
Int. J. Simulation and Process Modelling, Vol.

Copyright © 2009 Inderscience Enterprises Ltd.

Reversible discrete event formulation and optimistic
parallel execution of vehicular traffic models

Srikanth B. Yoginath and Kalyan S. Perumalla*
Oak Ridge National Laboratory,
P.O. Box 2008, MS-6085, Oak Ridge, TN 37831, USA
E-mail: perumallaks@ornl.gov
E-mail: yoginathsb@ornl.gov
*Corresponding author

Abstract: Vehicular traffic simulations are useful in applications such as emergency planning
and traffic management, for rapid response and resilience. Here, a parallel traffic simulation
approach is presented that reduces the time for simulating emergency vehicular traffic scenarios.
We use a reverse computation-based optimistic execution approach to parallel execution of
microscopic, vehicular-level models of traffic. The unique aspects of this effort are

• exploration of optimistic simulation of vehicular traffic
• addressing the related reverse computation challenges
• achieving absolute, as opposed to self-relative, speedup.

The design, development and performance study of the parallel simulation system is presented,
demonstrating excellent sequential and parallel performance. A speed up of nearly 20 on
32 processors is observed on a vehicular network of 65,000 intersections and 13 million vehicles.

Keywords: parallel simulation; discrete event; reverse computation; vehicular simulation.

Reference to this paper should be made as follows: Yoginath, S.B. and Perumalla, K.S. (2009)
‘Reversible discrete event formulation and optimistic parallel execution of vehicular traffic
models’, Int. J. Simulation and Process Modelling, Vol.

Biographical notes: Srikanth B. Yoginath is a research staff member in the Computational
Sciences and Engineering Division at ORNL. His expertise is in the Design and Development of
Parallel Computing Systems. He has previously developed Parallel Data-Analysis Software
Systems and has performed research in Grid Computing and Discrete-Event Computer Network
Simulation Models. He earned his Master’s Degree in Computer Science from Illinois Institute
of Technology, Chicago, and is currently pursuing his PhD in Computational Sciences and
Engineering, from Georgia Institute of Technology, Atlanta.

Kalyan S. Perumalla is a senior research staff member in the Computational Sciences Division
at the Oak Ridge National Laboratory (ORNL), and holds an Adjunct Professor appointment
at the Georgia Institute of Technology. His areas of interest include parallel and distributed
systems, modelling and simulation, and parallel combinatorial optimisation. He has co-authored a
book and has published over 70 papers in peer-reviewed conferences and journals. Four of his
co-authored papers received the best paper awards, in 1999, 2002, 2005 and 2008. Several of his
research prototype tools have been disseminated to research institutions worldwide. He earned
his PhD in Computer Science from Georgia Tech (1999).

1 Introduction

In applications such as emergency or evacuation planning
(Franzese and Han, 2001; Perumalla and Bhaduri, 2006),
a higher speed of simulation for traffic models translates
into faster determination of critical metrics such as expected
evacuation time. While sequential simulators exist for traffic
simulation, scalable parallel simulations are few. Among the
existing parallel traffic simulators, parallelism is realised
either by functional parallelism (Fisher, 2000) (parallelising
the steps such as trip planning, configuration generation,
partitioning, etc.), or by synchronous parallel execution

(time-stepped models) (Laboratory, 2001; Meister et al.,
2006; Innovative Transportation Concepts, 2001; Cameron
and Duncan, 1996), or both. Our focus is to combine the
speed of discrete event models with parallel execution
of the actual simulation runtime. Additionally, despite speed
concerns, our efforts are in staying at higher fidelity with
entity-level models, as opposed to resorting to aggregate
techniques such as fluid or network flow models. The higher
fidelity vehicular-level models enable the simulation of
more complex flow patterns and accommodating potentially
rich routing and behavioural mechanisms.

Reversible discrete event formulation and optimistic parallel execution 105

With advances in parallel discrete event simulation
modelling and the availability of multi-processor hardware,
high-speed simulation of high fidelity vehicular traffic
models is beginning to become possible now. Based on this
premise, a parallel vehicular traffic simulation model
called SCATTER-OPT has been developed, standing for
an optimistic-parallel version of the SCATTER simulation
system. This simulator is capable of using either
conservative or optimistic synchronisation when executed
on parallel platforms. Importantly, the parallel execution
speedup achieved by this simulator is over and above
some of the best performance achievable sequentially by
vehicular traffic simulators today. The performance gains
reported here, in that vein, are absolute and not simply
self-relative. While self-relative speedups have been
reported in the vehicular simulation literature, absolute
speedup is relatively much more challenging to achieve,
in view of the highly optimised execution possible in
sequential simulation without the overheads arising out of
model partitioning and parallel synchronisation issues.

Optimistic parallel simulation and reverse
computation-based rollback are not new. However, they
have not been explored for vehicular traffic simulation
before. Also, purely discrete event execution has not been
applied to vehicular traffic. Reversible formulation of
vehicular traffic operation is another contribution of our
effort. Our use of discrete event techniques from scratch
helps us achieve the high sequential speed that is
competitive with aggregate models in optimised sequential
vehicular traffic simulators. Optimistic execution of the
reversible formulation enables us to scale to much
larger networks with good speedup on platforms with
64 processors.

In order to perform a controlled evaluation of the
performance gains, both sequential and parallel, we define
and use a benchmark grid-like vehicular network that is
customisable to realise a wide range of network scenarios.
The runtime performance is measured on one processor
against the performance of an existing state-of-the-art
simulator. Parallel performance is evaluated on larger
network sizes. Among the challenges in applying
reverse-computation and optimistic execution to traffic
simulation are:

• developing an effective domain partitioning method

• dealing with road congestion effects that need to be
modelled accurately in order to obtain correct travel
time results.

These aspects distinguish our effort from earlier traffic
simulations such as Carothers et al. (1999), Garrett et al.
(2003), Tang et al. (2006), Cameron and Duncan (1996),
Fellendorf et al. (1996), Franzese and Han (2001), Gartner
and Stamatiadis (1998) and Yang et al. (2000).

In the rest of the paper, the design, development
and performance of SCATTER-OPT is described. This is
started in Section 2 with a presentation of the design
overview of the transportation model, and a documentation
of some of the abstractions of the road network system.

This is followed by a discussion on our parallelisation
approach, with discussion of the methods for realising
vehicular traffic system characteristics such as congestion
and routing. In Section 3, the reverse computing algorithms
are discussed that are used for realising optimistic
synchronisation. Section 4 is dedicated to a performance
study of sequential execution, in which sequential
simulation runtime performance is evaluated against that
of a de facto standard emergency management system
called the Oak Ridge Emergency Management System
(OREMS) (Bhaduri et al., 2006; Franzese and Han, 2001).
This is followed by a parallel performance study of
SCATTER-OPT in Section 5, evaluating both optimistic
and conservative synchronisation performance for parallel
execution. Section 6 summarises our current work and
outlinesfuture directions.

