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Abstract: Vehicular traffic simulations are useful in applications such as emergency planning 
and traffic management, for rapid response and resilience. Here, a parallel traffic simulation 
approach is presented that reduces the time for simulating emergency vehicular traffic scenarios. 
We use a reverse computation-based optimistic execution approach to parallel execution of 
microscopic, vehicular-level models of traffic. The unique aspects of this effort are 

• exploration of optimistic simulation of vehicular traffic 
• addressing the related reverse computation challenges 
• achieving absolute, as opposed to self-relative, speedup. 

The design, development and performance study of the parallel simulation system is presented, 
demonstrating excellent sequential and parallel performance. A speed up of nearly 20 on  
32 processors is observed on a vehicular network of 65,000 intersections and 13 million vehicles.
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1 Introduction 

In applications such as emergency or evacuation planning 
(Franzese and Han, 2001; Perumalla and Bhaduri, 2006),  
a higher speed of simulation for traffic models translates 
into faster determination of critical metrics such as expected 
evacuation time. While sequential simulators exist for traffic 
simulation, scalable parallel simulations are few. Among the 
existing parallel traffic simulators, parallelism is realised 
either by functional parallelism (Fisher, 2000) (parallelising 
the steps such as trip planning, configuration generation, 
partitioning, etc.), or by synchronous parallel execution 

(time-stepped models) (Laboratory, 2001; Meister et al., 
2006; Innovative Transportation Concepts, 2001; Cameron 
and Duncan, 1996), or both. Our focus is to combine the 
speed of discrete event models with parallel execution  
of the actual simulation runtime. Additionally, despite speed 
concerns, our efforts are in staying at higher fidelity with 
entity-level models, as opposed to resorting to aggregate 
techniques such as fluid or network flow models. The higher 
fidelity vehicular-level models enable the simulation of 
more complex flow patterns and accommodating potentially 
rich routing and behavioural mechanisms. 
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With advances in parallel discrete event simulation 
modelling and the availability of multi-processor hardware, 
high-speed simulation of high fidelity vehicular traffic 
models is beginning to become possible now. Based on this 
premise, a parallel vehicular traffic simulation model  
called SCATTER-OPT has been developed, standing for  
an optimistic-parallel version of the SCATTER simulation 
system. This simulator is capable of using either 
conservative or optimistic synchronisation when executed 
on parallel platforms. Importantly, the parallel execution 
speedup achieved by this simulator is over and above  
some of the best performance achievable sequentially by 
vehicular traffic simulators today. The performance gains 
reported here, in that vein, are absolute and not simply  
self-relative. While self-relative speedups have been 
reported in the vehicular simulation literature, absolute 
speedup is relatively much more challenging to achieve,  
in view of the highly optimised execution possible in 
sequential simulation without the overheads arising out of 
model partitioning and parallel synchronisation issues. 

Optimistic parallel simulation and reverse  
computation-based rollback are not new. However, they 
have not been explored for vehicular traffic simulation 
before. Also, purely discrete event execution has not been 
applied to vehicular traffic. Reversible formulation of 
vehicular traffic operation is another contribution of our 
effort. Our use of discrete event techniques from scratch 
helps us achieve the high sequential speed that is 
competitive with aggregate models in optimised sequential 
vehicular traffic simulators. Optimistic execution of the 
reversible formulation enables us to scale to much  
larger networks with good speedup on platforms with  
64 processors. 

In order to perform a controlled evaluation of the 
performance gains, both sequential and parallel, we define 
and use a benchmark grid-like vehicular network that is 
customisable to realise a wide range of network scenarios. 
The runtime performance is measured on one processor 
against the performance of an existing state-of-the-art 
simulator. Parallel performance is evaluated on larger 
network sizes. Among the challenges in applying  
reverse-computation and optimistic execution to traffic 
simulation are:  

• developing an effective domain partitioning method  

• dealing with road congestion effects that need to be 
modelled accurately in order to obtain correct travel 
time results. 

These aspects distinguish our effort from earlier traffic 
simulations such as Carothers et al. (1999), Garrett et al. 
(2003), Tang et al. (2006), Cameron and Duncan (1996), 
Fellendorf et al. (1996), Franzese and Han (2001), Gartner 
and Stamatiadis (1998) and Yang et al. (2000). 

In the rest of the paper, the design, development  
and performance of SCATTER-OPT is described. This is 
started in Section 2 with a presentation of the design 
overview of the transportation model, and a documentation 
of some of the abstractions of the road network system.  

This is followed by a discussion on our parallelisation 
approach, with discussion of the methods for realising 
vehicular traffic system characteristics such as congestion 
and routing. In Section 3, the reverse computing algorithms 
are discussed that are used for realising optimistic 
synchronisation. Section 4 is dedicated to a performance 
study of sequential execution, in which sequential 
simulation runtime performance is evaluated against that  
of a de facto standard emergency management system  
called the Oak Ridge Emergency Management System 
(OREMS) (Bhaduri et al., 2006; Franzese and Han, 2001). 
This is followed by a parallel performance study of 
SCATTER-OPT in Section 5, evaluating both optimistic 
and conservative synchronisation performance for parallel 
execution. Section 6 summarises our current work and 
outlinesfuture directions. 

2 SCATTER-OPT system 

Our simulation model is implemented in a simulator called 
SCATTER-OPT, which includes a discrete event model, 
and a parallel execution framework for vehicular networks. 
Parallel discrete event simulation of vehicular network 
operation involves the development of a discrete-event 
model of the system coupled with a careful partitioning of 
the model on to multiple processors for optimum run-time 
performance. In our simulation model, the road network is 
modelled as a graph, in which road segments connect 
intersections. Each road segment is modelled with a few 
physical attributes (number of lanes and length of road 
segment), kinetic specifications (speed limit) and controllers 
(traffic lights). The traffic lights are synchronised in their 
operation and have a fixed period of GREEN time (when 
the vehicles are allowed to enter the road-segment) and a 
fixed period of RED time (when the vehicles are not 
allowed to enter). Traffic lights control the entry of vehicles 
for every road segment of the simulated road network. 

An input file is used to specify parameters such as the 
GREEN time period and the RED time period, along with 
an initial-offset (i.e., the wait time to the first GREEN 
period at simulation start time). Each road-segment in the 
simulated transportation network contains this information. 

