)t t t

L L UX g X V− −= .
To find g , we treat 1t

ijx − and 1t
jix − as two unknowns and solve the following two forward

equations:

11
1 1

1 1
1 1

3 3

3 3

tt
jt t ti

ij ij ij ji ji

t t
jt t ti

ji ji ji ij ij

VVx R x T x

V Vx R x T x

−−
− −

− −
− −

⎡ ⎤⎡ ⎤
= − + −⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= − + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

which can be re-written as:

 1 11
3

t t tMX MV X− −= − ,

where

1 1

1
1 1, , ,

t t t
ij ji ij i ijt t t

t t t
ij ji ji j ji

R T x V x
M X V X

T R x V x

− −
−

− −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 .

The above equation can be solved to yield:

 1 11
3

t t tX V MX− −= − .

Thus, the reversal equation to restore 1t

LX − using t
LX and 1t

UV − is:

1

1

3

t
t t ti
ij ij ij ji ji

Vx R x T x
−

− ⎡ ⎤
← − −⎢ ⎥

⎣ ⎦
 .

 14

At this point, the read pointers point to the correct values of 1,t t
U LV X− , and t

RX and write
pointers point to the correct values of 1t

LX − and 1t
RX − . The correct values of 2t

UV − still need to
be restored.

4. RESTORE- 2t
UV − : Consider the following equations for a pair (,)i j of nearest

neighbors:

1 2 2

1 2 2

t t t
ij ij ij ji ji

t t t
ji ij ij ji ji

x R y T y

x T y R y

− − −

− − −

= +

= +
 ,

where
3

t
t ti
ij ij

Vy x
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

. Solving the above equations for the two unknowns 2t
ijy − and 2t

jiy −

yields:
 2 1 1t t t

ij ij ij ji jiy R x T x− − −= + .

Summing up over all the neighbors of point i , we get:

1 1

2
2 1 1

2

2 1 1

3

t t
ik ik ki ki

k k

t
t t ti
ik ik ik ki ki

k k

t t t
i ik ik ki ki

k

t
ik R x T x

V x R x T x

V R x

y

T x

− −

−
− − −

− −

−

−

⎡ ⎤= +⎣ ⎦

⎛ ⎞
⎡ ⎤− = +⎜ ⎟ ⎣ ⎦

⎝ ⎠
⎡ ⎤= +⎣ ⎦

∑ ∑

∑ ∑

∑

Thus, we have:
 2 1 1t t t

i ik ik ki ki
k

V R x T x− − −⎡ ⎤= +⎣ ⎦∑ . (18)

At this point, the read pointer points to the correct arrays 1,t t
U LV X− , and t

RX and the write
pointer points to the correct arrays 2 1,t t

U LV X− − , and 1t
RX − .

5. SWAP (read,write) : The read and write pointers are swapped to restore the state to
the previous time-stamp (Fig. 7).

Since each partial voltage is updated exactly once, the runtime for each reversal (steps 1–
5 above) is (/)O N P , as it is for each forward execution phase.

 15

Xt
L

V t−2
U

Xt−1
R

Xt−1
L

read write

Xt
L

Xt
R

V t−1
U

read write

5
SWAP(read,write)

5

33

t t + 1
2

Xt
T

Xt−2
R

Xt−2
L

V t−3
U

3

2

4

4

1

V t−1
U V t

U

V t−2
U

Xt+1
L

Xt−1
L

Xt+1
R

Xt−1
R

Xt
R

3

1

2

4

4

Xt−1
T

 Fig. 7. Reverse execution. Numbers on the arrows indicate the order in which the indicated steps are

executed during a reversal. The gray boxes indicate the arrays pointed to by the write pointer before they
are overwritten by the arrays in the white boxes.

