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1 Introduction

Exascale Stochastic Grid Dynamics (ExaSGD) is one of the application projects under the US
Department of Energy’s Exascale Computing Project (ECP).

HiOp is an optimization solver developed at the Lawrence Livermore National Laboratory (LLNL)
by Cosmin Petra.

2 Performance Profiling Strategy

2.1 Iterative Profiling and Performance Improvement

Algorithm 1: Iteration for Profiling-based Performance Improvement

Result: Accelerated code of whole program
initialization;
while any code units can be sped up do
Obtain profile of current version of code;
Identify most time consuming units in the profile;
Accelerate the identified units;
end

2.2 Profiling strategy for Summit
2.3 Devised Profiling Strategy for Summit

We explored different options for profiling tools on the Summit supercomputer. We have identified
at least four primary options for profiling: 1) whole program profiling using HPCToolkit, 2) whole
program profiling with nvprof, 3) whole program profiling using Exa-PAPI++, and 4) targeted
profiling using manual instrumentation.

1. Using HPCToolkit
2. Using nvprof
3. Using Exa-PAPI++

4. Using targeted profiling via manual instrumentation



2.3.1 Using HPCToolkit

Summit has a default HPCToolkit package installed that does not have GPU support. Therefore,
we have obtained the latest HPCToolkit version from source and successfully compiled it ourselves
on Summit by explicitly adding GPU support. We have been experimenting with this custom-built
HPCToolkit on Summit and we find that it seems to be a good option to gain a general idea of
the program profiles without having to undertake any modification to the source code. In fact, it is
possible to use the same binaries as are used for normal execution. The binaries are automatically
instrumented by HPCToolkit to generate runtime profile information that can be visualized using
HPCToolkit graphical viewer. However, the GPU support for HPCToolkit is still under development
by its authors, and we are continuing to experiment with it. As of this writing (June 9, 2020), it
is our understanding that it might not be the best option to obtain other important performance
metrics such as floating point operations per second (FLOPS) measurements using HPCToolkit.

2.3.2 Using nvprof

The next option for obtaining detailed performance profiles using unmodified source code is using
NVIDIA’s native nvprof profiling tool. nvprof can profile both CPU and GPU code executions
along with detailed FLOP counts and many additional program counters. However, some of the
profiling may require certain admin privileges. Also, the deep instruction-level profiling appears to
incur a large amount of overhead. With an input matrix size of 16K, collecting FLOP counts takes
approximately 2 hours using nvprof for an iteration (out of approximately 15 iterations) of the
Mixed Dense-Sparse (MDS) NLPs on HiOp. The same operation completes in a matter of seconds
when executed normally (without nvprof). Therefore, collecting such information for the whole
program using nvprof is not always feasible on Summit due to job time limitations.

In order to successfully use nvprof, an alternative is to restrict the program execution to only part
of its initial portions. This way, a partial profile can be gathered, which can adequately represent
the whole program. The partial profile can be obtained either by limiting the matrix size or by
reducing the number of iterations.

The strength of nvprof is in easily gathering the FLOP counts on Summit. For this specific
purpose, nvprof profiling is the suggested method to follow.

2.3.3 Using Exa-PAPI++

Another alternative is via collection of low-level (hardware-level) counters using the Performance
Application Programming Interface (PAPI). The latest version intended to be used on exascale
systems is called the Exa-PAPI++ library'. Exa-PAPI++ is designed to provide a generic and portable
access to low-level performance counters found across the exascale machines.

An effective use of the Exa-PAPI++ library requires us to instrument our code base manually to
insert the correct invocations of the Exa-PAPI++ routines. This instrumentation code is often hard
to maintain because of the changes to the underlying HiOp source code. Therefore, the burden of
maintaining the instrumentation code must be taken into account in planning the profiling tasks.

A major strength of Exa-PAPI++ is its portability across a wide range of machines, as it will be
helpful to measure performance when moving across platforms.

2.3.4 Targeted Profiling using Manual Instrumentation

The final option is the use of native support for timing and other critical measures of performance.
CUDA routines can be inserted as manual instrumentation around the functions of interest. These
function of interest can be shortlisted after gaining initial insights from tools such as HPCToolkit
and nvprof. In general, perusal and study of the source code by an expert may also reveal some

Thttps://icl.utk.edu/exa-papi/



important candidate routines (or code fragments) that need to be instrumented for obtaining tar-
geted performance details. This is achieved by inserting timing instrumentation inside the source
code and compiling the application. Note that this requires inserting code fragments into the main
application source code and hence needs to be done with extreme care (to not inadvertently intro-
duce bugs or otherwise alter the functionality). Another important consideration is the difficulty in
keeping the instrumentation up-to-date across software releases. As new versions of HiOp and other
codes emerge, we need to be careful to update the profiling code also accordingly. One safe method
is to create a separate code base for profiling the HiOp code, and maintaining it separately from the
actual repository to ensure independent investigation.

2.4 Whole Program Profiles
2.4.1 HiOp Whole Program Profile

In this task, we performed a whole-program profiling without source code modification. We used
HPCToolkit and nvprof for profiling a Mixed Dense-Sparse NLP problem with HiOp. The details
of the experiments are given below.

2.4.2 Test Problem Under Consideration

In this experiment we used a Mixed Dense-Sparse NLP problem provided with HiOp called n1pMDS_ex4.
Two important parameters of the program are: i) the size of the dense matrix and ii) the size of
the sparse matrix. We measure the performance of MAGMA linear solver for different matrix sizes
with HiOp application. For this experiment, we set both the matrix size to the same value, and vary
them with the following sizes: [4K,8K, 15K].

2.4.3 Hardware and Software Setup

We used a local Summit proxy node Linux server with a GPU exactly identical to the Summit GPUs.
The configurations of the system is given below.
e GPU: Tesla V100-SXM2-16GB:s_7.0 (same as the Summit GPU)
CPU: Intel(R) Xeon(R) Silver 4110 CPU
OS: CentOS Linux 7 (Core)
System Memory: 256GB
GPU Memory: 16GB
We used the latest HiOp version committed on Jun 22 15:19:14 2020. This version includes a
different solver method unlike the previous one we benchmarked (Section A.1.1).

2.4.4 Baseline: Normal Execution (without Profiling)

First we execute the test program without any instrumentation other than the CPU timers already
in place of the code. There are two timers implemented in the original code base, 1) timer for per
iteration of the HiOp solver, and 2) timer for the MAGMA GPU factorization using magma dsytrf().
We use a matrix size of 8K for this experiment. Based on the output of the test program we found
that:

e Per iteration takes 6.20 seconds on average.

e GPU factorization takes 2.19 seconds on average (including memory copy between CPU-GPU
and computing factorization)

Therefore, the MAGMA factorization is responsible for approximately 35% of the time spent on per
iteration of HiOp Solver. Note that the MAGMA GPU time includes the memory copy operation
between CPU and GPU memory. In this version of the HiOp GPU solver, the underlying copy



operations between CPU and GPU is being done by the MAGMA function magma_dsytrf () itself, so
it is currently not possible to decompose time for memory copying and matrix computing without
modifying MAGMA source code or using other profiler.