2 SCATTER-OPT system

Our simulation model is implemented in a simulator called
SCATTER-OPT, which includes a discrete event model,
and a parallel execution framework for vehicular networks.
Parallel discrete event simulation of vehicular network
operation involves the development of a discrete-event
model of the system coupled with a careful partitioning of
the model on to multiple processors for optimum run-time
performance. In our simulation model, the road network is
modelled as a graph, in which road segments connect
intersections. Each road segment is modelled with a few
physical attributes (number of lanes and length of road
segment), kinetic specifications (speed limit) and controllers
(traffic lights). The traffic lights are synchronised in their
operation and have a fixed period of GREEN time (when
the vehicles are allowed to enter the road-segment) and a
fixed period of RED time (when the vehicles are not
allowed to enter). Traffic lights control the entry of vehicles
for every road segment of the simulated road network.

An input file is used to specify parameters such as the
GREEN time period and the RED time period, along with
an initial-offset (i.e., the wait time to the first GREEN
period at simulation start time). Each road-segment in the
simulated transportation network contains this information.

An intersection, a point at which the road segments
connect to each other, is considered as an indivisible,
independent processing unit for parallel computing
purposes. Every intersection is capable of generating new
vehicle instances that are distinguished from each other by
their unique identifiers. Each generated vehicle has its
physical attributes (e.g., length of vehicle) and kinetic
attributes (e.g., travel velocity and acceleration), in addition
to its source and destination intersection information for its
current trip. Every intersection in the road-network is
capable of routing vehicles to their next hop toward their
individual destinations.

A VehicleEvent (VE) signifies the arrival of a vehicle
from one intersection to another. Events of this type
are processed by each intersection to generate additional
VEs that act as arrival events on this intersection’s

106 S.B. Yoginath and K.S. Perumalla

neighbouring intersections. The dynamically chosen
neighbouring intersection is the next hop node toward the
destination of the vehicle contained in a VE.

Information is provided in an input file about the road
network layout (that encompasses intersection co-ordinates,
connecting road-segment characteristics), traffic light
information, source and destination intersections, traffic
generation rate etc. This information is used to setup and
initialise the simulation process.

2.1 Parallel decomposition

A challenge in any parallel discrete event model involves
the issue of how to split the discrete event road-network
model among the parallel processors. An efficient
partitioning of the application process across different
processors during parallel computation fetches better
performance. Efficient partitioning involves recognition of
modules of an application process that could run
concurrently, with minimal, infrequent interaction between
each other. In particular, zero lookahead interaction is to be
avoided for parallel simulation efficiency.

We make an intersection (node) in the input
road-network graph as a logical process. This would require
grouping the road-segments connecting to each other via an
intersection. There is a choice on how the segments are
mapped relative to their intersection(s). Either incoming
road-segments or out-going road-segments can be
included as part of an intersection logical process.
The former approach, namely, incoming segments
mapped to their destination intersections, was used in the
original SCATTER system (Perumalla, 2006). We use the
alternative approach in SCATTER-OPT, namely, outgoing
segments mapped to same logical process as their source
intersection, as this somewhat simplifies the data structures
for reversibility. Thus, in SCATTER-OPT we consider the
node of the road-network graph along with its outgoing
road-segments as a logical process, as shown in Figure 1.
Each intersection in the transportation model is a collection
of outgoing segments from that intersection plus the actual
intersection space itself.

Figure 1 Intersection comprising four out-going road-segments
with traffic lights (see online version for colours)

2.2 System implementation

2.2.1 Simulation engine

We build our simulator on top of the publicly available µsik
simulation library (Perumalla, 2004, 2005) to realise
both conservative and reverse-computing based optimistic
parallel discrete event simulation model. The µsik library
is a general-purpose parallel/distributed simulation kernel,
which provides programming interfaces to develop
models that could run on one or more machines. Each
processor can host multiple simulation logical processes.
Logical processes are autonomous in the sense they
hold and manage their own events and can be optimistic
or conservative in their event processing. Efficient
communication and virtual time synchronisation are also
provided across processors in shared and/or distributed
memory platforms.

2.2.2 Intersection data-structure

The organisation of data structures within each road
intersection is shown in Figure 2.

Figure 2 Intersection data-structure (see online version
for colours)

Each intersection contains one or more road segments,
a routing table and vehicle counts and other statistics.
The major part of the intersection is the list of its outgoing
road segments. Each road segment contains an event
history, a ‘limbo’ list, a traffic light specification and other
details. Each limbo list element contains that state of a
vehicle that has reached this intersection but yet to be routed
or accommodated into their exit time lines. Event history is
a list of events of departed vehicles in increasing time order.

2.2.3 Traffic generation

The SCATTER-OPT input file contains the information of
the rate at which vehicles travelling to a particular
destination to be generated. Note that a rate, rather than
individual vehicle identity, is specified in the file. This is
for convenience only; each vehicle is individually
represented and simulated autonomously (e.g., a single
vehicle could get stalled at a traffic light), and no
aggregation is performed. Note also that the rate is on a per

inderscience
Figure 2.

inderscience
Figure 2

inderscience
Figure 1

Reversible discrete event formulation and optimistic parallel execution 107

flow-basis, the rate can be different across different flows.
Any desired traffic pattern can thus be generated in general.

A CreateEvent (CE) type is used for the purpose of
creating a vehicle at each intersection based on the rate
specified in the input file. ACE, when processed (as shown
in Figure 3), creates a VE that is rescheduled on the same
intersection, and also creates another CE that is scheduled to
a random time increment dt in future, to continue chaining
generation of vehicles at specified input rate.

Figure 3 CreateEvent processing block

2.2.4 Routing

After generation of a vehicle, each intersection ensures that
a ‘vehicle-following’ scheme is correctly followed for every
vehicle. A vehicle-following scheme ensures vehicles
follow First-In-First-Out (FIFO) scheme while following
their individual speeds and accelerations to the farthest
possible distance. Routing of each vehicle toward its
destination is based on Dijkstra’s shortest path algorithm.
The Boost’s Graph Library (BGL) is used for the purpose of
computing shortest paths. The road-network of the input file
is converted into a BGL graph. For every node the shortest
path to every other node in the network is determined,
from which a vector of parents for each node is obtained.
Each intersection uses this vector recursively to determine
the next hop intersection of the vehicle toward its
destination. Based on the next hop, the intersection
determines out-going road-segment on which the incoming
vehicle is routed.

Whenever a vehicle enters the intersection, the departure
time (td) is calculated using transit time (tt) and the vehicle’s
wait time at the traffic signal (tw): td = tt + tw.

Transit time (tt)

Transit time is calculated by solving the quadratic equation
from the Newton’s law of motion for time t. It takes the
velocity and acceleration of the given vehicle into
consideration, S = ut + (1/2at2), where, S is the distance
travelled (road-segment length), u is the velocity of the
vehicle; a is the acceleration of the vehicle, and t is the time
to traverse the road-segment length. This approximation
assumes that acceleration remains fixed during its travel,
which is a reasonable assumption for estimation of overall
time for an evacuation-type of traffic flows. It is worth
noting that the assumption is only regarding acceleration:
which remains constant during the travel of the vehicle
on a link (i.e., braking times at intermediate locations
are ignored). While the acceleration is assumed to be
constant, the velocity, on the other hand, is indeed varied
over its travel time, until the vehicle reaches the speed limit
of that link, at which time the velocity is capped to the
speed limit.