An intersection, a point at which the road segments 
connect to each other, is considered as an indivisible, 
independent processing unit for parallel computing 
purposes. Every intersection is capable of generating new 
vehicle instances that are distinguished from each other by 
their unique identifiers. Each generated vehicle has its 
physical attributes (e.g., length of vehicle) and kinetic 
attributes (e.g., travel velocity and acceleration), in addition 
to its source and destination intersection information for its 
current trip. Every intersection in the road-network is 
capable of routing vehicles to their next hop toward their 
individual destinations. 

A VehicleEvent (VE) signifies the arrival of a vehicle 
from one intersection to another. Events of this type  
are processed by each intersection to generate additional 
VEs that act as arrival events on this intersection’s 
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neighbouring intersections. The dynamically chosen 
neighbouring intersection is the next hop node toward the 
destination of the vehicle contained in a VE.

Information is provided in an input file about the road 
network layout (that encompasses intersection co-ordinates, 
connecting road-segment characteristics), traffic light 
information, source and destination intersections, traffic 
generation rate etc. This information is used to setup and 
initialise the simulation process. 

2.1 Parallel decomposition 

A challenge in any parallel discrete event model involves 
the issue of how to split the discrete event road-network 
model among the parallel processors. An efficient 
partitioning of the application process across different 
processors during parallel computation fetches better 
performance. Efficient partitioning involves recognition of 
modules of an application process that could run 
concurrently, with minimal, infrequent interaction between 
each other. In particular, zero lookahead interaction is to be 
avoided for parallel simulation efficiency. 

We make an intersection (node) in the input  
road-network graph as a logical process. This would require 
grouping the road-segments connecting to each other via an 
intersection. There is a choice on how the segments are 
mapped relative to their intersection(s). Either incoming 
road-segments or out-going road-segments can be  
included as part of an intersection logical process.  
The former approach, namely, incoming segments  
mapped to their destination intersections, was used in the 
original SCATTER system (Perumalla, 2006). We use the 
alternative approach in SCATTER-OPT, namely, outgoing 
segments mapped to same logical process as their source 
intersection, as this somewhat simplifies the data structures 
for reversibility. Thus, in SCATTER-OPT we consider the 
node of the road-network graph along with its outgoing 
road-segments as a logical process, as shown in Figure 1. 
Each intersection in the transportation model is a collection 
of outgoing segments from that intersection plus the actual 
intersection space itself. 

Figure 1 Intersection comprising four out-going road-segments 
with traffic lights (see online version for colours) 

2.2 System implementation 

2.2.1 Simulation engine 

We build our simulator on top of the publicly available µsik
simulation library (Perumalla, 2004, 2005) to realise  
both conservative and reverse-computing based optimistic 
parallel discrete event simulation model. The µsik library  
is a general-purpose parallel/distributed simulation kernel, 
which provides programming interfaces to develop  
models that could run on one or more machines. Each 
processor can host multiple simulation logical processes. 
Logical processes are autonomous in the sense they  
hold and manage their own events and can be optimistic  
or conservative in their event processing. Efficient 
communication and virtual time synchronisation are also 
provided across processors in shared and/or distributed 
memory platforms. 

2.2.2 Intersection data-structure 

The organisation of data structures within each road 
intersection is shown in Figure 2. 

Figure 2 Intersection data-structure (see online version
for colours) 

Each intersection contains one or more road segments,  
a routing table and vehicle counts and other statistics.  
The major part of the intersection is the list of its outgoing 
road segments. Each road segment contains an event 
history, a ‘limbo’ list, a traffic light specification and other 
details. Each limbo list element contains that state of a 
vehicle that has reached this intersection but yet to be routed 
or accommodated into their exit time lines. Event history is  
a list of events of departed vehicles in increasing time order. 

2.2.3 Traffic generation 

The SCATTER-OPT input file contains the information of 
the rate at which vehicles travelling to a particular 
destination to be generated. Note that a rate, rather than 
individual vehicle identity, is specified in the file. This is  
for convenience only; each vehicle is individually 
represented and simulated autonomously (e.g., a single 
vehicle could get stalled at a traffic light), and no 
aggregation is performed. Note also that the rate is on a per  
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flow-basis, the rate can be different across different flows. 
Any desired traffic pattern can thus be generated in general. 

A CreateEvent (CE) type is used for the purpose of 
creating a vehicle at each intersection based on the rate 
specified in the input file. ACE, when processed (as shown 
in Figure 3), creates a VE that is rescheduled on the same 
intersection, and also creates another CE that is scheduled to 
a random time increment dt in future, to continue chaining 
generation of vehicles at specified input rate. 

Figure 3 CreateEvent processing block 

2.2.4 Routing 

After generation of a vehicle, each intersection ensures that 
a ‘vehicle-following’ scheme is correctly followed for every 
vehicle. A vehicle-following scheme ensures vehicles 
follow First-In-First-Out (FIFO) scheme while following 
their individual speeds and accelerations to the farthest  
possible distance. Routing of each vehicle toward its 
destination is based on Dijkstra’s shortest path algorithm. 
The Boost’s Graph Library (BGL) is used for the purpose of 
computing shortest paths. The road-network of the input file 
is converted into a BGL graph. For every node the shortest 
path to every other node in the network is determined,  
from which a vector of parents for each node is obtained. 
Each intersection uses this vector recursively to determine 
the next hop intersection of the vehicle toward its 
destination. Based on the next hop, the intersection 
determines out-going road-segment on which the incoming 
vehicle is routed. 

Whenever a vehicle enters the intersection, the departure 
time (td) is calculated using transit time (tt) and the vehicle’s 
wait time at the traffic signal (tw): td = tt + tw.

Transit time (tt)

Transit time is calculated by solving the quadratic equation 
from the Newton’s law of motion for time t. It takes the 
velocity and acceleration of the given vehicle into 
consideration, S = ut + (1/2at2), where, S is the distance 
travelled (road-segment length), u is the velocity of the 
vehicle; a is the acceleration of the vehicle, and t is the time 
to traverse the road-segment length. This approximation 
assumes that acceleration remains fixed during its travel, 
which is a reasonable assumption for estimation of overall 
time for an evacuation-type of traffic flows. It is worth 
noting that the assumption is only regarding acceleration: 
which remains constant during the travel of the vehicle  
on a link (i.e., braking times at intermediate locations  
are ignored). While the acceleration is assumed to be 
constant, the velocity, on the other hand, is indeed varied 
over its travel time, until the vehicle reaches the speed limit 
of that link, at which time the velocity is capped to the 
speed limit. 