This timing from normal (un-instrumented) execution provides a baseline of GPU usage that
can be analyzed further in the profiled execution reported in the next sections.

2.4.5 Graphical Profiling and Visualization using HPCToolkit

To study how the whole program is spending time in individual functions, we used HPCToolkit, a
tool to measure performance and profiling for HPC applications. HPCToolkit can be used to identify
which functions are taking the most amount of time and the call hierarchy using a visual interface.
This tool can profile CPUs as well as GPUs for a basic set of metrics. We used a matrix size of
8K in this experiment with HPCToolkit. HPCToolkit offers two GUI tools to visualize the profiling
results: 1) HPCViewer, and 2) HPCTraceViewer. We used both of them to analyze different aspects
of the application.

HPCViewer presents a hierarchical call graph along with the source code from which the functions
were called. It also provides an aggregated timing, processor cycles, and memory information for
many common metrics. Due to the profiling overhead, the timing information is not entirely reliable
for benchmark, rather it provides a qualitative information to compare the percentage of time being
spent on different functions. Figure 12 presents the output of HPCViewer for this experiment. As
the figure shows, out of the total time spent on the GPU:

e 9.2% (4.7% + 4.5%) is spent on magma_dcopy (),

e 11% is spent on magma_dgemv (),

12.7% is spent on magma_idamax (),

4.4% is spent on magma_dscal(), and
e 62.7% is spent on magma_dgemm().

Therefore, most of the computation are being done with the MAGMA matrix multiplication as found
here.
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Figure 1: HPCToolkit Visual Call-Graph Results via HPCViewer



HPCTraceViewer presents a timeline view of the application along with the call depth. The
interface is shown in Figure 13. As shown in the figure, there is a main CPU thread, and mul-
tiple GPU streams on different time periods. When executing HiOp with GPU support, it uses
MAGMA underneath. MAGMA creates a new stream every time a new BLAS function is executed. There-
fore, it is showing multiple steams of GPU usage in this figure. Incidentally, the MAGMA function
(magma_dsytrf ()) is called once in each iteration of HiOp solver. Therefore, the number of streams
also corresponds to the number of HiOp iterations.

¥ Trace View| w3 S M= = O|[# callpatn[+_ Statistics) =0

Time Range: (05, 94.474s] _Rank Range: 0, 516] _Cross Hair: (71.006s, 0)

nj
L0
L
(I 1
(o

% Depth View | K Summary View]

[T T fve—

Figure 2: HPCToolkit Results via HPCTraceViewer

One thing to note regarding the profiling of HPCToolkit for performance optimization is that the
absolute timing might not be the actual run time. Therefore, we only take qualitative information
from the HPCToolkit output, such as the percentage of time a function is taking with regard to the
total run time. We do not rely on absolute time measures using this tool because it has significant
run time overhead.

2.4.6 Profiling with nvprof and NVIDIA Visual Profiler

Although the HPCToolkit gives an idea of which functions takes the most of time, it fails to deliver
some key metrics such as FLOP count and rates, DRAM throughput, achieved occupancy etc. To get
those metrics, we use the native nvprof from NVIDIA. As profiling a compute intensive operation
takes a long amount of time, we used a smaller matrix size of 4K in this experiment. nvprof took
almost 70 hours to collect the desired metrics with only 8 iterations of HiOp solver. We used the
command below to collect the profile information. The profiled data is visualized with NVIDIA
Visual Profiler as shown in Figure 14.

#nvprof command to collect profiling metrics

nvprof --metrics flop_dp_efficiency,flop_count_dp,
dram_read_transactions,dram_write_transactions
nlpMDS_ex4.exe 4000 4000

As noted above, HiOp uses the MAGMA function magma dsytrf () for computing the factor-
ization on the GPU. Internally, this function uses 10 GPU kernels to compute the factorization as
shown in Table 2.
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Figure 3: nvprof profile visualization using NVIDIA Visual Profiler. Note that although the appli-
cation time for each HiOp iteration is almost identical across iterations, the profiler takes more time
per iteration to perform the profiling. Hence, the blue bars showing the time per stream (iteration)
appear to be longer as the number of iterations increases.

2.5 Manual Instrumentation

* nvtx does not seem to provide programmatic interface to query FLOP metrics at run time.
* We have a good coverage of the most computationally intensive portions of the linear algebra
portions, including

3 Performance Units

FLOP rating at the linear algebra level (e.g., efficiency 70% of peak)
FLOP rating at the whole program level (e.g., efficiency 12% of peak)

4 Dense Solver Performance

4.0.1 Test Problem Under Consideration

In this experiment we used a Mixed Dense-Sparse NLP problem provided with HiOp called n1pMDS _ex4.
Two important parameters of the program are: i) the size of the dense matrix and ii) the size of the
sparse matrix. We measure the performance of MAGMA linear solver for increasing values of these
matrix sizes with HiOp application. For this experiment, we set both the matrix size to the same
value, and vary them with the following sizes: [2K,4K,8K,12K,16K,20K,22K].

4.0.2 Hardware Setup

We used two systems to capture the performance of the linear solver performance. One is a Summit
supercomputer node and the other is a local Linux server with a GPU exactly identical to the
Summit GPUs. The configurations of the both systems are given below.

Summit
o GPU: Tesla V100-SXM2-16GB:s_7.0
e CPU: IBM POWERY9



e OS: Red Hat Enterprise Linux 7
e Memory: 512GB per node

Local Summit Proxy Node Linux Server
e GPU: Tesla V100-SXM2-16GB:s_7.0 (same as Summit GPU)
CPU: Intel(R) Xeon(R) Silver 4110 CPU
OS: CentOS Linux 7 (Core)
Memory: 256GB

4.0.3 Results

We found that linear algebra so far constitutes 18% of total run time (per iteration) after the
functionality has been ported to GPU using the MAGMA linear algebra solver (see Section D.1.1).

Figure 6 shows the GPU-time required to transfer data from CPU to GPU memory (and vice
versa) and the GPU-time required to compute the matrix computation (factorization) for the linear
solver on the two platforms. As seen in Figure 6, the GPU-time for computation (which is essentially
the dsytrs () routine that is the most computationally intensive portion) increases with increasing
input sizes. The complexity of the most intensive operation is O(rN?), where N is the size of the
matrix and 7 is the number of right hand sides for the sparse matrix solution operation 2.