The value thus computed for departure time is retained
only if the calculated value is greater than the departure time
of the vehicle ahead of this vehicle. The departure time of
the vehicle ahead of this could be obtained by looking into
the EventHistory list held by the road-segment connecting to
the vehicle’s next-hop intersection.

This transit time has to be reconciled with the
vehicle-following constraints, namely, slow the vehicle
down if one or more vehicles ahead of this vehicle prevent
this vehicle from reaching at the computed transit time.
A sum of departure time of the vehicle ahead (tdva) and time
needed to cover a distance of vehicle length (vlen) at a
speed specified by speed limit (s), is used as the departure
time to ensure the vehicle following td = tdva + (vlen/s).

Wait time at the traffic signal (tw)

As mentioned earlier every road-segment has a GREEN
time period during which it allows the flow of traffic
through it and RED time period during which no vehicle is
allowed to enter the road-segment. At any given simulation
time, every intersection is capable of knowing the GREEN
time period or RED time period of any road-segments in the
road-network and hence the wait period on traffic signal for
a particular vehicle is calculated determining when it enters
any road-segment.

The departure time for every vehicle is then calculated
as: td = tt + tw.

Each road-segment lane maintains a list named
EventHistory that keeps track of the arrival_time,
departure_time and vehicle_id of every vehicle that entered
and left the intersection. The processing of preceding steps
is performed as part of the processing for a VehicleEvent,
as shown in Figure 4.

Figure 4 VehicleEvent processing block

2.2.5 Congestion

As mentioned earlier every road-segment keeps track of
incoming and out-going vehicle events in an event list
(EventList). This is referred by the intersection to determine
the occupancy of any of its road-segments at a given time.
On vehicle arrival, the intersection looks into the occupancy
of the road-segment that connects to the vehicle’s next-hop
intersection. The vehicle is scheduled to depart the
intersection only if enough space in the road-segment is
ascertained to exist at that point of time. On the other hand
if the associated road-segment is completely occupied, then
a congestion behaviour in the road-network is emulated.
To realise this, the vehicle is held in the current intersection

inderscience
Figure 3

inderscience
Figure 4 VehicleEvent

108 S.B. Yoginath and K.S. Perumalla

as long as enough space is available in the corresponding
out-going road-segment. The additional time delay (time
spent in waiting for availability of enough space) that
the vehicle experiences in the intersection before
being scheduled for departure directly corresponds to the
congestion in the road network. In the following paragraphs
we discuss different approaches that we have implemented
to realise this behaviour.

Simple rescheduling

In this approach, on detecting non-availability of space in
the road-segment the arriving vehicle is re-scheduled to the
same road-segment at the next GREEN time period
(when this road-segment allows vehicle to pass through it).
With this simple technique the vehicle is (logically) retained
in the intersection as long as there is enough space in the
outgoing road segment to accommodate it, also ensuring
that the vehicle leaves the intersection in the order of its
arrival.

This technique works well for minor congestion in the
transportation network. However, if the arrival rate of
the vehicles is far greater than the departure rate, then the
simulation crawls toward its end. This is due to the need
for regular polling required for rescheduling the departures;
as a result of this polling, every vehicle suffers multiple
reschedules on a single intersection, this in-turn gives rise to
equivalent number of events.

Rescheduling with initial time adjustment

Needless polling and rescheduling of VEs degrades the
performance in the previous strategy. If it were possible to
ascertain the number of vehicles ‘in limbo’ that are ahead of
any new arriving vehicle, we can calculate the time taken
for that many vehicles to depart and schedule the vehicle
arrival at that time in future. To this end, we maintain a
variable named nlimbo that keeps track of the number of
limbo vehicles in an intersection that have logically moved
on beyond the road-segment. This variable is used to
calculate the new departure time as tnew_d = nlimbo ×
(vlen/s) + td, where tnew_d is the new departure time
calculated; vlen is the average vehicle length; s, is the speed
limit on the road-segment and td is the departure time
calculated based on transit time and wait time.

However, the nlimbo variable could not be used for
rescheduling the already rescheduled events, since with this
variable the order of arrival of vehicles is not taken into
consideration. Hence, the time calculated using the nlimbo
variable could be used only to schedule the newly arrived
vehicles from peer intersections and not to reschedule the
vehicles withheld previously due to congestion. While we
could get better speed-up pushing the initial re-scheduling
time of the arriving vehicle much farther in future, the later
schedules of the same vehicle would be of constant time;
hence this suffers from the same problem of the former
model. Better run-time performance could be achieved for
smaller periods of congestion, but for longer periods of
congestion the run-time performance would be similar to the
previous model.

Using a ‘limbo list’

The best performance is obtained by keeping track of more
information, namely, by maintaining a list (limbo-list)
instead of a single nlimbo variable. Using this scheme,
we were able obtain a faster simulation. The FIFO limbo-list
preserves the order of arrival and obviates rescheduling
congested vehicle events on the same intersection.
Whenever a new vehicle arrives at the intersection,
it is put into the limbo-list. The intersection ensures
that enough space in the outgoing road segment is available
before removing the vehicle from the limbo-list. If enough
space is available, the intersection schedules the vehicle
at the end of the limbo-list to ensure the FIFO order in
traffic flow.

If enough space to hold the vehicle is not available on
the outgoing road segment at that point of time, the vehicle
is retained in the limbo-list. The removal of the vehicle from
the limbo-list should be dependent on the availability of
space on the out-going road-segment. To ensure this, a
SelfUpdateEvent (SE) is scheduled to a future time, when
enough space to hold the vehicle in the outgoing road
segment lane is available. This future time, tx, can be
approximated to the departure time of the second vehicle at
the farthest end of the corresponding outgoing road segment
lane, which ensures spatial availability to hold at least one
vehicle in the road-segment lane.

Thus, by maintaining the additional limbo-list and with
SE, we were able to emulate congestion in the road-network
and as expected, better runtime performance was also
observed. Figure 5 gives the altered algorithm to process
VE, to accommodate modelling the congestion behaviour in
the road-network. Absence of the first step, i.e., the insertion
of vehicle into limbo-list, is the only change in the algorithm
used to process SE arrival.

Figure 5 Altered VehicleEvent processing algorithm
to accommodate congestion behaviour

2.2.6 Memory management

As described earlier, each road-segment maintains a list
to keep track of the events arrived and departed from that

inderscience
Figure 5

inderscience
Figure 5

Reversible discrete event formulation and optimistic parallel execution 109

road-segment, we refer to this list as the EventHistory.
As the simulation progresses with time, the length of the
EventHistory grows. This not only increases the memory
requirement for the simulation run but also degrades
the performance, since the list is used for calculating
“number of vehicles in road-segment” that results in a
search with O(n) complexity. Hence, constant cleanup of
the EventHistory is needed to overcome the memory and
performance inefficiencies. To ensure safe cleanup, only the
elements with vehicle arrival time less than the safe global
time (Lower Bound on Time Stamp (LBTS)) are purged.