5. EXPERIMENTAL SETUP

Software Platform: We implemented the discrete event execution using the μ sik engine.12
μ sik provides an application programming interface in the C++ language that supports the
concept of logical processes, events for exchanging time-stamped messages among logical
processes, and virtual time-synchronized delivery of events to logical processes. The API
invokes a callback method into the logical processes when an event is to be processed.
Another callback method is invoked if and when an event is to be undone, which could be
either due to violation of timestamp order as a result of optimistic processing or due to
cancellation of an event by the sender of that event. We use the event handler and undo
handler to realize the forward and reverse execution portions of the updates to partial and
total voltages. The send primitive is used to send threshold crossing events to remote
processors, and also to schedule a self update to advance the local partial voltages. Specific
care is taken to only pack data corresponding to the local data that have actually exceeded
the threshold since the last update sent to neighboring processors. This ensures that the
number of updates across processors is minimized while keeping the performance
competitive with non-event-based execution.

Our implementation allows for any number of partial voltages to be mapped to the same
logical process. This feature is critical to minimize the event processing overhead. In a
simpler scheme adopted before,2,8 only one grid point is mapped to a logical process which
can make the event overhead a significant part of the total runtime. Our scheme allows for
multiple partial voltages to be updated as a block, making it competitive with an optimized,

 16

sequential execution. Please note that reverse execution is more challenging in our scheme,
as we cannot rely on expensive state-copying primitives to restore state upon rollback.

For the best performance, we map one logical process per processor core, which is
empirically observed to deliver better performance compared to when more than one logical
processes are instantiated per core. μ sik internally handles inter-processor communication
to exchange time-stamped events across processors and to synchronize global virtual time.
We configured μ sik to use the vendor-supplied Message Passing Interface (MPI)
implementation native to the hardware platform.
Performance Metric: It is important to note that the traditional “event rate”' performance
metric of discrete event simulators is not relevant for the purposes of measuring efficiency in
this application. Since events can be defined in many ways (consequently, with different
granularity), the number of events is misleading. Instead, we use the more appropriate
measure, namely, the speedup achieved by a parallel execution, relative to the execution time
on the smallest core count that can be used to execute the scenario.
Hardware Platform: Our hardware platform is a Cray XT4 machine in which each compute
node contains a quad-core 2.1 GHz AMD Opteron processor with 8 GB of memory. The
nodes are connected via a high-bandwidth SeaStar interconnect. Internally, the MPI
implementation is based on Cray's implementation of Portals 3.3 messaging interface.

6. PERFORMANCE RESULTS

Scenarios: In the experiments, we exercised our scheme with three grid sizes, corresponding
to increasingly larger volumes encountered in wireless applications. The first is a medium-
sized grid with 30n = , giving 27000 total voltages and 162,000 partial voltages. The second
is a larger-sized grid with 80n = , giving roughly half a million total voltages and 3 M partial
voltages. The third, which is a very large scenario with 130n = , yields roughly 2 M total
voltages and 13 M partial voltages. These grid sizes were tested with different threshold
values, to exercise the performance effects of selective sends (asynchronous
communications).
Speedup Analysis: Speed-up plots for the different scenarios are shown in Fig. 8. It
demonstrates parallel speedups over 1000× for large scale scenarios on thousands of
processors. As described before, the communication pattern of our algorithm is intimately
dependent on the threshold voltage value. When threshold=-1, every self-update event
triggers a threshold-cross event resulting in a very synchronous communication pattern. This
is akin to a time-driven algorithm. As the threshold increases, communication becomes
increasingly asynchronous due to selective sends. Increasing selectivity of sends increases
concurrent computations while decreasing the total communication. This, in turn, improves
the performance of the algorithm. Performance advantages of selective sends with increasing
number of processors can be seen in Fig. 8 for all three scenarios. When the threshold
becomes large, the wave propagates shorter grid cell distances.† This effect is seen from the

† When the asymptotic limit with threshold=∞ in considered, the simulation ends after the very first self-
update event (since the difference between the new and old value of the partial voltages will always be less

 17

−1 0 0.001 0.01
0

200

400

600

800

1000

1200

1400
Speedup for n=30

Sp
ee

du
p

threshold

p=64
p=512
p=4096

−1 0 0.001 0.01
0

200

400

600

800

1000

1200

1400
Speedup for n=130

Sp
ee

du
p

threshold

p=64
p=8000
p=17576

 Fig. 8. Speedup for various problem sizes, n=30, 80, and 130, with varying threshold and number of

processor cores.

speedups at threshold = 0.01 for 80n = and 130n = . For relatively large problem sizes on
small number of processors, computations remain highly concurrent and the computation-to-

than∞).