Runtime Performance of Some Key GPU Routines in HiOp
(NewtonMDS Branch using MAGMA)

GPU Operations
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Figure 4: Average GPU-Time (seconds) per BLAS calls

The Summit runs exhibit more variability in the run time than observed on the Linux server.
Also, the runtime is significantly larger on Summit than on the Linux server. On the other hand,
Summit exhibits faster data transfer capabilities than the Linux server.

We also compared the run time of the computation with that of data transfer. This is shown
in Figure 7. As noted previously, it is also seen in this plot that the computation time significantly
dominates the communication time on Summit, which exhibits high computation time and signif-
icantly less communication time. As the matrix size is increased, the dominance is becomes less
pronounced on Summit. In contrast, the same dominance actually increases on the Linux server.
However, the computation time remains the most significant source of the time spent on the GPU.

?https://wuw.nag.co.uk/numeric/f1/nagdoc_latest/html/£07/£07mef .html



Ratio of Computation to Communication of Some Key GPU Routines in HiOp
(NewtonMDS Branch using MAGMA)
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Figure 5: Ratio of Computation to Data Transfer

4.1 Comparison with CPU-based Solvers

Compare MAGMA performance gain on GPU relative to Intel Intel MKL and Open BLAS on CPU.



A JIRA ADSE22-145: Close-out Report

e Points: 25 pts
e Sub-stories: 3
e JIRA Description: Evaluate dense linear solvers on GPU

10



A.1 JIRA Substory 1: MAGMA Linear Solver Performance

Points: 9 pts

Date Due: May 31, 2020

Date Completed: May 31, 2020

Authors: Kalyan Perumalla and Maksudul Alam

JIRA Description: Test MAGMA direct linear solver performance, with increasing matrix sizes
with HiOp proxy apps.

A.1.1 Test Problem Under Consideration

In this experiment we used a Mixed Dense-Sparse NLP problem provided with HiOp called n1pMDS_ex4.
Two important parameters of the program are: i) the size of the dense matrix and ii) the size of the
sparse matrix. We measure the performance of MAGMA linear solver for increasing values of these
matrix sizes with HiOp application. For this experiment, we set both the matrix size to the same
value, and vary them with the following sizes: [2K,4K,8K,12K,16K,20K, 22K].

A.1.2 Hardware Setup

We used two systems to capture the performance of the linear solver performance. One is a Summit
supercomputer node and the other is a local Linux server with a GPU exactly identical to the
Summit GPUs. The configurations of the both systems are given below.

Summit

e GPU: Tesla V100-SXM2-16GB:s_7.0
CPU: IBM POWER9
OS: Red Hat Enterprise Linux 7
Memory: 512GB per node

Local Summit Proxy Node Linux Server
e GPU: Tesla V100-SXM2-16GB:s_7.0 (same as Summit GPU)
e CPU: Intel(R) Xeon(R) Silver 4110 CPU
e OS: CentOS Linux 7 (Core)
e Memory: 256GB

A.1.3 Results

We found that linear algebra so far constitutes 18% of total run time (per iteration) after the
functionality has been ported to GPU using the MAGMA linear algebra solver (see Section D.1.1).

Figure 6 shows the GPU-time required to transfer data from CPU to GPU memory (and vice
versa) and the GPU-time required to compute the matrix computation (factorization) for the linear
solver on the two platforms. As seen in Figure 6, the GPU-time for computation (which is essentially
the dsytrs () routine that is the most computationally intensive portion) increases with increasing
input sizes. The complexity of the most intensive operation is O(rN?), where N is the size of the
matrix and 7 is the number of right hand sides for the sparse matrix solution operation 2.

The Summit runs exhibit more variability in the run time than observed on the Linux server.
Also, the runtime is significantly larger on Summit than on the Linux server. On the other hand,
Summit exhibits faster data transfer capabilities than the Linux server.

We also compared the run time of the computation with that of data transfer. This is shown
in Figure 7. As noted previously, it is also seen in this plot that the computation time significantly

Shttps://www.nag.co.uk/numeric/f1l/nagdoc_latest/html/f07/£07mef .html
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Runtime Performance of Some Key GPU Routines in HiOp
(NewtonMDS Branch using MAGMA)
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Figure 6: Average GPU-Time (seconds) per BLAS calls

Ratio of Computation to Communication of Some Key GPU Routines in HiOp
(NewtonMDS Branch using MAGMA)
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Figure 7: Ratio of Computation to Data Transfer

dominates the communication time on Summit, which exhibits high computation time and signif-
icantly less communication time. As the matrix size is increased, the dominance is becomes less
pronounced on Summit. In contrast, the same dominance actually increases on the Linux server.
However, the computation time remains the most significant source of the time spent on the GPU.
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A.2 JIRA Substory 2: Memory Limit

Points: 7 pts

Date Due: July 15, 2020

Date Completed: July 15, 2020

Authors: Kalyan Perumalla and Maksudul Alam

JIRA Description: Assess size limits and tradeoffs due to transfer time and memory capac-
ities of GPU.

A.2.1 GPU Memory Usage

In this task, we performed the GPU memory requirement analysis of HiOp solver. Our analysis
derives the maximum matrix size that can be accommodated within one GPU memory.

A.2.2 Hardware and Software Setup

We used our Summit proxy node, which is a Linux server with a GPU exactly identical to the
Summit GPUs. The configurations of the system is given below.

GPU: Tesla V100-SXM2-16GB:s_7.0 (same as the Summit GPU)

CPU: Intel(R) Xeon(R) Silver 4110 CPU

OS: CentOS Linux 7 (Core)

GPU Memory: 16GB

CPU Memory: 256GB

A.2.3 GPU Memory Requirement Analysis

In this experiment we used a Mixed Dense-Sparse NLP problem provided with HiOp called n1pMDS_ex4.
Two important parameters of the program are:

e The size of the dense matrix (Np x Np) and
e The size of the sparse matrix (Ng x Ng).

For any combination of Np and Ng, HiOp uses an intermediate matrix size of N x N, where
N = Np+ Ng, denotes the aggregated matrix dimension. Therefore, the required amount of memory
is primarily dependent on N.

The HiOp solver stores the matrix and a rhs vector in the device memory. Storing the matrix
takes N2 x d bytes where d = 8 is the size of data type double. Storing the rhs vector requires
N x d bytes *.

Further, in the HiOp solver, the core GPU computation is done by calling the function magma_dsytrf ().
The function creates two matrices of the sizes (N x ldda) and ldda x (1 + nb), where ldda is the
aligned value of N by 32 and nb is computed from the function magma_get_dsytrf nb() 5. For
the system under consideration, we have nb = 96. Note that those two matrices are being used
in the functions cublasDgemv() and cublasDgemm() to compute the factorization. Therefore the
theoretical amount of required memory (M) is defined by:

M = (N?+ N + N x ldda + (1 + nb) x ldda) x d.