The value thus computed for departure time is retained 
only if the calculated value is greater than the departure time 
of the vehicle ahead of this vehicle. The departure time of 
the vehicle ahead of this could be obtained by looking into 
the EventHistory list held by the road-segment connecting to 
the vehicle’s next-hop intersection. 

This transit time has to be reconciled with the  
vehicle-following constraints, namely, slow the vehicle 
down if one or more vehicles ahead of this vehicle prevent 
this vehicle from reaching at the computed transit time.  
A sum of departure time of the vehicle ahead (tdva) and time 
needed to cover a distance of vehicle length (vlen) at a 
speed specified by speed limit (s), is used as the departure 
time to ensure the vehicle following td = tdva + (vlen/s).

Wait time at the traffic signal (tw)

As mentioned earlier every road-segment has a GREEN 
time period during which it allows the flow of traffic 
through it and RED time period during which no vehicle is 
allowed to enter the road-segment. At any given simulation 
time, every intersection is capable of knowing the GREEN 
time period or RED time period of any road-segments in the 
road-network and hence the wait period on traffic signal for 
a particular vehicle is calculated determining when it enters 
any road-segment. 

The departure time for every vehicle is then calculated 
as: td = tt + tw.

Each road-segment lane maintains a list named 
EventHistory that keeps track of the arrival_time,
departure_time and vehicle_id of every vehicle that entered 
and left the intersection. The processing of preceding steps 
is performed as part of the processing for a VehicleEvent,  
as shown in Figure 4.

Figure 4 VehicleEvent processing block 

2.2.5 Congestion 

As mentioned earlier every road-segment keeps track of 
incoming and out-going vehicle events in an event list 
(EventList). This is referred by the intersection to determine 
the occupancy of any of its road-segments at a given time. 
On vehicle arrival, the intersection looks into the occupancy 
of the road-segment that connects to the vehicle’s next-hop 
intersection. The vehicle is scheduled to depart the 
intersection only if enough space in the road-segment is 
ascertained to exist at that point of time. On the other hand 
if the associated road-segment is completely occupied, then 
a congestion behaviour in the road-network is emulated.  
To realise this, the vehicle is held in the current intersection 

inderscience
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as long as enough space is available in the corresponding 
out-going road-segment. The additional time delay (time 
spent in waiting for availability of enough space) that  
the vehicle experiences in the intersection before  
being scheduled for departure directly corresponds to the 
congestion in the road network. In the following paragraphs 
we discuss different approaches that we have implemented 
to realise this behaviour. 

Simple rescheduling 

In this approach, on detecting non-availability of space in 
the road-segment the arriving vehicle is re-scheduled to the 
same road-segment at the next GREEN time period  
(when this road-segment allows vehicle to pass through it). 
With this simple technique the vehicle is (logically) retained 
in the intersection as long as there is enough space in the 
outgoing road segment to accommodate it, also ensuring 
that the vehicle leaves the intersection in the order of its 
arrival.

This technique works well for minor congestion in the 
transportation network. However, if the arrival rate of  
the vehicles is far greater than the departure rate, then the 
simulation crawls toward its end. This is due to the need  
for regular polling required for rescheduling the departures; 
as a result of this polling, every vehicle suffers multiple 
reschedules on a single intersection, this in-turn gives rise to 
equivalent number of events. 

Rescheduling with initial time adjustment 

Needless polling and rescheduling of VEs degrades the 
performance in the previous strategy. If it were possible to 
ascertain the number of vehicles ‘in limbo’ that are ahead of 
any new arriving vehicle, we can calculate the time taken 
for that many vehicles to depart and schedule the vehicle 
arrival at that time in future. To this end, we maintain a 
variable named nlimbo that keeps track of the number of 
limbo vehicles in an intersection that have logically moved 
on beyond the road-segment. This variable is used to 
calculate the new departure time as tnew_d = nlimbo ×
(vlen/s) + td, where tnew_d is the new departure time 
calculated; vlen is the average vehicle length; s, is the speed 
limit on the road-segment and td is the departure time 
calculated based on transit time and wait time.

However, the nlimbo variable could not be used for 
rescheduling the already rescheduled events, since with this 
variable the order of arrival of vehicles is not taken into 
consideration. Hence, the time calculated using the nlimbo
variable could be used only to schedule the newly arrived 
vehicles from peer intersections and not to reschedule the 
vehicles withheld previously due to congestion. While we 
could get better speed-up pushing the initial re-scheduling 
time of the arriving vehicle much farther in future, the later 
schedules of the same vehicle would be of constant time; 
hence this suffers from the same problem of the former 
model. Better run-time performance could be achieved for 
smaller periods of congestion, but for longer periods of 
congestion the run-time performance would be similar to the 
previous model. 

Using a ‘limbo list’ 

The best performance is obtained by keeping track of more 
information, namely, by maintaining a list (limbo-list)
instead of a single nlimbo variable. Using this scheme,  
we were able obtain a faster simulation. The FIFO limbo-list
preserves the order of arrival and obviates rescheduling 
congested vehicle events on the same intersection. 
Whenever a new vehicle arrives at the intersection,  
it is put into the limbo-list. The intersection ensures  
that enough space in the outgoing road segment is available 
before removing the vehicle from the limbo-list. If enough 
space is available, the intersection schedules the vehicle  
at the end of the limbo-list to ensure the FIFO order in 
traffic flow. 

If enough space to hold the vehicle is not available on 
the outgoing road segment at that point of time, the vehicle 
is retained in the limbo-list. The removal of the vehicle from 
the limbo-list should be dependent on the availability of 
space on the out-going road-segment. To ensure this, a 
SelfUpdateEvent (SE) is scheduled to a future time, when 
enough space to hold the vehicle in the outgoing road 
segment lane is available. This future time, tx, can be 
approximated to the departure time of the second vehicle at 
the farthest end of the corresponding outgoing road segment 
lane, which ensures spatial availability to hold at least one 
vehicle in the road-segment lane. 