Using a periodic timer

If we were to use a timer that would schedule an event
periodically to clear the EventHistory, it would solve the
performance as well as memory problem. But, events for
clearing the EventHistory will be generated even when the
event history is not big enough. Also an inactive intersection
(to which vehicles have not arrived yet) ends up needlessly
performing this clearing operation. Hence, we generate
and process reclaimable events while using a timer; and this
in-turn affects the performance of the simulation.

Keeping track of length of the EventHistory

Another strategy is to keep track of the length of
EventHistory to initiate the cleanup process. This strategy
works fine but poses a problem when the vehicle arrival rate
is very high. In this case, each arrival event looks into
the length of EventHistory and schedules a cleanup event.
If a check on previously initiated clean-up process
is not made before initiating a new process, redundant
events are created and processed. This would go on until
the point where the very first arrival actually completes
the cleanup process and updates the length of the
EventHistory.

This problem of redundant event generation is overcome
by making the scheduling of the clean-up process mutually
exclusive, i.e., if an event has already scheduled a cleanup
process, no other event would schedule one, until the
initiated one completes. By doing so, we reduce many
redundant events thus enhancing the runtime performance
of the simulation model. The cleanup process of
EventHistory in SCATTER-OPT is realised through an
event type called FlushEvent.

3 Synchronisation and reversibility
considerations

In what follows, an overriding consideration behind the
modelling approaches and consequential data structures
is to enable perfectly reversible computation of state
changes. SCATTER-OPT is currently tested to work in
both conservative and optimistic synchronisation modes.
Reverse computation technique is used to realise rollback in
optimistic synchronisation.

3.1 Reverse computation

Optimistic federates differ from their conservative
counterparts in that they do not discard events after
processing them. Instead they keep the events around, and
also maintain copies of simulation states before modifying
them as part of event processing. Since optimistic federates
do not rely on lookahead, they execute their events without
blocking for safety. Thus a federate will have to rollback
its computation if/when it later receives events whose
timestamp is less than its current simulation time. There are
two main parts to such rollback

• undo local computation by restoring the state prior
to erroneous event processing

• undo all events erroneously sent to other federates.

While the parallel simulation library performs these
rollbacks at the library level, reversal code to restore the
application data structure state, in the event of rollback,
needs to be written and provided by the application.

3.2 Reverse event handlers

To recap from previous section, four events are used to
realise the discrete event traffic model. They are:
CreateEvent (CE), VehicleEvent (VE), SelfUpdateEvent
(SE) and FlushEvent (FE). The FEs are utilised for
optimisation purposes in a safe manner (reclaiming memory
that strictly belongs to past that cannot be rolled back) and
hence do not impact the correctness of simulation, hence the
reversal of FE can be ignored. The CE is used to generate
the traffic at the specified rate. The only state variable they
alter is the VehicleID counter, which is incremented as
vehicles are generated. Rollback of a CE involves
decrementing this counter. In the experimental road network
that we have considered, source intersections do not have
any incoming events from any other intersections, thus
eliminating the possibility of causality error occurrences.
Hence, in this experimental setup CE reversal code is never
utilised.

The VE and the SE events are responsible for routing the
vehicles from one intersection to another (as shown
Figure 6). Doing so, they alter the states of EventHistory
and limbo-list data-structures at the application level.
Hence, during rollback, reversal of the data structures to
their previous states is necessary for correct rollback.
Further, as discussed earlier, both VE and SE processing use
the same algorithm; the only difference being that the
former inserts the arriving vehicle into the limbo-list.

In the following, the reversal procedures for VE and SE
processing are similar, unless otherwise noted. Each VEi

may generate one or many VEij, (where j = 1, 2, 3, …) and,
may or may not create an SE, based on the congestion in the
network. Hence, for reversal we should first find out if VEs
were generated and if so, how many were generated.

110 S.B. Yoginath and K.S. Perumalla

Figure 6 Algorithm for application level VehicleEvent
and SelfUpdateEvent reversal

We know that when an intersection generates an out-going
VE, it records that event in the EventHistory list. Hence,
after finding the number of VEs generated, we need to
remove the record for each event generated in the
EventHistory list. Further, the vehicle object in that VE
should be extracted and pushed back into limbo-list from the
end through which it was removed. While, the SE reversal
procedure completes here, the VE reversal goes a step
further and removes only the last vehicle that was inserted
in the limbo-list to complete its reversal procedure. This
takes back the intersection road segment to the correct state
prior to the processing of this VE.

After arriving at the reversal algorithm, implementation
was found to be a challenge with the reverse execution
interface. The reverse computation algorithm in the previous
sub-section needs to identify the events that generated
specific events and extract objects from the generated
events. Modifications to the library had to be made to
expose the event’s causal list data structure, so that the
application could iterate through the copy of events sent,
to find the necessary events.

4 Sequential performance study

4.1 Benchmark network

In this section, we refer to road networks to be grids of size
N × N. The experimental setup contains N × N intersections,
with 2 × N sources injecting traffic from either sides (right
and left), to eight destinations equally distributed on the top
and bottom ends of the grid. Hence, our N × N grid scenario
consists of (N × N) + (2 × N) + 8 intersections. Figure 7
shows a 10 × 10 road network grid, containing ten sources
on left and right, and four destinations at top and bottom,
in addition to 100 interior intersections.

Also, the traffic lights are specified with an 8 s cycle
time. This cycle time is equally shared between GREEN and
RED time periods. The intersection transit time is set to 1 s.

Road networks of dimension 10 × 10, 12 × 12, 14 × 14
and 16 × 16 were used for comparison. The intersections
are connected to their neighbours through single-lane
road-segments of length 1600 m (1 mile). The lengths of the
road-segments are same throughout the test network, except

for the road segments connecting the sources and sinks,
which are of length 10 m. For each road network, sources
generate traffic at a rate r vehicles/hour/destination, where,
r = 400, 500, 600, 800 and 900. Larger grid sizes of the
network were not considered for study since OREMS input
format prevents it from executing beyond a 16 × 16-sized
grid.

Figure 7 10 × 10 road-network grid (128 intersections) snapshot
of OREMS graphical interface (see online version
for colours)

4.2 OREMS and SCATTER input specifications

SCATTER-OPT is tested sequentially for getting an idea
of its raw sequential speed. To make sure it is close to the
best sequential performance available today, it is compared
with OREMS (Evacuation Modelling System). OREMS is
an aggregate model, very fast in execution, and is used in
emergency operations.