4See class hiopLinSolverIndefDenseMagmaDev in file src/LinAlg/hiopLinSolverIndefDenseMagma.hpp
5See file dsytrf.cpp in MAGMA source folder

13



A.2.4 Theoretical versus Practical Limit

Based on our hardware setup, M = 16GB, d = 8, nb = 96, which gives us the maximum value
of N = 32736. However, due to various software overheads, this limit is not achieved in practice.
Nevertheless, we have been able to instantiate matrix sizes very close to that theoretical limit,
reaching up to N = 31800 without memory overflow issues (which result in segmentation faults or
other abnormal termination conditions).

The reason for not realizing the theoretical maximum is due to the inherent bookkeeping memory
needed by CUBLAS. Also, memory alignment considerations also reduce the maximum matrix size.
For instance, the internal CUBLAS blocks need to be aligned along memory blocks that are multiples
of 32. Additional memory is also demarcated by CUBLAS and MAGMA for miscellaneous terms in their
formula to determine the memory block for allocation.
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A.3 JIRA Substory 3: MAGMA Performance Gain on GPU

Points: 9 pts

Date Due: September 30, 2020

Date Completed: September 28, 2020

Authors: Kalyan Perumalla and Maksudul Alam

JIRA Description: Compare MAGMA performance gain on GPU relative to Intel MKL
and Open BLAS on CPU.

A.3.1 Performance Summary of HiOp for Different BLAS Implementation

We conducted experiments to study which functions are taking the most amount of computational
time during different BLAS implementation in HiOp. We used nlpMDS _ex4 to study the performance.

A.3.2 H/W Setup

We used Tesla V100 GPU with 16 GB RAM, Intel(R) Xeon(R) Silver 4110 CPU, with 256GB of
RAM. We used CentOS Linux 7 (Core) as the operating system.

A.3.3 BLAS

We used the following BLAS implementations: 1. OpenBLAS (CPU) 2. Intel MKL (CPU) 3.
MAGMA (GPU based, uses CUBLAS underlying)

A.3.4 Timing Info

We analyzed the code and put manual wall-clock timers on different parts of the functions to measure
elapsed time for each function for each HiOp iteration. As each iteration of HiOp solver is almost the
similar in behavior, we present the average timing info per iteration for each experiment conducted.

A.3.5 Solver Setup

We used nlpMDS _ex4 program to measure the performance. The program takes two inputs, 1) the
size of the dense matrix, and 2) the size of the sparse matrix. For this experiment both size of the
dense and sparse matrix is set as 8000.

A.3.6 Summary of Performance Results

As observed from the experiments, OpenBLAS takes 72.95 seconds, Intel MKL takes 18.56 seconds,
and MAGMA takes 4.49 seconds per iteration. In essence MAGMA is 16X and 4X faster than
OpenBLAS and Intel MKL respectively. The core of the operation depends on the computation of
factorization of a symmetric matrix (BLAS function DSYTRF that computes the factorization of a
real symmetric matrix A using the Bunch-Kaufman diagonal pivoting method).

Computing the factorization takes 67.92 seconds (93% of total time) for OpenBLAS, 13.61 sec-
onds (73% of total time) for Intel MKL and 0.81 seconds (18% of total time) for MAGMA. Therefore,
factorization seems to be quite faster on the GPU. The computation on the GPU basically consists
of two parts, 1) copying data from CPU to GPU and back forth, and 2) actual computation of GPU
factorization. Of the 0.81 seconds, about 0.45 is spent on memory copying, and the remaining 0.36
seconds are used for actual computation.

A.3.7 Detailed Hierarchical Timing Info for OpenBLAS

Below, we present the hierarchical call lists of major function per iteration. The most significant
functions are highlighted in bold.
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transAddToSymDenseMatrixUpperTri
angle_2
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hiopKKTLinSysMDS.cpp:update
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atUTri_2
(0.00 Sec, 0%)

addMDinvNtransToSymDeMatUTri DSYTRF_1

. ) (0.22 sec, 0%) (0.00 Sec, 0%)
hiopAlgFilterIPM.cpp:run
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matrixChanged DSYTRF_2
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FOR_LOOP
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hiopKKTLinSys.c! omputeDirecti il hiopKKTLinSysMDS.cpp:solveCompre
[ ssed
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Figure 8: HiOp Exploration

A.3.8 Detailed Hierarchical Timing Info for Intel MKL

Below, we present the hierarchical call lists of major function per iteration. The most significant
functions are highlighted in bold.

addUpperTriangleToSymDenseMatrix
UpperTriangle

(0.31 Sec, 2%)

transAddToSymDenseMatrixUpperTri
angle_1
(1.32 sec, 7%)
transAddToSymDenseMatrixUpperTri
angle_2
(0.00 Sec, 0%)
addMDinvMtran iagBlockOfSymDe
MatUTri_1
(0.90 Sec, 5%)

hiopKKTLinSysMDS.cpp:update
(17.58 Sec, 95%)

addMDinvMtransToDiagBlockOfSymDe
MatUTri_2

(0.00 Sec, 0%)

invNtransToSymDeMatUTri

. . (0.22 Sec, 1%)
hiopAlgFilterIPM.cpp:run

(18.56 Sec, 100%)
matrixChanged DSYTRF_2

(13.61 Sec, 73%) (13.59 Sec, 73%)

FOR_LOOP
(0.02 Sec, 0%)

hiopLinSolver.hpp:solve
(0.29 Sec, 2%)

hiopKKTLinSys.c omputeDirecti hiopKKTLinSysMDS.cpp:solveCompre
[ ssed

(0.44 Sec, 2%) (0.29 Sec, 2%)

Figure 9: HiOp Exploration

A.3.9 Detailed Hierarchical Timing Info for MAGMA

Below, we present the hierarchical call lists of major function per iteration. The most significant
functions are highlighted in bold.
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Figure 10: HiOp Exploration
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B JIRA ADSE22-193: Close-out Report

Points: 5 pts

Date Due: June 15, 2020

Date Completed: June 15, 2020

Authors: Kalyan Perumalla and Maksudul Alam

JIRA Description: Define profiling units

Units to be defined in linear solver, input data instantiation, and optimization solver.

e Identify major units of components, software.
e Identify units of measure (FLOPS, occupancy on GPU, roofline plots, etc.).
e Iterate as needed when profile information is available.

e Coordinate the activity with HiOp, SCOPFlow and relevant proxy app tasks.
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B.1 Major Units of Components

The most computationally intensive operations performed in HiOp are the matrix operations. There
are a variety of matrix operations used for various purposes, most of which are performed on the
CPU. Among these operations, the most intensive ones are concerned with matrix factorization.
It is these operations that are initially ported to the GPU. Therefore, the GPU port of the HiOp
currently executes the factorization part on the GPU.