 18

communication ratio is large. For such cases, the parallel runtimes remain largely unaffected
by selective sends. This is evident from the near insensitivity of the speedups for the three
scenarios on 64p = .

Efficiency (defined canonically as /speedup P) of the algorithm exhibits very good

improvements when problem sizes are increased for a fixed number of processors. For
example, efficiency of the parallel execution on 512p = increases from 34% to 53% when
the scenario changes from a medium sized grid to a large one (n changes from 30 to 80)
while it increases to 21% from 4% on 4096p = for the same change in the problem size.
This trend continues across all the threshold values that were tested.

Implications: The demonstrated parallel speedup of the algorithm makes it possible for real
time prediction of radio signal strength. For example, a serial computation based prediction
for a scenario with 80n = (roughly half a million total voltages) has a turn around time of
about 3.5 h but only about 6 s on 8000p = processors using the above algorithm. This is
well within the scope of real time predictions of mobile wireless signal strength.

7. COMPARISON WITH TRADITIONAL SYNCHRONOUS EXECUTION

A time-stepped simulation can be efficiently executed using the following parallel
algorithm.

Algorithm 2: Synchronous Simulation of Radio Wave Propagation

1: initialization and parallel decomposition
2: for 0; endtime;t t t t t= < = + Δ do
3: update LX
4: synchronize
5: selectively send Lx X∈ needed in remote processors
6: receive Rx X∈
7: update UV
8: end for

When the runtime pt of parallel algorithms is viewed as a sum of computation cost compt ,

communication cost commt and synchronization cost syncht , scaling of traditional time-stepped
algorithms is adversely affected at large processor counts due to the amount of time needed
for the algorithm to synchronize amongst increasing number of processors. This can be seen
in Fig. 9 where the computation, communication and synchronizations costs have been
presented for a problem of size 3N ≈ million against varying number of processors. It is
clear that computation time dominates the total runtime for smaller number of processors.
However, synchronization overhead continues to grow and finally exceeds both computation

 19

and communication costs after around 1K processors. Beyond 1K processors, the
synchronization overhead of the time-stepped approach accounts for almost 75% of the total
runtime.

Fig. 10 compares the speedup (relative to execution time on 8 cores – smallest available

core count) of the time-stepped and event-driven executions on P=8, 64, 512, 4096, and
8000. The time-stepped execution out-performs the event-driven approach as P grows to
about 1K processors due to the extra computational overhead of event scheduling and global
virtual time management necessary in any event-driven execution. Note that both types of
executions were carried out with:

(a) threshold = -1,
(b) identical global linear ordering of the partial voltages, and
(c) identical parallel domain decomposition.

When threshold = -1, every update of a local partial voltage triggers a threshold –cross event
at every half-integer time-step which forces the event-driven simulation to execute
conservatively rather than speculatively. This ensures that there is no reverse computing
overhead for the event-driven execution shown in Fig. 10. Same linear ordering of the partial
voltages and identical parallel domain decomposition scheme ensures identical data
distribution as well as identical number and volume of communication for both cases. As a
result, compt and commt in pt are equal for both types of executions. The remaining component
of the total runtime is syncht which is identically equal to zero in the event-driven simulation.
Consequently, it out-performs the time-stepped algorithm as P grows. This is evident in
Fig. 10. For non-negative thresholds, the only difference in the arguments above is that the
computation cost of the event-driven execution increases due to reverse computing overhead.