OREMS input file specification

In OREMS, the information describing a traffic network is
fed to OREMS simulation engine as a data-file with a
specific format. The information is in the form of various
record types, each record type consists of 80 columns.
Information must be entered in the correct columns to
properly describe the network. The code that we developed
creates an input file considering record types 00–06, 11, 35,
36, 170, 175, 176, 195 and 210. The record types 01–06
identify the run, the time period data, output specifications
and other run control data, while record type 00 corresponds
to record comments. Record type 11 defines the surface
street links of a network. The record-types 35 and 36 define
signal control at every node in the network. Record type 170
is used as a delimiter record and one such record is required
for each time period. A time period in ORMES is an interval
during which the network conditions do not change.
OREMS provides the capability to specify how the time-
dependent data items change in course of a simulation run
by allowing the user to partition the simulation time into
series of time periods of varying lengths. In the OREMS
input file that we generate, we consider a single time period.
Record types 175 and 176 provide the origin-destination

inderscience
Figure 6

inderscience
Figure 7

inderscience
Figure 7

Reversible discrete event formulation and optimistic parallel execution 111

data for traffic assignment. Record 195 provides the
positional information (longitude and latitude) of every
intersection in the road network. Record type 210 is
required to mark the end of the input specifications for a
time period and the final record in the input stream must be
a card of type 210. Further, the ascending order of the
record types must be ensured in the input data-file of
OREMS.

SCATTER input file specification

The SCATTER input file uses three types of records; they
differ from each other based on their starting word.
The records could start either with NODE, LINK or
VEHICLES. The NODE record specifies the physical
attributes like the positional information of each intersection
in the road-network. The LINK record specifies the
information of each road-segment in the road-network along
with the traffic light associated with it. The VEHICLES
record specifies the traffic assignment information in the
road-network.

OREMS and SCATTER input file generators

OREMS software provides a Graphical User Interface
(GUI) to build a desired vehicular traffic network. The GUI
converts the user input in to a file. The usage of this GUI to
build large transportation networks is unwieldy and time
consuming. Hence, software to generate OREMS input file
for Grid based test road networks was developed. Input file
for initialising SCATTER is generated by parsing the input
file generated for OREMS. Figure 8 shows the snap shots of
the input files of OREMS and SCATTER.

Origin volumes and destination capacities need to be
provided in OREMS for trip generation and traffic
assignment. Node numbers of form 8xxx represent entry
and exit nodes connected to an internal node. SCATTER
does not distinguish between normal intersections with
source and sink intersections; hence any intersection could
be a source or sink. However, to keep the experimental
scenario uniform in both the systems, some nodes are used
only as sources, only as sinks or as normal intersections
in SCATTER.

Figure 8 Conversion of OREMS input file into a SCATTER
input files

4.2.1 Hardware

The sequential performance comparison of SCATTER-OPT
with OREMS was carried out on an Intel® Core™2 Duo
CPU T7700 at 2.4 GHz, with 2GB of memory running
Microsoft Windows XP Professional SP2.

4.3 Performance

Simulation runtime is plotted in seconds to evacuate traffic
generated at rates as specified in the experimental setup
against the number of vehicles evacuated, for both OREMS
and SCATTER-OPT.

As seen from Figures 9 and 10, in both 10 × 10 and
16 × 16 networks, the discrete event-based SCATTER-OPT
model runtime is smaller than that of OREMS at lower input
traffic rate, but SCATTER-OPT’ runtime slowly increases
beyond OREMS’ as the input traffic rate increases. Similar
pattern is observed for grid sizes 12 × 12 and 14 × 14.

However, the increase in simulation time of
SCATTER-OPT on larger networks is negligible
when compared to runtimes of equivalent high-fidelity
(vehicle-level) simulators. In separate experiments, we
benchmarked the same networks with MITSIM and
TRANSIMS and obtained runtimes that were at least one
order of magnitude higher (i.e., simulations were 10 ×
slower than OREMS and SCATTER-OPT).

Figure 9 Simulation runtime of OREMS and SCATTER-OPT
against number of vehicles evacuated plot, for
10 × 10 grid (see online version for colours)

Figure 10 Simulation runtime of OREMS and SCATTER-OPT
against number of vehicles evacuated plot, for
16 × 16 grid (see online version for colours)

inderscience
Figures 9 and 10,

inderscience
Figure 9

inderscience
Figure 8

inderscience
Figure 10

inderscience
Figure 8

112 S.B. Yoginath and K.S. Perumalla

4.4 Validation

For the validation purpose we compare the results of the
evacuation scenarios (10 × 10 grid and 16 × 16 grid layouts)
from SCATTER-OPT with those of OREMS. Validation is
performed by comparing the evacuation times predicted by
the two tools and verified the closeness of the predicted
times for different network sizes of the benchmark network.

The ratio of difference in the evacuation times (of
OREMS and SCATTER) to the maximum predicted
evacuation time can be considered as a measure of closeness
in evacuation time predicted by either tool. The percentage
of the difference observed is plotted against the rate of
vehicle generation in terms of vehicles generated per source
per destination per hour, as shown in Figure 11. On an
average, a discrepancy of 30% for 10 × 10 network and 15%
for the 16 × 16 road-network is observed from the plot.
A reduction in the difference of predicted evacuation times
with increase in the road-network size is also observed. For
practical purposes, such a difference is well within margin
of uncertainty, and hence, both the simulations can be
considered to equivalent, and hence, SCATTER-OPT-based
prediction is considered to give similar evacuation time as
predicted by OREMS.

Figure 11 Percent discrepancy in evacuation time prediction
(see online version for colours)

5 Parallel performance study
We now turn to a detailed performance study of the parallel
execution of SCATTER-OPT. First, the runtime for
simulating relatively smaller networks is evaluated.
Sequential runtime of OREMS is compared to that of
one- and two-processor runs of SCATTER-OPT. Next,
scalability of SCATTER-OPT is measured on significantly
larger network sizes. Ultimately, the performance of
traditional conservatively synchronised execution is seen to
be significantly improved when optimistic execution is
enabled in conjunction with reversibility of our traffic
model.

5.1 Absolute speedup of 2-processor runs

To demonstrate the absolute speedup of SCATTER-OPT,
we present the simulation runtime comparison of OREMS

and SCATTER-OPT (with one and two processors) on the
same 16 × 16 road network scenario considered for
sequential runs in Figure 12. The distribution of the
intersections across two federates was done as shown in
Figure 13.

Figure 12 Simulation runtime of OREMS and SCATTER-OPT
(using one and two processors) against number of
vehicles evacuated, for 16 × 16grid (see online version
for colours)

Figure 13 Distribution of intersections across two federates
(see online version for colours)

The serial and parallel SCATTER-OPT runs were carried
out again on the same hardware, but running Mac OS X
10.4.11 operating system. Note that the runtimes of single
processor runs carried out on Mac OS X in Figure 12
closely correspond to the one taken on Windows XP in
Figure 10. The reduction in the simulation runtime with the
increase in the number of processors, demonstrate the
absolute gain in speedup of SCATTER-OPT.