Based on the test problem (a mixed dense-sparse NLP called nlpMDS_ex4), we determined that
the following matrix operations consume the most amount of computational time:

. addUpperTriangleToSymDenseMatrixUpperTriangle ()

. transAddToSymDenseMatrixUpperTriangle ()

1
2
3. addMDinvMtransToDiagBlockOfSymDeMatUTri ()
4. addMDinvNtransToSymDeMatUTri()

5

. Other routines that invoke DSYTRF() (a BLAS Routine)

Of these matrix routines, only the DSYTRF () routine has been ported with MAGMA on the GPU.
In typical scenarios, DSYTRF () takes about 18% of the wall clock time per HiOp iteration. The time
includes both the matrix computation as well as the time for data transfer to and from GPU. In
the preceding list, matrix Operations other than DSYTRF() take about 65% of the time per HiOp
iteration. The rest 17% are consumed by the rest of HiOp computation.

B.2 Profiling Metrics

We suggest the use of the following profiling metrics in evaluating the performance of HiOp:
1. GPU Occupancy
2. GPU Computational Efficiency and Memory Utilization
3. Achieved Host-GPU Memory Transfer Bandwidth
4. GPU Memory Throughput
5. FLOP Count and Rate
6. Roofline Analysis.

Metrics 1-5 are described in this section. The roofline analysis is described in the next section.

B.2.1 GPU Occupancy

In the GPU context, the occupancy denotes the ratio of active warps (a group of threads) on a
Streaming Multiprocessor (SM) to the maximum number of active warps supported by the SM. As
each warp begins and ends, occupancy can change and can be different for each SM. Typically, low
occupancy indicates poor instruction issue efficiency, due to insufficient number of warps to run
concurrently on the SMs. Also, if occupancy is beyond a sufficient level, the performance may take
a hit due to the reduction in the amount of resources per thread. Therefore, a kernel performance
analysis is suggested to check occupancy and observe the effects on kernel execution time at different
occupancy levels.

There are two kinds of occupancy that can be measured for a GPU program. The theoretical
occupancy of a kernel is an upper limit that can be determined as early as at compile time. This
is obtained from the kernel’s requirement of resources (such as registers) based on the known capa-
bilities of the device SM. The achieved occupancy can be determined using profiling tools (such as
nvprof) that measure the occupancy during the execution of the kernel.
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B.2.2 GPU Computational Efficiency and Memory Utilization

The GPU Computational Efficiency (also called simply Utilization) measures the percentage of time
one or more GPU kernels are running over a sample period. The sample period is between 1/6
seconds and 1 second depending on the card.

This metric can measure the efficiency of the GPU being used by a program. Typically the GPU
utilization is probed via GPU driver (such as nvidia-smi). Additionally, special APT’s (such as
NVML) are also available to access the GPU driver to collect this metric programmatically during
profiling.

The GPU Memory Utilization measures the percentage of GPU memory being used. Similar to
GPU Utilization, this is information is obtained by probing the GPU driver via the driver API.

B.2.3 Achieved Host-GPU Memory Transfer Bandwidth

The Host-GPU bandwidth measures the throughput of memory transfer between the host CPU and
the GPU. As the GPU is connected to the system’s motherboard via a bus (such as PCI Express), this
bandwidth largely depends on how fast the bus (such as PCI bus) is and how many other hardware
components are using it. There are also some overheads that are included in the measurements,
such as function invocation time and array allocation time. The bandwidth can be measured using
a profiler (such as nvprof). It can also be obtained by manually instrumenting the portions of the
code that invoke memory transfer operations.

B.2.4 GPU Memory Throughput

Operations performed by the GPU involve computation, memory transfers (reads and writes), or
combinations of both. Some operations do very little computation with each memory element. They
are, therefore, dominated by the time taken to fetch/write the data from/to memory to read/write.
Functions such as setting all elements to specific constants (such as ones, zeros, etc.) only write
their output, whereas functions like transpose both read and write but do no computation. Even
simple operators such as addition, deletion, multiplication, etc. perform such little computation per
element that they may be bound only by the memory access speed. Typically, this measurement is
available via native GPU profiler (nvprof).

For these reasons, the memory throughput achieved by the program becomes an important
measure of runtime performance. For operations where the amount of computation performed per
element read from or written to memory is low, the memory throughput is important.

B.2.5 FLOPS

For operations where the number of floating-point computations performed per element read from
or written to memory is high, the memory speed is much less important. These operations are
said to have high “arithmetic intensity”. In this case the number of operations and speed of the
floating-point units is the limiting factor. The measure of interest is called the number of floating
point operations per second, abbreviated as FLOPS, or simply FLOP rate. We measure the FLOP
rate and FLOP count as a measure of computational intensity of the program. Note that the FLOP
rate can be measured over the entire duration of the program, or over specific segments of the
program. In this case, we suggest measuring the FLOP rate using the the amount of time spent
in corresponding GPU operations. We can determine FLOP rate in many ways, such as estimating
theoretical FLOP operations, using direct observations from the profiler-extracted FLOP counts, or
indirectly using the GPU efficiency measurements relative to the published FLOP ratings of peak
efficiency. Since the FLOP counts and FLOP rates are often very large numbers, they are usually
measured in millions. GFLOP is used as short notation for giga-FLOP, standing for billion floating
point operations. Similarly, GFLOP/s is GFLOP per second.
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B.3 Roofline Analysis

Additional insight into the key determinants of performance can be obtained via a technique called
roofline analysis 6. This type of analysis provides information to evaluate the efficiency of the
arithmetic operations in programs such as HiOp, which in turn indicate opportunities available
towards tuning the performance.

The roofline performance model presents an intuitive visual method for extracting key insight-
ful computational characteristics of the applications and comparing them against the performance
bounds of the underlying processor. It can abstract the complexity of non-uniform memory hierar-
chies to identify the most beneficial optimization technique.

In roofline analysis, we break down the application into core code fragments such as constituent
loop nests or kernels. The performance of the core code fragments (such as computation, data move-
ment, and run time) are plotted against the peak capabilities (such as GFLOP/s and bandwidth) of
a given processor on an absolute scale. Typically, we plot the peak performance (GFLOP/s) against
the arithmetic intensity, which is defined by the ratio of total floating-point operations (FLOPs)
executed by the code fragment, to the total data movement (in bytes) required for those FLOPs.

Conceptually, we can measure the upper bound of the performance of the system under inves-
tigation using the vendor specifications. Although they provide some insight of the upper bounds,
they do not adequately capture a realistic view of the execution environment. The peak perfor-
mance of the realistic execution environment of the system can be measured by micro-kernels using
a tool called Empirical Roofline Toolkit (ERT). This provides a baseline or tighter upper boundary
of performance of the underlying system. The actual performance of the system can be measured
using profiling tools to determine the arithmetic intensity and the peak GFLOP /s measures. When
those measures are plotted as a roofline plot, the plot can provide helpful information regarding the
essential nature of the computation (that is, whether it is memory-bound or compute-bound) and
the level of performance compared to peak. Based on the plot we can decide whether to further
optimize the code or not.
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Figure 11: An example of a roofline plot.