Thus, by maintaining the additional limbo-list and with 
SE, we were able to emulate congestion in the road-network 
and as expected, better runtime performance was also 
observed. Figure 5 gives the altered algorithm to process 
VE, to accommodate modelling the congestion behaviour in 
the road-network. Absence of the first step, i.e., the insertion 
of vehicle into limbo-list, is the only change in the algorithm 
used to process SE arrival.

Figure 5 Altered VehicleEvent processing algorithm
to accommodate congestion behaviour 

2.2.6 Memory management 

As described earlier, each road-segment maintains a list  
to keep track of the events arrived and departed from that 
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road-segment, we refer to this list as the EventHistory.
As the simulation progresses with time, the length of the 
EventHistory grows. This not only increases the memory 
requirement for the simulation run but also degrades  
the performance, since the list is used for calculating 
“number of vehicles in road-segment” that results in a 
search with O(n) complexity. Hence, constant cleanup of  
the EventHistory is needed to overcome the memory and 
performance inefficiencies. To ensure safe cleanup, only the 
elements with vehicle arrival time less than the safe global 
time (Lower Bound on Time Stamp (LBTS)) are purged.  

Using a periodic timer 

If we were to use a timer that would schedule an event 
periodically to clear the EventHistory, it would solve the 
performance as well as memory problem. But, events for 
clearing the EventHistory will be generated even when the 
event history is not big enough. Also an inactive intersection 
(to which vehicles have not arrived yet) ends up needlessly 
performing this clearing operation. Hence, we generate  
and process reclaimable events while using a timer; and this 
in-turn affects the performance of the simulation. 

Keeping track of length of the EventHistory 

Another strategy is to keep track of the length of 
EventHistory to initiate the cleanup process. This strategy 
works fine but poses a problem when the vehicle arrival rate 
is very high. In this case, each arrival event looks into  
the length of EventHistory and schedules a cleanup event.  
If a check on previously initiated clean-up process  
is not made before initiating a new process, redundant 
events are created and processed. This would go on until  
the point where the very first arrival actually completes  
the cleanup process and updates the length of the 
EventHistory.

This problem of redundant event generation is overcome 
by making the scheduling of the clean-up process mutually 
exclusive, i.e., if an event has already scheduled a cleanup 
process, no other event would schedule one, until the 
initiated one completes. By doing so, we reduce many 
redundant events thus enhancing the runtime performance 
of the simulation model. The cleanup process of 
EventHistory in SCATTER-OPT is realised through an 
event type called FlushEvent.

3 Synchronisation and reversibility 
considerations

In what follows, an overriding consideration behind the 
modelling approaches and consequential data structures  
is to enable perfectly reversible computation of state 
changes. SCATTER-OPT is currently tested to work in  
both conservative and optimistic synchronisation modes. 
Reverse computation technique is used to realise rollback in 
optimistic synchronisation. 

3.1 Reverse computation 

Optimistic federates differ from their conservative 
counterparts in that they do not discard events after 
processing them. Instead they keep the events around, and 
also maintain copies of simulation states before modifying 
them as part of event processing. Since optimistic federates 
do not rely on lookahead, they execute their events without 
blocking for safety. Thus a federate will have to rollback  
its computation if/when it later receives events whose 
timestamp is less than its current simulation time. There are 
two main parts to such rollback  

• undo local computation by restoring the state prior  
to erroneous event processing  

• undo all events erroneously sent to other federates.  

While the parallel simulation library performs these 
rollbacks at the library level, reversal code to restore the 
application data structure state, in the event of rollback, 
needs to be written and provided by the application. 

3.2 Reverse event handlers 

To recap from previous section, four events are used to 
realise the discrete event traffic model. They are: 
CreateEvent (CE), VehicleEvent (VE), SelfUpdateEvent 
(SE) and FlushEvent (FE). The FEs are utilised for 
optimisation purposes in a safe manner (reclaiming memory 
that strictly belongs to past that cannot be rolled back) and 
hence do not impact the correctness of simulation, hence the 
reversal of FE can be ignored. The CE is used to generate 
the traffic at the specified rate. The only state variable they 
alter is the VehicleID counter, which is incremented as 
vehicles are generated. Rollback of a CE involves 
decrementing this counter. In the experimental road network 
that we have considered, source intersections do not have 
any incoming events from any other intersections, thus 
eliminating the possibility of causality error occurrences. 
Hence, in this experimental setup CE reversal code is never 
utilised. 

The VE and the SE events are responsible for routing the 
vehicles from one intersection to another (as shown  
Figure 6). Doing so, they alter the states of EventHistory
and limbo-list data-structures at the application level. 
Hence, during rollback, reversal of the data structures to 
their previous states is necessary for correct rollback. 
Further, as discussed earlier, both VE and SE processing use 
the same algorithm; the only difference being that the 
former inserts the arriving vehicle into the limbo-list.

In the following, the reversal procedures for VE and SE
processing are similar, unless otherwise noted. Each VEi

may generate one or many VEij, (where j = 1, 2, 3, …) and, 
may or may not create an SE, based on the congestion in the 
network. Hence, for reversal we should first find out if VEs
were generated and if so, how many were generated. 
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Figure 6 Algorithm for application level VehicleEvent
and SelfUpdateEvent reversal 

We know that when an intersection generates an out-going 
VE, it records that event in the EventHistory list. Hence, 
after finding the number of VEs generated, we need to 
remove the record for each event generated in the 
EventHistory list. Further, the vehicle object in that VE
should be extracted and pushed back into limbo-list from the 
end through which it was removed. While, the SE reversal 
procedure completes here, the VE reversal goes a step 
further and removes only the last vehicle that was inserted 
in the limbo-list to complete its reversal procedure. This 
takes back the intersection road segment to the correct state 
prior to the processing of this VE.

After arriving at the reversal algorithm, implementation 
was found to be a challenge with the reverse execution 
interface. The reverse computation algorithm in the previous 
sub-section needs to identify the events that generated 
specific events and extract objects from the generated 
events. Modifications to the library had to be made to 
expose the event’s causal list data structure, so that the 
application could iterate through the copy of events sent,  
to find the necessary events. 