5.2 Larger road-network scenario

Previously, we considered a constant time of 1 s as the time
required for a vehicle to cross any intersection (the space
that connects road-segments). This is used as the minimum
lookahead TP in conservative synchronisation and this time
period is constant across all intersections. In general, the
transit time to cross the intersection space could be variable,
potentially smaller than 1 s. In conservative mode, if the
lookahead is large, it is clearly favourable for the runtime

inderscience
Figure 12.

inderscience
Figure 13.

inderscience
Figure 12

inderscience
Figure 11.

inderscience
Figure 11

inderscience
Figure 13

inderscience
Figure 10. The

inderscience
Figure 12

Reversible discrete event formulation and optimistic parallel execution 113

performance since the simulation can take long strides.
On the other hand, smaller values of lookahead could make
the simulation run slower. The simulation performance
would be worsened for a broad lookahead range, since
the minima of these lookahead values is taken into
consideration while calculating the global virtual time. With
the range of input network scenarios, the simulator is bound
to be used with a range of lookahead values. Hence, the
study of the performance of the simulation model with
decrease in lookahead becomes significant for both
conservative and optimistic synchronisation based models.
We evaluate the performance on two such representative
extremes of lookahead values, namely, 1 s and 0.1 s,
respectively.

5.3 Experimental setup

The experimental setup contains N × N intersections, with
2 × N sources injecting traffic from either sides (right and
left), to 2 × N destinations equally distributed on the top and
bottom ends of the grid. Hence, our N × N grid scenario
consists of (N × N) + (2 × N) + (2 × N) intersections. For the
optimistic and conservative performance comparison
purposes, we have considered a 64 × 64 network grid,
with 128 sources generating traffic at 400 vehicles/hour/
destination rate, toward 128 destinations.

5.3.1 Partitioning the road network

The input network grid is divided into blocks of rows, and
intersections (including the sources), falling in each block
run on one federate, the destination intersections are equally
divided among all federates. For example: a 64 × 64
road-network grid, when divided among two federates, each
federate gets 64 × 32 intersections and 64 sources (32 left
and 32 right) and 64 (32 top and 32 bottom) sinks.
Figure 14, shows the distribution of intersections among
two federates.

Figure 14 Distribution of intersections across processors
or federates (see online version for colours)

5.3.2 Hardware

The parallel runs to study the conservative and optimistic
runtime performances were carried out on Our Institutional
Clusters (OIC). The OIC cluster consists of a unique bladed
architecture from Ciara Technologies called VXRACK.
The VXRACK contains 80 usable nodes. Each node has
Dual Intel® 3.4GHz Xeon EM64T processors, 4GB of
memory and dual Gigabit Ethernet interconnects. All nodes
run Red Hat Linux Enterprise WS v4 operating system.

5.4 Parallel performance for 100% evacuation

Here, we discuss the performance of the model that
simulates the evacuation of all (100%) of vehicles in the
network. In a 64 × 64 grid case, the simulation consists of
around 6.5 million vehicles generated from 128 sources,
through 4096 intersections toward 128 destinations.
Figures 15 and 16 presents observed simulation runtimes
(in hours) for parallel runs across number of processors
used. The two curves seen in these figures pertain to
the runtimes of the parallel runs using conservative and
optimistic synchronisation. The effect of the values for
intersection crossing time is evaluated, giving two estimated
lookahead times, namely, 1 s and 0.1 s.

Figure 15 64 × 64 grid, Simulation runtime against number
of processors, with lookahead 1 (see online version
for colours)

Figure 16 64 × 64 grid, Simulation runtime against number
of processors, with lookahead 0.1 (see online version
for colours)

With a lookahead of 1 s, a higher runtime in the model with
optimistic synchronisation is seen and the conservative

inderscience
Figures 15 and 16

inderscience
Figure 15

inderscience
Figure 14,

inderscience
Figure 14

inderscience
Figure 16

114 S.B. Yoginath and K.S. Perumalla

mode performs better than optimistic. The degradation
in the performance of the model using optimistic
synchronisation is attributed to the number of reversals
incurred due to rollback. The performance gain expected
due to optimistic synchronisation is lost due to the higher
number (of order 106) of reversals. However, with 32
processors the runtime of the optimistic performance
significantly improves due to very small reversal counts.
The bar graph in Figure 17 shows the reversal counts
recorded for simulation runs with varying number
of processors. Note that the reversal counts plotted
here correspond to VE and SE reversals only. The FE
reversal-count is not considered, since no code is invoked
for its reversal.

Figure 17 64 × 64 grid, Number of reversals against number
of processors, when the lookahead is 1 (see online
version for colours)

As we reduce the lookahead to 0.1 s, the simulation
runtime for conservative mode starts to rapidly
increase with increase in number of processors. This
deteriorated performance can be attributed to the frequent
synchronisation requirement. On the other hand, with
optimistic synchronisation, the simulation runtime decreases
with increase in the number of processors.

From Figure 16, we see that with a lookahead of 0.1, the
16 processors simulation runtime for optimistic mode is
around 14 h; the corresponding conservative mode value
is around 18 h that increased from its lowest of 16.5 h with
8 processors. Hence, using optimistic mode a drop of
around 2.5 h (15%) is achieved using 16 processors over the
best simulation conservative mode runtime, when the
lookahead is 0.1. Similar observation with a lookahead of
0.1 can also be made in 128 × 128 grid scenario that models
the evacuation of around 6.5 million vehicles from
256 sources toward 256 destinations through 16,384
intersections, as shown in Figure 18. Thus, in modelling
vehicular traffic network, where the lookahead is not fixed,
optimistic synchronisation (reverse-computing) provides a
better promise for timely simulation results.

The reversal counts exhibit an interesting trend that
does not fully correlate with the overall speedup and
performance. The lightly-loaded scenario represented by the
64 × 64 grid size, reflected in Figures 17 and 19, show the

effects that a relatively lightly loaded scenario induces on
optimistic execution. The lower load translates to larger
discrepancies of the optimistic time horizon across
processors (because some processors are more or less
heavily loaded than the others). More reversals occur
towards the tail end of the simulation than the beginning or
middle of simulation, because of the smaller amount of
event load on processors that do not have as many final
destination nodes. As will be seen in later results, the rest of
the scenarios exhibit cleaner phenomena, and map easily to
the expected trends, namely, optimistic execution
performing better than conservative execution under low
lookahead conditions, on large vs. smaller network sizes,
and the simulation time depending upon the fraction of
evacuated traffic.