7

An example of the roofline plot is shown in Figure 11. In this model, we use two parameters,
namely, the peak computational throughput (defined as 7) and the peak bandwidth (3) of the com-
puting system under consideration. The peak computation throughput is expressed as GFLOP/s,

6S. Williams, A. Waterman, D. Patterson, “Roofline: an insightful visual performance model for multicore archi-
tectures”, Communications of the ACM (CACM), April 2009.
"Taken from wikipedia https://en.wikipedia.org/wiki/Roofline_model
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usually derived from system specification. The peak bandwidth is the DRAM bandwidth, which can
be obtained via benchmarking. We next plot the attainable performance (defined as P) using the

following equation:
P = min i
B x I

where [ is the arithmetic intensity. As noted previously, the arithmetic intensity is defined as
the ratio of computational work to memory access. The point where the attainable performance
saturates to the peak level 7 is called the ridge point. We can analyze the characteristics of a
given kernel on the system by plotting a point (with its arithmetic intensity I on the x-axis and the
achieved performance P on the y-axis) and drawing a vertical line that hits the roofline curve. If
the vertical line is towards the left of the ridge point (line O; in Figure 11), the kernel is said to be
memory-bound. On the other hand, if the vertical line is towards the right of the ridge point (line
O, is Figure 11), the kernel is said to be compute-bound.
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C JIRA ADSE22-194: Close-out Report

Points: 5 pts

Date Due: June 5, 2020

Date Completed: June 5, 2020

Authors: Kalyan Perumalla and Maksudul Alam

JIRA Description: Profiling strategy for Summit

This activity will identify what tools are available and which ones are applicable to the software
stack and its components.

1. Evaluate candidate tools (like HPCToolkit ) and expand to complement to cover places
where more information is needed.

2. Generate preliminary profiling results from selected tools.

3. Deliver documentation on what works (more emphasis on capabilities and adequacy, not
necessarily focused on exact results for now).

C.1 Devised Profiling Strategy for Summit

We explored different options for profiling tools on the Summit supercomputer. We have identified
at least four primary options for profiling: 1) whole program profiling using HPCToolkit, 2) whole
program profiling with nvprof, 3) whole program profiling using Exa-PAPI++, and 4) targeted
profiling using manual instrumentation.

1. Using HPCToolkit

2. Using nvprof

w

. Using Exa-PAPI++

S

. Using targeted profiling via manual instrumentation

C.1.1 Using HPCToolkit

Summit has a default HPCToolkit package installed that does not have GPU support. Therefore,
we have obtained the latest HPCToolkit version from source and successfully compiled it ourselves
on Summit by explicitly adding GPU support. We have been experimenting with this custom-built
HPCToolkit on Summit and we find that it seems to be a good option to gain a general idea of
the program profiles without having to undertake any modification to the source code. In fact, it is
possible to use the same binaries as are used for normal execution. The binaries are automatically
instrumented by HPCToolkit to generate runtime profile information that can be visualized using
HPCToolkit graphical viewer. However, the GPU support for HPCToolkit is still under development
by its authors, and we are continuing to experiment with it. As of this writing (June 9, 2020), it
is our understanding that it might not be the best option to obtain other important performance
metrics such as floating point operations per second (FLOPS) measurements using HPCToolkit.

C.1.2 Using nvprof

The next option for obtaining detailed performance profiles using unmodified source code is using
NVIDIA’s native nvprof profiling tool. nvprof can profile both CPU and GPU code executions
along with detailed FLOP counts and many additional program counters. However, some of the
profiling may require certain admin privileges. Also, the deep instruction-level profiling appears to
incur a large amount of overhead. With an input matrix size of 16K, collecting FLOP counts takes
approximately 2 hours using nvprof for an iteration (out of approximately 15 iterations) of the
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Mixed Dense-Sparse (MDS) NLPs on HiOp. The same operation completes in a matter of seconds
when executed normally (without nvprof). Therefore, collecting such information for the whole
program using nvprof is not always feasible on Summit due to job time limitations.

In order to successfully use nvprof, an alternative is to restrict the program execution to only part
of its initial portions. This way, a partial profile can be gathered, which can adequately represent
the whole program. The partial profile can be obtained either by limiting the matrix size or by
reducing the number of iterations.

The strength of nvprof is in easily gathering the FLOP counts on Summit. For this specific
purpose, nvprof profiling is the suggested method to follow.

C.1.3 Using Exa-PAPI++

Another alternative is via collection of low-level (hardware-level) counters using the Performance
Application Programming Interface (PAPI). The latest version intended to be used on exascale
systems is called the Exa-PAPI++ library®. Exa-PAPI++ is designed to provide a generic and portable
access to low-level performance counters found across the exascale machines.

An effective use of the Exa-PAPI++ library requires us to instrument our code base manually to
insert the correct invocations of the Exa-PAPI++ routines. This instrumentation code is often hard
to maintain because of the changes to the underlying HiOp source code. Therefore, the burden of
maintaining the instrumentation code must be taken into account in planning the profiling tasks.

A major strength of Exa-PAPI++ is its portability across a wide range of machines, as it will be
helpful to measure performance when moving across platforms.

C.1.4 Targeted Profiling using Manual Instrumentation

The final option is the use of native support for timing and other critical measures of performance.
CUDA routines can be inserted as manual instrumentation around the functions of interest. These
function of interest can be shortlisted after gaining initial insights from tools such as HPCToolkit
and nvprof. In general, perusal and study of the source code by an expert may also reveal some
important candidate routines (or code fragments) that need to be instrumented for obtaining tar-
geted performance details. This is achieved by inserting timing instrumentation inside the source
code and compiling the application. Note that this requires inserting code fragments into the main
application source code and hence needs to be done with extreme care (to not inadvertently intro-
duce bugs or otherwise alter the functionality). Another important consideration is the difficulty in
keeping the instrumentation up-to-date across software releases. As new versions of HiOp and other
codes emerge, we need to be careful to update the profiling code also accordingly. One safe method
is to create a separate code base for profiling the HiOp code, and maintaining it separately from the
actual repository to ensure independent investigation.

8https://icl.utk.edu/exa-papi/
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D JIRA ADSE22-245: Close-out Report

e Points: 20 pts

e Sub-stories: 4

e JIRA Description: Based on profiling strategy, deliver preliminary profiling data for perfor-
mance on Summit or equivalent architecture.
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D.1 JIRA Substory 1: Preliminary profiling results for the software stack

Points: 5 pts

Date Due: June 30, 2020

Date Completed: June 30, 2020

Authors: Kalyan Perumalla and Maksudul Alam
JIRA Description: HiOp whole program profile.