1 10 100 1000 10000 100000
0

10

20

30

40

50

60

70

80

90

100
Time−stepped Execution

Processors

%
 o

f
T

o
ta

l P
ar

al
le

l R
u

n
ti

m
e

computation
communication
synchronization

 Fig. 9. Percentage of total runtime that is spent on computation, communication and

synchronization on P = 8, 64, 512, 4096, 8000, and 17,576 with 3N ≈ M.

 20

But this added cost is proportion to the forward computation volume which only decreases as
the processor number grows and continues to remain smaller than syncht of the time-stepped
execution. As a result, the event-driven simulation scales to a much larger number of
processors when compared to the time-stepped simulation. This is evident from Fig. 11 in
which threshold = 0.001 on P = 8, 64, 512, 4096, 8000, and 12,000.

1 10 100 1000 10000
0

100

200

300

400

500

600

700

800

900

1000
N = 3,072,000, threshold = −1

S
p

ee
d

u
p

Processors

synchronous
asynchronous speculative

1 10 100 1000 10000 100000
0

100

200

300

400

500

600

700

800

900

1000
N = 3,072,000, threshold = 0.001

S
p

ee
d

u
p

Processors

synchronous
asynchronous speculative

Fig. 10. Speedup comparison with threshold = -1. Fig. 11. Speedup comparison with threshold =
0.001.

8. CONCLUSIONS AND FUTURE WORK

An efficient parallelization and implementation of a recently-developed discrete-event
based serial algorithm for the estimation of radio wave signal strength was presented. A
reverse computing based discrete event approach for this problem, aimed at circumventing
other PDES approaches that are known to suffer from overheads that do not scale well to
large processors counts has been used. The reversal equations that were subsequently used
for rollbacks to restore the state of the system to a desired time in the past were explicitly
derived.. The authors have demonstrated that such reverse computing based rollbacks can
deliver unprecedented speedup for this problem. To the best of their knowledge, the results
are also among the first to demonstrate 1000× parallel speedup for any non-synthetic PDES
application that is based on reverse computation. Also, such speedups for EM wave
simulators have never been reported before. It has been shown that the algorithm presented
in this paper brings real time signal strength predictions well within the turnaround time
scales needed for mobile wireless deployment simulations and design problems.
Additionally, the effect of varying threshold values on the performance of the algorithm was
studied systematically to understand their effect on the performance. The algorithm supports
full 3D scenarios with support for rich heterogeneity.

An exhaustive performance comparison of conventional time-driven parallel approaches
with the event-driven parallel algorithm has been presented. The comparison clearly revealed
that, unlike discrete event based schemes, barriered time-driven algorithms are prone to large
synchronization overheads that grow as the number of processors increase. This point of

 21

comparison is particularly poignant in an era of petascale computers to demonstrate the fact
that synchronization overheads drastically hinder the performance of barriered time-driven
codes. Convincing empirical results illustrative of the advantages of asynchronous
speculative execution over synchronous time-stepped for the simulation of radio signal
propagation have been provided.

ACKNOWLEDGEMENTS

This effort has been supported by research sponsored by the Laboratory Directed
Research and Development Program of Oak Ridge National Laboratory, managed by UT-
Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725.

This research used resources of the National Center for Computational Sciences at the
Oak Ridge National Laboratory, which is supported by the Office of Science of the US
Department of Energy under Contract DE-AC05-00OR22725.

REFERENCES

 1. J. Nutaro, "A Discrete Event Method for Wave Simulation," ACM Transactions on
Modeling and Simulations, vol. 16, pp. 174–195, 2006.

 2. J. Nutaro, T. Kuruganti, R. Jammalamadaka, T. Tinoco, and V. Protopopescu, "An Event
Driven, Simplified TLM Method for Predicting Path-loss in Cluttered Environments,"
IEEE Trans. on Antennas and Propagation, vol. 56, pp. 189–198, 2008.