Figure 18 128 × 128 grid, Simulation runtime against number
of processors, with lookahead 0.1 (see online version
for colours)

Figure 19 128 × 128 grid, Simulation runtime against number
of processors, with lookahead 1 (see online version
for colours)

Figure 20 shows the observed variation of reversals with the
number of processors. The simulation results in both
optimistic and conservative execution have been verified to
be correct and evacuation time results are repeatable,
for both sequential and parallel runs (evacuation time shows
negligible variation among runs with varying number
of processors, varying flush event periods, and so on).

inderscience
Figure 17

inderscience
Figure 17

inderscience
Figure 18

inderscience
Figure 16,

inderscience
Figure 19

inderscience
Figure 18.

inderscience
Figures 17 and 19,

Reversible discrete event formulation and optimistic parallel execution 115

Figure 20 128 × 128 grid, Number of reversals against number
of processors, when the lookahead is 1 (see online
version for colours)

5.5 Parallel performance for 75% evacuation

In the previous section, we demonstrated the
absolute-speedup of SCATTER-OPT by comparing its
single processor run with the macroscopic model of
OREMS. We also compared the conservative and optimistic
parallel performance by varying a lookahead values in
the 64 × 64 grid and 128 × 128 grid evacuation scenarios
that simulated the evacuation of 6.5 million vehicles.
The 64 × 64 grid scenario modelled the evacuation of over
6.5 million from 128 sources through 4096 intersections
toward 128 destinations, while the 128 × 128 scenario
modelled the evacuation of same number of vehicles but
from 256 sources to 256 destinations through 16,384
intersections. However, in both these scenarios the
minimum simulation time required to model the evacuation
scenario regardless of number of processors used was 10 h
to 15 h. Such runtime is still significantly high.

It was found that evacuation of most of the vehicles in
the road-network happens in around 1/3rd of simulation
runtime needed for complete 100% evacuation. When the
number of events processed per synchronisation step (the
so-called Lower Bound on (incoming) Time Stamp (LBTS)
computation), is plotted as the simulation proceeds, an
interesting phenomenon is seen. In Figures 21 and 22, we
plot number of events per LBTS against the simulation-time
for 64 × 64 and 128 × 128 grids, these values correspond to
a single-processor run with lookahead 1. In Figure 22, the
same data is shown differently, with the number of events
per LBTS plotted with increasing simulation time.

Figure 23 provides similar plots for 256 × 256 grid
scenario where in 13 million vehicles generated from 512
sources make their through 65 thousand intersections to
their corresponding destination, one among the total of 512
destinations in the grid. Due to memory constraints we were
not able to run this scenario with less than 8 processors and
hence have used the output data from 8 processor
conservative run to plot the graph. In this graph to calculate
the number of events generated per LBTS, we summate the
number of events generated by all the 8 federates and divide
by LBTS time period.

Figure 21 Plot of number of events computed per lbts with
respect to simulation time in hours from a evacuation
scenario of 64 × 64 grid on a single processor
(see online version for colours)

Figure 22 Plot of number of events computed per LBTS with
respect to simulation time in hours from a evacuation
scenario of 128 × 128 grid on a single processor
(see online version for colours)

Figure 23 Plot of number of events computed per LBTS with
respect to simulation time in hours from the evacuation
scenario of 256 × 256 grid conservative run on eight
processors (see online version for colours)

It is evident that a large number of events are processed
during the initial stages of the simulation and the processing
drops off drastically during the later stages leaving a long
tail toward the end of the simulation, as seen from
Figures 21–23. For the performance of SCATTER-OPT
discussed earlier, the simulation was run till all the
generated vehicles reach their corresponding destination.
Hence, if we were to simulate for the evacuation of 75%

inderscience
Figure 20

inderscience
Figure 21

inderscience
Figure 22

inderscience
Figure 23

inderscience
Figures 21 and 22,

inderscience
Figure 23

inderscience
Figures 21–23.

116 S.B. Yoginath and K.S. Perumalla

of the generated vehicles a better performance in the
simulation runs can be expected since the simulation
does not crawl through the long tail toward its end. With the
logical processes having relatively large number of events to
process even at the end of simulation, more computation is
carried out and less time is lost in synchronisation; hence a
better parallel performance than previously observed is
expected in a 75% evacuation model.

We ran 256 × 256 grid scenario with lookahead 1,
on 8 processors using conservative synchronisation for
different simulation end times. Figure 24 gives an idea on
how the reduction in the simulation end time affects
the simulation-runtime. In Figure 24(a), we see that as
the percentage of number of vehicles evacuated decreases,
the simulation end time drops drastically, as we reduce the
percentage of evacuation from 100% to 75%, the simulation
end time reduces from 500 h to 111 h. This reduction in
end-time directly corresponds to the reduction in simulation
run-time as seen from Figure 24(b).

Figure 25 presents the reduction in the simulation time
in 64 × 64, 128 × 128 and 256 × 256 grid scenarios as the
percentage of vehicles evacuated is reduced from 100%
to 75%.

Scenarios with 75% evacuation of the generated traffic
in 64 × 64, 128 × 128 and 256 × 256 grids are studied here
for performance comparisons while using conservative and
optimistic synchronisation methods with varying lookahead
values. The rest of the plots are shown with two lookahead
value extremes: 1.0 and 0.1. For each lookahead value,
performance is logged for grid sizes of 64 × 64, 128 × 128
and 256 × 256.

Overall, it is seen that with the larger lookahead,
as expected, conservative synchronisation works fine.
On the other hand, with the smaller lookahead, optimistic
synchronisation becomes competitive with conservative
synchronisation. At the largest network size, 256 × 256, and
the largest processor count of 64, the gain in speedup
is the largest. The power of reverse computation and
optimistic execution become evident only on the largest
configurations reported here, namely, on 64 processor
and 256 × 256 network size. The plots are given next,
in Figures 26(a)–31(b).

Figure 24 From 256 × 256 grid scenario, lookahead 1, 8
processor conservative run: (a) percentage of vehicles
evacuated over simulation end-time and (b) percentage
of vehicles evacuate over simulation runtime
(see online version for colours)

 (a)

Figure 24 From 256 × 256 grid scenario, lookahead 1, 8
processor conservative run: (a) percentage of vehicles
evacuated over simulation end-time and (b) percentage
of vehicles evacuate over simulation runtime
(see online version for colours) (continued)

 (b)

Figure 25 Simulation time vs. percentage of vehicles evacuate
in 64 × 64, 128 × 128 and 256 × 256 grid scenarios
with the traffic generation rate of 400, 100, 50
vehicles/hour/destination, respectively (see online
version for colours)

Figure 26 75% evacuation scenario of 64 × 64 grid, with
lookahead = 1: (a) speedup plot and (b) number of
events/LBTS across number of processors used
(see online version for colours)

 (a)

 (b)
With lookahead = 1.
64 × 64 grid.

inderscience
Figure 24

inderscience
Figure 24

inderscience
Figure 24(a),

inderscience
Figure 24(b).

inderscience
Figure 25

inderscience
Figure 25

inderscience
Figure 26

inderscience
Figure 24

Reversible discrete event formulation and optimistic parallel execution 117

Figure 27 75% evacuation scenario of 128 × 128 grid, with
lookahead = 1: (a) speedup plot and (b) number
of events/LBTS across number of processors used
(see online version for colours)

 (a)

 (b)

128 × 128 grid.