D.1.1 HiOp Whole Program Profile

In this task, we performed a whole-program profiling without source code modification. We used
HPCToolkit and nvprof for profiling a Mixed Dense-Sparse NLP problem with HiOp. The details
of the experiments are given below.

D.1.2 Test Problem Under Consideration

In this experiment we used a Mixed Dense-Sparse NLP problem provided with HiOp called n1pMDS_ex4.
Two important parameters of the program are: i) the size of the dense matrix and ii) the size of
the sparse matrix. We measure the performance of MAGMA linear solver for different matrix sizes
with HiOp application. For this experiment, we set both the matrix size to the same value, and vary
them with the following sizes: [4K, 8K, 15K].

D.1.3 Hardware and Software Setup

We used a local Summit proxy node Linux server with a GPU exactly identical to the Summit GPUs.
The configurations of the system is given below.
e GPU: Tesla V100-SXM2-16GB:s_7.0 (same as the Summit GPU)
CPU: Intel(R) Xeon(R) Silver 4110 CPU
OS: CentOS Linux 7 (Core)
System Memory: 256GB
GPU Memory: 16GB
We used the latest HiOp version committed on Jun 22 15:19:14 2020. This version includes a
different solver method unlike the previous one we benchmarked (Section A.1.1).

D.1.4 Baseline: Normal Execution (without Profiling)

First we execute the test program without any instrumentation other than the CPU timers already
in place of the code. There are two timers implemented in the original code base, 1) timer for per
iteration of the HiOp solver, and 2) timer for the MAGMA GPU factorization using magma_dsytrf ().
We use a matrix size of 8K for this experiment. Based on the output of the test program we found
that:

e Per iteration takes 6.20 seconds on average.

e GPU factorization takes 2.19 seconds on average (including memory copy between CPU-GPU
and computing factorization)

Therefore, the MAGMA factorization is responsible for approximately 35% of the time spent on per
iteration of HiOp Solver. Note that the MAGMA GPU time includes the memory copy operation
between CPU and GPU memory. In this version of the HiOp GPU solver, the underlying copy
operations between CPU and GPU is being done by the MAGMA function magma_dsytrf () itself, so
it is currently not possible to decompose time for memory copying and matrix computing without
modifying MAGMA source code or using other profiler.

This timing from normal (un-instrumented) execution provides a baseline of GPU usage that
can be analyzed further in the profiled execution reported in the next sections.
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D.1.5 Graphical Profiling and Visualization using HPCToolkit

To study how the whole program is spending time in individual functions, we used HPCToolkit, a
tool to measure performance and profiling for HPC applications. HPCToolkit can be used to identify
which functions are taking the most amount of time and the call hierarchy using a visual interface.
This tool can profile CPUs as well as GPUs for a basic set of metrics. We used a matrix size of
8K in this experiment with HPCToolkit. HPCToolkit offers two GUI tools to visualize the profiling
results: 1) HPCViewer, and 2) HPCTraceViewer. We used both of them to analyze different aspects
of the application.

HPCViewer presents a hierarchical call graph along with the source code from which the functions
were called. It also provides an aggregated timing, processor cycles, and memory information for
many common metrics. Due to the profiling overhead, the timing information is not entirely reliable
for benchmark, rather it provides a qualitative information to compare the percentage of time being
spent on different functions. Figure 12 presents the output of HPCViewer for this experiment. As
the figure shows, out of the total time spent on the GPU:

9.2% (4.7% + 4.5%) is spent on magma_dcopy (),

11% is spent on magma_dgemv (),

e 12.7% is spent on magma_idamax(),

4.4% is spent on magma_dscal(), and
e 62.7% is spent on magma dgemm().

Therefore, most of the computation are being done with the MAGMA matrix multiplication as found
here.

S dsytricpp | magmablas.dh [ dlasyt.gpucpp | blas d.v2.cpp 5 =8

T eovetezm T8

Figure 12: HPCToolkit Visual Call-Graph Results via HPCViewer

HPCTraceViewer presents a timeline view of the application along with the call depth. The
interface is shown in Figure 13. As shown in the figure, there is a main CPU thread, and mul-
tiple GPU streams on different time periods. When executing HiOp with GPU support, it uses
MAGMA underneath. MAGMA creates a new stream every time a new BLAS function is executed. There-
fore, it is showing multiple steams of GPU usage in this figure. Incidentally, the MAGMA function
(magma_dsytrf ()) is called once in each iteration of HiOp solver. Therefore, the number of streams
also corresponds to the number of HiOp iterations.
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Figure 13: HPCToolkit Results via HPCTraceViewer

One thing to note regarding the profiling of HPCToolkit for performance optimization is that the
absolute timing might not be the actual run time. Therefore, we only take qualitative information
from the HPCToolkit output, such as the percentage of time a function is taking with regard to the
total run time. We do not rely on absolute time measures using this tool because it has significant
run time overhead.

D.1.6 Profiling with nvprof and NVIDIA Visual Profiler

Although the HPCToolkit gives an idea of which functions takes the most of time, it fails to deliver
some key metrics such as FLOP count and rates, DRAM throughput, achieved occupancy etc. To get
those metrics, we use the native nvprof from NVIDIA. As profiling a compute intensive operation
takes a long amount of time, we used a smaller matrix size of 4K in this experiment. nvprof took
almost 70 hours to collect the desired metrics with only 8 iterations of HiOp solver. We used the
command below to collect the profile information. The profiled data is visualized with NVIDIA
Visual Profiler as shown in Figure 14.

#nvprof command to collect profiling metrics

nvprof --metrics flop_dp_efficiency,flop_count_dp,
dram_read_transactions,dram_write_transactions
nlpMDS_ex4.exe 4000 4000

As noted above, HiOp uses the MAGMA function magma_dsytrf () for computing the factor-
ization on the GPU. Internally, this function uses 10 GPU kernels to compute the factorization as
shown in Table 2.
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‘void iamax_kerel<double, double, int=256>(cublaslamaxPars 111480 4931us 17 3072 242,861.61864  (242,061,618,639,660 ns)
‘oid gemv2N_kernel<int,int, double, double, double, int=128, 2688 53%9ps 82 5120

‘void gemvZN_kernel<int,in, double, double, double, i 2688 5805ps 82 5120
void gemv2N_kernel<int,int, double, double, double, int=128, 3416 6315ps 82 5120
‘void gemvZN_kernel<int,int, double, double, double, int=123, 51152 8.728ps 82 5120

oid gemm_kernel2x2_core<double, bool=0, bool=0, bool=0, boo... .
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Figure 14: nvprof profile visualization using NVIDIA Visual Profiler. Note that although the
application time for each HiOp iteration is almost identical across iterations, the profiler takes more
time per iteration to perform the profiling. Hence, the blue bars showing the time per stream
(iteration) appear to be longer as the number of iterations increases.
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D.2 Substory 2: Preliminary HiOp key functions profiles

Points: 5 pts

Date Due: July 31, 2020

Date Completed: July 31, 2020

Authors: Kalyan Perumalla and Maksudul Alam
JIRA Description: HiOp key functions profiles

D.2.1 Performance Summary of HIOP for Different BLAS Implementation

We conducted experiments to study which functions are taking the most amount of computational
time during different BLAS implementation in HIOP. We used nlpMDS_ex4 to study the perfor-
mance.