 3. S. D. Bilbao, Wave and Scattering Methods for Numerical Simulations: Wiley, 2004.
 4. K. A. Remley, A. Weisshaar, and H. R. Anderson, "A Comparison Study of Ray Tracing

and FDTD for Indoor Propagation Modeling," in Proc. of the Vehicular Technology
Conference, 1998, pp. 865–869.

 5. J. Chen and S. Hall, "Efficient and Outdoor EM Wave Propagation in a Compact Terrain
Database of the Urban Canyon Environment," in Proc. of the Vehicular Technology
Conference, 2002, pp. 802–806.

 6. D. Cavin, Y. Sasson, and A. Schiper, "On the Accuracy of MANET Simulators," in Proc.
of the Int'l Workshop on Principles of Mobile Computing, 2002, pp. 38–43.

 7. I. Gruber and H. Li, "Behavior of Ad Hoc Routing Protocols in Metropolitan
Environments " in Proc. of the Vehicular Technology Conference, 2004, pp. 3175–3180.

 8. D. Bauer and E. Page, "Optimistic Parallel Discrete Event Simulation of the Event-Based
Transmission Line Matrix Method," in Proc. of the Winter Simulation Conference, 2007,
pp. 676–684.

 9. R. M. Fujimoto, "Parallel Discrete Event Simulation," in Proc. of the Winter Simulation
Conference, 1989, pp. 19–28.

10. K. S. Perumalla, "Parallel and Distributed Simulation: Traditional Techniques and Recent
Advances," in Proc. of the Winter Simulation Conference, 2006, pp. 84–95.

11. C. Carothers, K. S. Perumalla, and R. M. Fujimoto, "Efficient Optimistic Parallel
Simulations using Reverse Computation," ACM Transactions on Computer Modeling and
Simulations, vol. 9, pp. 224–253, 2006.

 22

12. K. S. Perumalla, "µsik - A Micro-Kernel for Parallel and Distributed Simulation
Systems," in Proc. of the Workshop on Parallel and Distributed Simulation, 2005,

 pp. 59–68.

 23

 A-1

Appendix A. INITIALIZATION OF MODELS AND CONSISTENCY OF STATES

At every time step, we can define the state ()S t of the system as the set () [(), ()]S t X t V t=
where ()X t and ()V t are related to each other through the TLM equations that define the
model being simulated. At any given time step t , ()S t contains complete information about
all the partial voltages ()X t defined on the links of the grid and the total voltages ()V t
defined on each node. In the example above, a 3 3 3× × grid with periodic boundary condition
was used. A non-zero voltage source of magnitude sV was placed at the center of the grid at
time 0t = , that is, /2 (0) 0n sV V⎢ ⎥⎣ ⎦

= ≠ . Execution of the simulation, began with initializations

(0) 0X = and (0) 0iV = at all nodes except at the center where /2 snV V⎢ ⎥⎣ ⎦
= [i.e.,

(0) [0,0, , , ,0,0]sV V=]. It is clear that such an initial state does not respect the mutual
relationships between (0)X and (0)V as defined by the TLM equations since

/2 /2(0) (0) 0n ns xV V α

α
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= ≠ =∑ .We refer to such a state as an inconsistent state. A state ()S t

at a time t is called consistent if all the partial and total voltages at the time step t respect
both the TLM equations simultaneously.
When the state of the system is evolved using the forward TLM equations and the system is
brought from the state, (0)S to the state, (1)S , a careful look will reveal that using the
reversal equations on (1)S will not restore (0)S . This is because (1)S is a consistent state but

(0)S is not. The initial state was, in some sense, “arbitrary” though it was chosen to best
reflect the physical condition of the system at 0t = which may not necessarily be consistent
with the mutual relationships amongst the state variables for 0t >

A.1. PROPAGATION OF INCONSISTENCY AND CONVERSION POINT

The lesson learned from the previous section is that even if the model that drives a
simulation is reversible, an inconsistency is injected into it due to initialization(s) which can
potentially render it irreversible. The resulting inconsistency can potentially propagate
through the time steps until such an iteration ct when the system state reaches consistency
We refer to such a time iteration as the critical point, ct .