Figure 28 75% evacuation scenario of 256 × 256 grid, with
lookahead = 1: (a) speedup plot and (b) number
of events/LBTS across number of processors used
(see online version for colours)

 (a)

 (b)
256 × 256 grid.

Figure 29 75% evacuation scenario of 64 × 64 grid, with
lookahead = 0.1: (a) speedup plot and (b) number
of events/LBTS across number of processors used
(see online version for colours)

 (a)

 (b)
With lookahead 0.1.
64 × 64 grid.

Figure 30 75% evacuation scenario of 128 × 128 grid, with
lookahead = 0.1: (a) speedup plot and (b) number of
events/LBTS across number of processors used (see
online version for colours)

 (a)

 (b)
128 × 128 grid.

inderscience
Figure 27

inderscience
Figure 29

inderscience
Figure 28

inderscience
Figure 30

118 S.B. Yoginath and K.S. Perumalla

Figure 31 75% evacuation scenario of 256 × 256 grid, with
lookahead = 0.1: (a) speedup plot and (b) number
of events/LBTS across number of processors used
(see online version for colours)

 (a)

 (b)
256 × 256 grid.

In Figure 31, for the largest network size and large
number of processors, optimistic synchronisation shows its
best performance, namely, a speedup of nearly 20 on 32
processors.

6 Summary and conclusion

In this paper, we discussed the design, development and
performance of a parallel discrete event vehicular traffic
simulation model. A discrete event formulation forms the
basis of the sequential model, while being reversible for use
in parallel execution. We ensured its sequential performance
is comparable to that of one of the best available
transportation model (OREMS). This sequential speed is
achieved based on SCATTER’s discrete event nature.
To this model, we incorporated the relatively less
explored method of reverse-computing based optimistic
synchronisation for parallel discrete event models. It was
implemented in a library called µsik, which permits both
conservative as well as optimistic event processing modes.
We compared the parallel performance of models using
optimistic and conservative synchronisation techniques
fixing the input traffic generation rate and varying
lookahead values. To our knowledge, this is the first attempt
at applying optimistic simulation techniques to parallel
vehicular network simulation. The perfectly reversible
formulation of the model is also novel that enables
reverse computation. Additionally, the performance

improvement is challenging due to the requirement of low
parallel computation overhead needed to compare
favourably with an extant, fast sequential simulator
(OREMS). In that vein, the absolute speedup (i.e., speedup
compared to OREMS), rather than self-relative speedup
(speedup compared to SCATTER-OPT on 1-processor) is
an additional strength. The performance, as expected,
is observed to improve with increasing network size and
decreased amount of lookahead. In one of the best
performance runs, a speedup of nearly 20 is observed on a
256 × 256 node network with several million vehicles
transferred, representing nearly a 100% improvement over
conservative synchronisation.

6.1 Future work

While current implementation is limited to a single lane per
direction per road segment, support for multiple lanes needs
to be added. Performance on generalised networks remains
to be evaluated, although we expect the challenges to only
lie in optimising intersection-to-processor mapping for
performance; the software is capable of delivering correct
results with any arbitrary assignment. Performance of
rollback using reverse computation could be compared to
that of state saving. Also, in high lookahead conditions, we
are investigating the effect of limiting optimism in order to
reduce the amount of rollbacks.

Acknowledgements

Constructive comments by external reviewers and ORNL
internal reviewers have helped improve the presentation.
This paper has been authored by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the US Department
of Energy. Accordingly, the US Government retains
and the publisher, by accepting the paper for publication,
acknowledges that the US Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript,
or allow others to do so, for US Government purposes.

References
Bhaduri, B., Liu, C. and Franzese, O. (2006) ‘Oak ridge evacuation

modelling system (OREMS): a PC-based computer tool
for emergency evacuation planning’, Symposium on GIS for
Transportation.

Cameron, G.D.B. and Duncan, G.I.D. (1996) ‘PARAMICS,
parallel microscopic simulation of road traffic’, Journal of
Supercomputing, Vol. 10, pp.25–53.

Carothers, C., Perumalla, K.S. and Fujimoto, R.M. (1999)
‘Efficient optimistic parallel simulations using reverse
computation’, ACM Transactions on Modelling and
Computer Simulation, Vol. 9, pp.224–253.

Fellendorf, M., Schwerdtfeger, T. and Stauss, H-J. (1996)
DYNEMO, a mesoscopic traffic flow model to analyze ATT
measures’, Transportation Planning Methods.

Fisher, K.M. (2000) ‘Transims is coming!’, Public Roads, Vol. 63,
pp.49–51.

inderscience
Figure 31

Reversible discrete event formulation and optimistic parallel execution 119

Franzese, O. and Han, L. (2001) ‘A methodology for the
assessment of traffic management strategies for large-scale
emergency evacuations’, 11th Annual Meeting of ITS
America, Miami, FL, USA.

Garrett, Y., Christopher, D.C. and Shivkumar, K. (2003)
‘Large-scale TCP models using optimistic parallel
simulation’, Proceedings of the Seventeenth Workshop on
Parallel and Distributed Simulation, IEEE Computer Society,
San Diego, California, pp.153–162.

Gartner, N.H. and Stamatiadis, C. (1998) ‘Integration of dynamic
traffic assignment with real-time traffic adaptive control
system’, Transportation Research Record, pp.150–156.

Innovative Transportation Concepts, I. (2001) VISSIM Simulation
Tool, URL: http://www.itc-world.com/VISSIMinfo.htm

Laboratory, L.A.N. (2001) TRANSIMS, URL: http://transims.
tsasa.lanl.gov/

Meister, K., Balmer, M., Axhausen, K.W. and Nagel, K. (2006)
‘A comprehensive scheduler for a large-scale multi-agent
transportation simulation’, International Conference on
Travel Behaviour Research, Kyoto, Japan.

Perumalla, K.S. (2004) µsik – Software Package Homepage, URL:
http://www.cc.gatech.edu/fac/kalyan/musik.htm

Perumalla, K.S. (2005) ‘µsik – a micro-kernel for
parallel/distributed simulation systems’, Workshop on
Principles of Advanced and Distributed Simulation,
Monterey, CA, USA, pp.59–68.

Perumalla, K.S. (2006) ‘A systems approach to scalable
transportation network modelling’, Winter Simulation
Conference IEEE, Computer Society, Monterey, CA,.

Perumalla, K.S. and Bhaduri, B. (2006) ‘On accounting for
the interplay of kinetic and non-kinetic aspects in population
mobility models’, European Modelling and Simulation
Symposium, Spain.

Tang, Y., Perumalla, K.S., Fujimoto, R.M., Karimabadi, H.,
Driscoll, J. and Omelchenko, Y. (2006) ‘Optimistic
simulations of physical systems using reverse computation’,
SIMULATION: Transactions of the Society for Modelling
and Simulation International, Vol. 82, pp.61–73.

Yang, Q., Koutsopoulos, H.N. and Ben-Akiva, M.E. (2000)
‘Simulation laboratory for evaluating dynamic traffic
management systems’, Transportation Research Record,
pp.122–130.