4 Sequential performance study 

4.1 Benchmark network 

In this section, we refer to road networks to be grids of size 
N × N. The experimental setup contains N × N intersections, 
with 2 × N sources injecting traffic from either sides (right 
and left), to eight destinations equally distributed on the top 
and bottom ends of the grid. Hence, our N × N grid scenario 
consists of (N × N) + (2 × N) + 8 intersections. Figure 7 
shows a 10 × 10 road network grid, containing ten sources 
on left and right, and four destinations at top and bottom,  
in addition to 100 interior intersections. 

Also, the traffic lights are specified with an 8 s cycle 
time. This cycle time is equally shared between GREEN and 
RED time periods. The intersection transit time is set to 1 s. 

Road networks of dimension 10 × 10, 12 × 12, 14 × 14 
and 16 × 16 were used for comparison. The intersections  
are connected to their neighbours through single-lane  
road-segments of length 1600 m (1 mile). The lengths of the 
road-segments are same throughout the test network, except  

for the road segments connecting the sources and sinks, 
which are of length 10 m. For each road network, sources 
generate traffic at a rate r vehicles/hour/destination, where, 
r = 400, 500, 600, 800 and 900. Larger grid sizes of the 
network were not considered for study since OREMS input 
format prevents it from executing beyond a 16 × 16-sized 
grid. 

Figure 7 10 × 10 road-network grid (128 intersections) snapshot 
of OREMS graphical interface (see online version  
for colours) 

4.2 OREMS and SCATTER input specifications 

SCATTER-OPT is tested sequentially for getting an idea  
of its raw sequential speed. To make sure it is close to the 
best sequential performance available today, it is compared 
with OREMS (Evacuation Modelling System). OREMS is 
an aggregate model, very fast in execution, and is used in 
emergency operations. 

OREMS input file specification 

In OREMS, the information describing a traffic network is 
fed to OREMS simulation engine as a data-file with a 
specific format. The information is in the form of various 
record types, each record type consists of 80 columns. 
Information must be entered in the correct columns to 
properly describe the network. The code that we developed 
creates an input file considering record types 00–06, 11, 35, 
36, 170, 175, 176, 195 and 210. The record types 01–06 
identify the run, the time period data, output specifications 
and other run control data, while record type 00 corresponds 
to record comments. Record type 11 defines the surface 
street links of a network. The record-types 35 and 36 define 
signal control at every node in the network. Record type 170 
is used as a delimiter record and one such record is required 
for each time period. A time period in ORMES is an interval 
during which the network conditions do not change. 
OREMS provides the capability to specify how the time-
dependent data items change in course of a simulation run 
by allowing the user to partition the simulation time into 
series of time periods of varying lengths. In the OREMS 
input file that we generate, we consider a single time period. 
Record types 175 and 176 provide the origin-destination  
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data for traffic assignment. Record 195 provides the 
positional information (longitude and latitude) of every 
intersection in the road network. Record type 210 is 
required to mark the end of the input specifications for a 
time period and the final record in the input stream must be 
a card of type 210. Further, the ascending order of the 
record types must be ensured in the input data-file of 
OREMS.  

SCATTER input file specification 

The SCATTER input file uses three types of records; they 
differ from each other based on their starting word.  
The records could start either with NODE, LINK or 
VEHICLES. The NODE record specifies the physical 
attributes like the positional information of each intersection 
in the road-network. The LINK record specifies the 
information of each road-segment in the road-network along 
with the traffic light associated with it. The VEHICLES 
record specifies the traffic assignment information in the 
road-network.

OREMS and SCATTER input file generators 

OREMS software provides a Graphical User Interface 
(GUI) to build a desired vehicular traffic network. The GUI 
converts the user input in to a file. The usage of this GUI to 
build large transportation networks is unwieldy and time 
consuming. Hence, software to generate OREMS input file 
for Grid based test road networks was developed. Input file 
for initialising SCATTER is generated by parsing the input 
file generated for OREMS. Figure 8 shows the snap shots of 
the input files of OREMS and SCATTER. 

Origin volumes and destination capacities need to be 
provided in OREMS for trip generation and traffic 
assignment. Node numbers of form 8xxx represent entry 
and exit nodes connected to an internal node. SCATTER 
does not distinguish between normal intersections with 
source and sink intersections; hence any intersection could 
be a source or sink. However, to keep the experimental 
scenario uniform in both the systems, some nodes are used 
only as sources, only as sinks or as normal intersections  
in SCATTER. 

Figure 8 Conversion of OREMS input file into a SCATTER 
input files 

4.2.1 Hardware 

The sequential performance comparison of SCATTER-OPT 
with OREMS was carried out on an Intel® Core™2 Duo 
CPU T7700 at 2.4 GHz, with 2GB of memory running 
Microsoft Windows XP Professional SP2. 

4.3 Performance 

Simulation runtime is plotted in seconds to evacuate traffic 
generated at rates as specified in the experimental setup 
against the number of vehicles evacuated, for both OREMS 
and SCATTER-OPT. 

As seen from Figures 9 and 10, in both 10 × 10 and 
16 × 16 networks, the discrete event-based SCATTER-OPT 
model runtime is smaller than that of OREMS at lower input 
traffic rate, but SCATTER-OPT’ runtime slowly increases 
beyond OREMS’ as the input traffic rate increases. Similar 
pattern is observed for grid sizes 12 × 12 and 14 × 14. 

However, the increase in simulation time of  
SCATTER-OPT on larger networks is negligible  
when compared to runtimes of equivalent high-fidelity 
(vehicle-level) simulators. In separate experiments, we 
benchmarked the same networks with MITSIM and 
TRANSIMS and obtained runtimes that were at least one 
order of magnitude higher (i.e., simulations were 10 ×
slower than OREMS and SCATTER-OPT). 

Figure 9 Simulation runtime of OREMS and SCATTER-OPT 
against number of vehicles evacuated plot, for 
10 × 10 grid (see online version for colours) 

Figure 10 Simulation runtime of OREMS and SCATTER-OPT 
against number of vehicles evacuated plot, for 
16 × 16 grid (see online version for colours) 
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4.4 Validation 

For the validation purpose we compare the results of the 
evacuation scenarios (10 × 10 grid and 16 × 16 grid layouts) 
from SCATTER-OPT with those of OREMS. Validation is 
performed by comparing the evacuation times predicted by 
the two tools and verified the closeness of the predicted 
times for different network sizes of the benchmark network.  