In order to be able to use reverse computing techniques, one therefore needs to detect the
critical point at runtime. To do this, when the simulation advances from iteration t to 1t + ,
that is, the system evolves from () (1)f fS t S t→ + where the subscript indicates that the state
was obtained during a forward computation, the reverse equations R can be used on

(1)fS t + to restore the previous state, ()rS t and checked to see if
: (1) () ()f r fR S t S t S t+ → = . If () ()r fS t S t≠ , we mark time step t , as belonging to the

inconsistent phase of the simulation; otherwise, we mark it as consistent. If the state is
inconsistent, information about it will need to be stored in memory before the simulation is
advanced. During a rollback to iteration t , reverse computing can be applied if ct t≥ and a
combination of reverse computing and state saving will be needed if ct t< . We will refer to

 A-2

this algorithm as the toggle forward algorithm. Clearly, the memory needed to store state
information in such an algorithm will be proportional to max/ct t , where maxt is the maximum
simulation time. The advantages of reverse computing are limited by this ratio.

A.2. GENERALIZATION

Clearly, the strategy outlined above to address the irreversibility that is artificially
introduced into the model by initialization artifacts can only be of limited usefulness. When

maxct t> , information about all the states during the simulation will need to be stored. This
reduces the rollback mechanism in a speculative execution to the memory intensive state
saving approach which we wish to improve upon through reverse computing.

To address this issue, we propose introduction of an additional pre-processing stage,
which we call input regularization, in the computation path. This modification is
schematically shown in Fig. A-12. Since the source of the irreversibility is an artifact of
inconsistent initializations, the regularization procedure takes the original input set of
variables that defined the starting state (0)S and converts them into another set of variables
that satisfy the consistency conditions of the model. These modified variables define the new
starting state (0)RS that is used to simulate the system of interest. This implies that 0ct =
which in turn ensures that no state information need be stored, thereby restoring the merits of
using reverse computing in lieu of state saving.

PROBLEM

O
U

T
PU

T

IN
PU

T

SIMULATION

ALGORITHM
MODEL

REGULARIZE
INPUT

Fig. A-12. A preprocessing stage is introduced in the algorithm to regularize the input.

The regularization procedure should retain the description of the system state at 0t =

with the additional constraint that the state variables are consistent with the forward
computation relations.

A.2.2 Example of Input Regularization for the EM Problem

At any given time step t , the consistency condition for the total and partial voltages can
be defined using Eq.(1) and Eq.(2) as:

(1) (1)

() () (1) (1)
3

i j
ij ji ij ji

V t V t
x t x t x t x t

− + −
⎡ ⎤+ = − − + −⎣ ⎦ (A.1)

Clearly, at 0t < , () () 0 ,i ijV t x t i j= = ∀ . This yields the following consistency conditions for
the initial state (0)S :

 A-3

x (0)=-x (0

(0 ()

)

) 0
ij ji

i ik
k

V x=∑ (A.2)

Note that the magnitude and position of the source voltages at 0t = are dictated by the
physical problem and, hence, considered fixed. However, the partial voltages are an artifact
of the TLM model that is used to describe the system and used to simulate its evolution. As
such, any assignment of the partial voltages that satisfies the consistency conditions given by
Eq. (A.2) constitutes a valid initial state. Keeping this in mind, the input regularization for
the 3D-EM procedure can be defined by the following problem statement:

Problem: Given a periodic n n n× × array of nodes with weights ()W i assigned to each
node i , find an assignment of weights (,)w i j to each link (,)i j such that:

(,) (,)
() (,) , { }

=-

k

w i j w j i
W i w i k k nearest neighbors of i= ∀ ∈∑ (21)

Fig. A-2–A-3 illustrate the input regularization of the TLM model in two dimensions with
periodic boundary conditions. The direction of the links along which the indicated link
weights are assigned is shown by the arrows. At 0t = , voltage sources of magnitude 1 and -1
are placed at the center and top left corner of a square domain that is decomposed into a
3 3 3× × array of grid points. The original input to the model is shown in Fig. A-2. Clearly,
this state is inconsistent since the sums of the partial voltages do not equal the total voltages
at the grid points to which the source voltages are assigned. Regularizing this input yields the
assignment of partial voltages as shown in Fig. A-3. in which the total voltages at all the
nodes are the same as those in the original with the additional property that the new set of
partial voltages satisfy both consistency conditions ensuring that the initial state is consistent.
This, in turn, implies that 0ct = .