The ratio of difference in the evacuation times (of 
OREMS and SCATTER) to the maximum predicted 
evacuation time can be considered as a measure of closeness 
in evacuation time predicted by either tool. The percentage 
of the difference observed is plotted against the rate of 
vehicle generation in terms of vehicles generated per source 
per destination per hour, as shown in Figure 11. On an 
average, a discrepancy of 30% for 10 × 10 network and 15% 
for the 16 × 16 road-network is observed from the plot.  
A reduction in the difference of predicted evacuation times 
with increase in the road-network size is also observed. For 
practical purposes, such a difference is well within margin 
of uncertainty, and hence, both the simulations can be 
considered to equivalent, and hence, SCATTER-OPT-based 
prediction is considered to give similar evacuation time as 
predicted by OREMS. 

Figure 11 Percent discrepancy in evacuation time prediction  
(see online version for colours) 

5 Parallel performance study 
We now turn to a detailed performance study of the parallel 
execution of SCATTER-OPT. First, the runtime for 
simulating relatively smaller networks is evaluated. 
Sequential runtime of OREMS is compared to that of  
one- and two-processor runs of SCATTER-OPT. Next, 
scalability of SCATTER-OPT is measured on significantly 
larger network sizes. Ultimately, the performance of 
traditional conservatively synchronised execution is seen to 
be significantly improved when optimistic execution is 
enabled in conjunction with reversibility of our traffic 
model. 

5.1 Absolute speedup of 2-processor runs 

To demonstrate the absolute speedup of SCATTER-OPT, 
we present the simulation runtime comparison of OREMS  

and SCATTER-OPT (with one and two processors) on the 
same 16 × 16 road network scenario considered for 
sequential runs in Figure 12. The distribution of the 
intersections across two federates was done as shown in 
Figure 13. 

Figure 12 Simulation runtime of OREMS and SCATTER-OPT 
(using one and two processors) against number of 
vehicles evacuated, for 16 × 16grid (see online version 
for colours) 

Figure 13 Distribution of intersections across two federates
(see online version for colours) 

The serial and parallel SCATTER-OPT runs were carried 
out again on the same hardware, but running Mac OS X 
10.4.11 operating system. Note that the runtimes of single 
processor runs carried out on Mac OS X in Figure 12 
closely correspond to the one taken on Windows XP in 
Figure 10. The reduction in the simulation runtime with the 
increase in the number of processors, demonstrate the 
absolute gain in speedup of SCATTER-OPT. 

5.2 Larger road-network scenario 

Previously, we considered a constant time of 1 s as the time 
required for a vehicle to cross any intersection (the space 
that connects road-segments). This is used as the minimum 
lookahead TP in conservative synchronisation and this time 
period is constant across all intersections. In general, the 
transit time to cross the intersection space could be variable, 
potentially smaller than 1 s. In conservative mode, if the 
lookahead is large, it is clearly favourable for the runtime  
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performance since the simulation can take long strides.  
On the other hand, smaller values of lookahead could make 
the simulation run slower. The simulation performance 
would be worsened for a broad lookahead range, since  
the minima of these lookahead values is taken into 
consideration while calculating the global virtual time. With 
the range of input network scenarios, the simulator is bound 
to be used with a range of lookahead values. Hence, the 
study of the performance of the simulation model with 
decrease in lookahead becomes significant for both 
conservative and optimistic synchronisation based models. 
We evaluate the performance on two such representative 
extremes of lookahead values, namely, 1 s and 0.1 s, 
respectively.

5.3 Experimental setup 

The experimental setup contains N × N intersections, with 
2 × N sources injecting traffic from either sides (right and 
left), to 2 × N destinations equally distributed on the top and 
bottom ends of the grid. Hence, our N × N grid scenario 
consists of (N × N) + (2 × N) + (2 × N) intersections. For the 
optimistic and conservative performance comparison 
purposes, we have considered a 64 × 64 network grid,  
with 128 sources generating traffic at 400 vehicles/hour/ 
destination rate, toward 128 destinations. 

5.3.1 Partitioning the road network 

The input network grid is divided into blocks of rows, and 
intersections (including the sources), falling in each block 
run on one federate, the destination intersections are equally 
divided among all federates. For example: a 64 × 64
road-network grid, when divided among two federates, each 
federate gets 64 × 32 intersections and 64 sources (32 left 
and 32 right) and 64 (32 top and 32 bottom) sinks.  
Figure 14, shows the distribution of intersections among 
two federates.  

Figure 14 Distribution of intersections across processors
or federates (see online version for colours) 

5.3.2 Hardware 

The parallel runs to study the conservative and optimistic 
runtime performances were carried out on Our Institutional 
Clusters (OIC). The OIC cluster consists of a unique bladed 
architecture from Ciara Technologies called VXRACK.
The VXRACK contains 80 usable nodes. Each node has 
Dual Intel® 3.4GHz Xeon EM64T processors, 4GB of 
memory and dual Gigabit Ethernet interconnects. All nodes 
run Red Hat Linux Enterprise WS v4 operating system. 

5.4 Parallel performance for 100% evacuation 

Here, we discuss the performance of the model that 
simulates the evacuation of all (100%) of vehicles in the 
network. In a 64 × 64 grid case, the simulation consists of 
around 6.5 million vehicles generated from 128 sources, 
through 4096 intersections toward 128 destinations.  
Figures 15 and 16 presents observed simulation runtimes  
(in hours) for parallel runs across number of processors 
used. The two curves seen in these figures pertain to  
the runtimes of the parallel runs using conservative and 
optimistic synchronisation. The effect of the values for 
intersection crossing time is evaluated, giving two estimated 
lookahead times, namely, 1 s and 0.1 s. 

Figure 15 64 × 64 grid, Simulation runtime against number
of processors, with lookahead 1 (see online version
for colours) 

Figure 16 64 × 64 grid, Simulation runtime against number
of processors, with lookahead 0.1 (see online version 
for colours) 

With a lookahead of 1 s, a higher runtime in the model with 
optimistic synchronisation is seen and the conservative 
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mode performs better than optimistic. The degradation  
in the performance of the model using optimistic 
synchronisation is attributed to the number of reversals 
incurred due to rollback. The performance gain expected 
due to optimistic synchronisation is lost due to the higher 
number (of order 106) of reversals. However, with 32 
processors the runtime of the optimistic performance 
significantly improves due to very small reversal counts. 
The bar graph in Figure 17 shows the reversal counts 
recorded for simulation runs with varying number  
of processors. Note that the reversal counts plotted  
here correspond to VE and SE reversals only. The FE
reversal-count is not considered, since no code is invoked 
for its reversal. 

Figure 17 64 × 64 grid, Number of reversals against number
of processors, when the lookahead is 1 (see online 
version for colours) 

As we reduce the lookahead to 0.1 s, the simulation  
runtime for conservative mode starts to rapidly  
increase with increase in number of processors. This 
deteriorated performance can be attributed to the frequent 
synchronisation requirement. On the other hand, with  
optimistic synchronisation, the simulation runtime decreases 
with increase in the number of processors. 

From Figure 16, we see that with a lookahead of 0.1, the 
16 processors simulation runtime for optimistic mode is 
around 14 h; the corresponding conservative mode value  
is around 18 h that increased from its lowest of 16.5 h with 
8 processors. Hence, using optimistic mode a drop of 
around 2.5 h (15%) is achieved using 16 processors over the 
best simulation conservative mode runtime, when the 
lookahead is 0.1. Similar observation with a lookahead of 
0.1 can also be made in 128 × 128 grid scenario that models 
the evacuation of around 6.5 million vehicles from  
256 sources toward 256 destinations through 16,384 
intersections, as shown in Figure 18. Thus, in modelling 
vehicular traffic network, where the lookahead is not fixed, 
optimistic synchronisation (reverse-computing) provides a 
better promise for timely simulation results. 

The reversal counts exhibit an interesting trend that  
does not fully correlate with the overall speedup and 
performance. The lightly-loaded scenario represented by the 
64 × 64 grid size, reflected in Figures 17 and 19, show the  

effects that a relatively lightly loaded scenario induces on 
optimistic execution. The lower load translates to larger 
discrepancies of the optimistic time horizon across 
processors (because some processors are more or less 
heavily loaded than the others). More reversals occur 
towards the tail end of the simulation than the beginning or 
middle of simulation, because of the smaller amount of 
event load on processors that do not have as many final 
destination nodes. As will be seen in later results, the rest of 
the scenarios exhibit cleaner phenomena, and map easily to 
the expected trends, namely, optimistic execution 
performing better than conservative execution under low 
lookahead conditions, on large vs. smaller network sizes, 
and the simulation time depending upon the fraction of 
evacuated traffic. 

Figure 18 128 × 128 grid, Simulation runtime against number
of processors, with lookahead 0.1 (see online version 
for colours) 

Figure 19 128 × 128 grid, Simulation runtime against number
of processors, with lookahead 1 (see online version
for colours) 

Figure 20 shows the observed variation of reversals with the 
number of processors. The simulation results in both 
optimistic and conservative execution have been verified to 
be correct and evacuation time results are repeatable,  
for both sequential and parallel runs (evacuation time shows 
negligible variation among runs with varying number  
of processors, varying flush event periods, and so on). 
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Figure 20 128 × 128 grid, Number of reversals against number
of processors, when the lookahead is 1 (see online 
version for colours) 

5.5 Parallel performance for 75% evacuation 

In the previous section, we demonstrated the  
absolute-speedup of SCATTER-OPT by comparing its 
single processor run with the macroscopic model of 
OREMS. We also compared the conservative and optimistic 
parallel performance by varying a lookahead values in  
the 64 × 64 grid and 128 × 128 grid evacuation scenarios 
that simulated the evacuation of 6.5 million vehicles.  
The 64 × 64 grid scenario modelled the evacuation of over 
6.5 million from 128 sources through 4096 intersections 
toward 128 destinations, while the 128 × 128 scenario 
modelled the evacuation of same number of vehicles but 
from 256 sources to 256 destinations through 16,384 
intersections. However, in both these scenarios the 
minimum simulation time required to model the evacuation  
scenario regardless of number of processors used was 10 h 
to 15 h. Such runtime is still significantly high. 

It was found that evacuation of most of the vehicles in 
the road-network happens in around 1/3rd of simulation 
runtime needed for complete 100% evacuation. When the 
number of events processed per synchronisation step (the 
so-called Lower Bound on (incoming) Time Stamp (LBTS) 
computation), is plotted as the simulation proceeds, an 
interesting phenomenon is seen. In Figures 21 and 22, we 
plot number of events per LBTS against the simulation-time 
for 64 × 64 and 128 × 128 grids, these values correspond to 
a single-processor run with lookahead 1. In Figure 22, the 
same data is shown differently, with the number of events 
per LBTS plotted with increasing simulation time. 

Figure 23 provides similar plots for 256 × 256 grid 
scenario where in 13 million vehicles generated from 512 
sources make their through 65 thousand intersections to 
their corresponding destination, one among the total of 512 
destinations in the grid. Due to memory constraints we were 
not able to run this scenario with less than 8 processors and 
hence have used the output data from 8 processor 
conservative run to plot the graph. In this graph to calculate 
the number of events generated per LBTS, we summate the 
number of events generated by all the 8 federates and divide 
by LBTS time period. 

Figure 21 Plot of number of events computed per lbts with 
respect to simulation time in hours from a evacuation 
scenario of 64 × 64 grid on a single processor
(see online version for colours) 

Figure 22 Plot of number of events computed per LBTS with 
respect to simulation time in hours from a evacuation 
scenario of 128 × 128 grid on a single processor
(see online version for colours) 

Figure 23 Plot of number of events computed per LBTS with 
respect to simulation time in hours from the evacuation 
scenario of 256 × 256 grid conservative run on eight 
processors (see online version for colours) 

It is evident that a large number of events are processed 
during the initial stages of the simulation and the processing 
drops off drastically during the later stages leaving a long 
tail toward the end of the simulation, as seen from  
Figures 21–23. For the performance of SCATTER-OPT 
discussed earlier, the simulation was run till all the 
generated vehicles reach their corresponding destination. 
Hence, if we were to simulate for the evacuation of 75%  
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of the generated vehicles a better performance in the 
simulation runs can be expected since the simulation  
does not crawl through the long tail toward its end. With the 
logical processes having relatively large number of events to  
process even at the end of simulation, more computation is 
carried out and less time is lost in synchronisation; hence a 
better parallel performance than previously observed is 
expected in a 75% evacuation model. 