0

0

0

0

0 0

0

0

0 0

0 0 0

0 0 0

0 0 0

0

0

0 0

0

0

1

−1

0 0

00

0 0

+7/12

0

0

0

0 0

0

0

−1/4 −1/4 −1/4

+1/12 +1/4 −1/12

+7/12

+1/12

−1/12

1

−1

−1/4 +1/12 −7/12

−1/4 +1/4

−1/4 +1/12 −7/12

−1/12 +1/4

+1/12−1/12

−1/12

+1/12

Fig. A-2. Un-regularized input state. Fig. A-3. Regularized input state.

 B-1

Appendix B. SOME RESULTS

Observation: Voltages after reversals are exactly equal to their values from forward
computations.

Proof: let ()iV t and ()ijx t denote the total voltage and partial voltage at time step t computed
at the grid point i using the reversal equations. From Eq. (15), we get:

[]

2 2

() (1) (1)

() ()() ()
3 3

() ()() ()
3 3

() ()() (1) ()
3 3

i ik ik ki ki
k

i
ik ik ik ik

k
ki ki

k
ki ki

k i
ki

i
ik ik ik

ki ik ik

i
ik

V t R x t T x t

V t V tR R x t R x t

V t V tT R x t T x t

V t V tR x t R x t

T

T

= + + +

⎡ ⎤⎛ ⎞ ⎛ ⎞− + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥=
⎢ ⎥⎛ ⎞ ⎛ ⎞+ − + −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞= − + − −⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

∑

∑

() () 2 () () ()
3

i
ik

k

i i i
k

V t x t V t V t V t

⎡ ⎤
⎟⎢ ⎥

⎣ ⎦
⎡ ⎤⎛ ⎞= − = − =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑

Observation: Partial voltages after reversals satisfy the same consistency equations as in the
forward computation.

Proof: Remember that 1ij jiTR + = and ji ijR R= − . Then:

() () () () () () () ()

1 1[() ()] (1) [() ()] (1)
3 3
1[() ()] [(1) (1)]
3
1[() () () ()] [(
3

ji j ij i j

ij ji ij ij ji ji ji ji ij ij ij ji

ij i ji j ij

i ij ji

i i j i

i

j

j

j

x t x t R C t T C t R C t T C t C t C t

R V t T V t x t R V t T V t x t

V t V t x t x t

V t V t V t V t x t

+ = + + + = +

= + − + + + − +

= + − + + +

= − + − +) ()]

(1) (1)
() () [(1) (1)]

3

ji

i j
ij ji ij ji

x t

V t V t
x t x t x t x t

+

− + −
= + = − − + −

which is the same as Eq. (A.1).

	1. INTRODUCTION
	2. VECTOR UPDATE FORMULATION
	3. LINEAR TIME REVERSE COMPUTATION
	4. PARALLEL DISCRETE EVENT SCHEME
	4.2 REVERSE EXECUTION

	5. EXPERIMENTAL SETUP
	6. PERFORMANCE RESULTS
	7. COMPARISON WITH TRADITIONAL SYNCHRONOUS EXECUTION
	8. CONCLUSIONS AND FUTURE WORK
	Appendix A. INITIALIZATION OF MODELS AND CONSISTENCY OF STATES
	A.1. PROPAGATION OF INCONSISTENCY AND CONVERSION POINT
	A.2. GENERALIZATION
	A.2.2 Example of Input Regularization for the EM Problem
	Appendix B. SOME RESULTS