We ran 256 × 256 grid scenario with lookahead 1,  
on 8 processors using conservative synchronisation for 
different simulation end times. Figure 24 gives an idea on 
how the reduction in the simulation end time affects  
the simulation-runtime. In Figure 24(a), we see that as  
the percentage of number of vehicles evacuated decreases, 
the simulation end time drops drastically, as we reduce the 
percentage of evacuation from 100% to 75%, the simulation 
end time reduces from 500 h to 111 h. This reduction in 
end-time directly corresponds to the reduction in simulation 
run-time as seen from Figure 24(b).  

Figure 25 presents the reduction in the simulation time 
in 64 × 64, 128 × 128 and 256 × 256 grid scenarios as the 
percentage of vehicles evacuated is reduced from 100%  
to 75%. 

Scenarios with 75% evacuation of the generated traffic 
in 64 × 64, 128 × 128 and 256 × 256 grids are studied here 
for performance comparisons while using conservative and 
optimistic synchronisation methods with varying lookahead 
values. The rest of the plots are shown with two lookahead 
value extremes: 1.0 and 0.1. For each lookahead value, 
performance is logged for grid sizes of 64 × 64, 128 × 128 
and 256 × 256. 

Overall, it is seen that with the larger lookahead,  
as expected, conservative synchronisation works fine.  
On the other hand, with the smaller lookahead, optimistic 
synchronisation becomes competitive with conservative 
synchronisation. At the largest network size, 256 × 256, and 
the largest processor count of 64, the gain in speedup  
is the largest. The power of reverse computation and 
optimistic execution become evident only on the largest 
configurations reported here, namely, on 64 processor  
and 256 × 256 network size. The plots are given next,  
in Figures 26(a)–31(b). 

Figure 24 From 256 × 256 grid scenario, lookahead 1, 8 
processor conservative run: (a) percentage of vehicles 
evacuated over simulation end-time and (b) percentage 
of vehicles evacuate over simulation runtime  
(see online version for colours) 

 (a) 

Figure 24 From 256 × 256 grid scenario, lookahead 1, 8 
processor conservative run: (a) percentage of vehicles 
evacuated over simulation end-time and (b) percentage 
of vehicles evacuate over simulation runtime  
(see online version for colours) (continued) 

 (b) 

Figure 25 Simulation time vs. percentage of vehicles evacuate  
in 64 × 64, 128 × 128 and 256 × 256 grid scenarios 
with the traffic generation rate of 400, 100, 50 
vehicles/hour/destination, respectively (see online 
version for colours) 

Figure 26 75% evacuation scenario of 64 × 64 grid, with 
lookahead = 1: (a) speedup plot and (b) number of 
events/LBTS across number of processors used
(see online version for colours) 

 (a) 

 (b) 
With lookahead = 1. 
64 × 64 grid. 
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Figure 27 75% evacuation scenario of 128 × 128 grid, with 
lookahead = 1: (a) speedup plot and (b) number
of events/LBTS across number of processors used
(see online version for colours) 

 (a) 

 (b) 

128 × 128 grid. 

Figure 28 75% evacuation scenario of 256 × 256 grid, with 
lookahead = 1: (a) speedup plot and (b) number
of events/LBTS across number of processors used
(see online version for colours) 

 (a) 

 (b) 
256 × 256 grid. 

Figure 29 75% evacuation scenario of 64 × 64 grid, with 
lookahead = 0.1: (a) speedup plot and (b) number
of events/LBTS across number of processors used
(see online version for colours) 

 (a) 

 (b) 
With lookahead 0.1. 
64 × 64 grid. 

Figure 30 75% evacuation scenario of 128 × 128 grid, with 
lookahead = 0.1: (a) speedup plot and (b) number of 
events/LBTS across number of processors used (see 
online version for colours) 

 (a) 

 (b) 
128 × 128 grid. 
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Figure 31 75% evacuation scenario of 256 × 256 grid, with 
lookahead = 0.1: (a) speedup plot and (b) number
of events/LBTS across number of processors used
(see online version for colours) 

 (a) 

 (b) 
256 × 256 grid. 

In Figure 31, for the largest network size and large  
number of processors, optimistic synchronisation shows its 
best performance, namely, a speedup of nearly 20 on 32 
processors.

6 Summary and conclusion 

In this paper, we discussed the design, development and 
performance of a parallel discrete event vehicular traffic 
simulation model. A discrete event formulation forms the 
basis of the sequential model, while being reversible for use 
in parallel execution. We ensured its sequential performance 
is comparable to that of one of the best available 
transportation model (OREMS). This sequential speed is 
achieved based on SCATTER’s discrete event nature.  
To this model, we incorporated the relatively less  
explored method of reverse-computing based optimistic 
synchronisation for parallel discrete event models. It was 
implemented in a library called µsik, which permits both 
conservative as well as optimistic event processing modes. 
We compared the parallel performance of models using 
optimistic and conservative synchronisation techniques 
fixing the input traffic generation rate and varying 
lookahead values. To our knowledge, this is the first attempt 
at applying optimistic simulation techniques to parallel 
vehicular network simulation. The perfectly reversible 
formulation of the model is also novel that enables  
reverse computation. Additionally, the performance 

improvement is challenging due to the requirement of low 
parallel computation overhead needed to compare 
favourably with an extant, fast sequential simulator 
(OREMS). In that vein, the absolute speedup (i.e., speedup 
compared to OREMS), rather than self-relative speedup 
(speedup compared to SCATTER-OPT on 1-processor) is 
an additional strength. The performance, as expected,  
is observed to improve with increasing network size and 
decreased amount of lookahead. In one of the best 
performance runs, a speedup of nearly 20 is observed on a 
256 × 256 node network with several million vehicles 
transferred, representing nearly a 100% improvement over 
conservative synchronisation. 

6.1 Future work 

While current implementation is limited to a single lane per 
direction per road segment, support for multiple lanes needs 
to be added. Performance on generalised networks remains 
to be evaluated, although we expect the challenges to only 
lie in optimising intersection-to-processor mapping for 
performance; the software is capable of delivering correct 
results with any arbitrary assignment. Performance of 
rollback using reverse computation could be compared to 
that of state saving. Also, in high lookahead conditions, we 
are investigating the effect of limiting optimism in order to 
reduce the amount of rollbacks. 
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