D.2.2 H/W Setup

We used Tesla V100 GPU with 16 GB RAM, Intel(R) Xeon(R) Silver 4110 CPU, with 256GB of
RAM. We used CentOS Linux 7 (Core) as the operating system.

D.2.3 Timing Info

We analyzed the code and introduced manual instrumentation of wall-clock timers in different parts
of key functions to measure elapsed time for each function for each HiOp iteration. As each iteration
of the HiOp solver is almost similar in run time behavior to other iterations, we present the average
timing info per iteration for each experiment conducted.

D.2.4 Solver Setup

We used the HiOp test program nlpMDS_ex4 to measure the performance. The program takes two
inputs, 1) the size of the dense matrix, and 2) the size of the sparse matrix. For this experiment
both sizes of the dense and sparse matrices is set to 15000.

D.2.5 Detailed Key Functions and Hierarchical Timing Info for MAGMA

To determine the key functions we first used HPCToolkit to collect the function names and the
timing information without modifying the source code. The key function names can be seen from
Figure 15, which is taken using HPCViewer. Although HPCToolkit does not provide with accurate
timing information, it provides some insight into the functions to target. In this case the following
functions seem to be of interest:

e matrixChanged()

e transAddToSymDenseMatrixUpperTriangle()

e addMDinvMtransToDiagBlockOfSymDeMatUTri()

e addUpperTriangleToSymDenseMatrixUpperTriangle ()
e magma_queue_create_internal()

e solveCompressed()

Next, we investigated the source code and inserted timing instrumentation code around sev-
eral additional functions of interest including the ones determined by HPCToolkit. The timing
info collected this way more accurately measures the time needed by the functions compared to
HPCToolkit.
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Scope

v <program root>
¥ Bmain
v 8130: hiop::hiopAlgFilterlPMNewton:run()
loop at hiopAlgFilterlPM.cpp: 1201

v B1285: hi
loop at hiopKKTLinSysMDS.cpp: 143

TLinSysC D!

const, hiop:hic

v B247: hiop::hiopLinSolverindefDenseMagmaDev::matrixChanged()

» B990: magma_dsytrf

> loop at hiopLinSolverindefDenseMagma.hpp: 125

hiopLinSolverindefDenseMagma.hpp: 70

» B163: hiop:hi ToSymD int, int, double,
> B190: hi i i DiagBlockOfSymDeMatUTrifint, ¢
> 8159 hi int, dot
> B220: hi DeMatUTri(int, int, double co
» B154: hiop::hiopMatrixDense:setToZero()
> B9193: hi i int, double const&)
> B¥171: hi int, double consta, hi const
» B9167: hiop:hi i ToSymD i int, int, double,

> 8109: hiop::hiopLi Dev::hiopLinSolverl Dev(int, F
> B124: hi Py i consta, hi

» B1503: hi _derivo i ,

» B91292: hi KTLinSysC const!

> loop at hiopAlgFilterlPM.cpp: 1331

» B1524: hi i

» B»1499: hiop::hiopD ineart

const&, double const&, hiop::hiopVector ¢

const&, hi

> loop at hiopAlgFilterlPM.cpp: 1244

> B51522: hiop::hiopl

constg, double const&
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Figure 15: Key functions collected from HPCViewer.

Figure 16 lists the key functions in a hierarchical manner up to 4-level depth. As observed
from the figure, the function magma_dsytrf() is the most time consuming operation taking 35%
of the total run time. The function computes the factorization of a symmetric matrix (MAGMA
implementation of the BLAS function DSYTRF that computes the factorization of a real symmetric
matrix A using the Bunch-Kaufman diagonal pivoting method). The function uses several CUBLAS
routines to compute the factorization, specially using matrix multiplication operations on the GPU.

Other key functions include:

e transAddToSymDenseMatrixUpperTriangle(),

e addMDinvMtransToDiagBlockOfSymDeMatUTri(), and

e addUpperTriangleToSymDenseMatrixUpperTriangle().

These latter functions are sequential in nature and should be targeted for faster parallel imple-

1.60e-06 0.0%

mentation.
MAGMA
Key Functions N_SP=15000
N_DN=15000
Depth 0 Depth | Depth 2 Depth 3 Time per Iteration (Seconds) Percentage of Time
addUpperTriangleToSymDenseMatrixUpperTriangle 1.08 5%
transAddToSymDenseMatrixUpperTriangle 4.58 22%
addMDinvMtransToDiagBlockOfSymDeMatUTri 3.14 15%
addMDinvNtransToSymDeMatUTri 0.75 4%
@ 7.30 35%
[ oy [ 7.30 35%
hiopKKTLinSysMDS.cpp:solveCompressed 0.86 4%
hiopLinSobver hppolve [o.86 || 4% |

Figure 16: Key functions timings collected from manual instrumentation.
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D.3 JIRA Substory 3: Core dense solve (DGEMM) reproducibility and

variance

Points: 5 pts

Date Due: Aug 31, 2020

Date Completed: Aug 31, 2020

Authors: Kalyan Perumalla and Maksudul Alam

JIRA Description: Assess variance and reproducibility of run time of DGEMM on GPU.

D.3.1 H/W Setup

We used Tesla V100 GPU with 16 GB RAM, Intel(R) Xeon(R) Silver 4110 CPU, with 256GB of
RAM. We used CentOS Linux 7 (Core) as the operating system.

D.3.2 Solver Setup and Timing Info

We used the HiOp nlpMDS_ex4 program to measure the performance. The program takes two inputs,
1) the size of the dense matrix, and 2) the size of the sparse matrix. For this experiment both size
of the dense and sparse matrix is varied from 2000 to 22000. We analyzed the code and placed
manually inserted wall-clock timers on the core solver part performing the matrix multiplication
operations.

D.3.3 Variance and Reproducibility of Dense Solver

When the execution of GPU-based linear solver was profiled for run time, it has been observed
that the time taken per matrix-matrix operation varied significantly from one run to another. This
affects the accounting of the fraction of time and speed distribution across the functions of the
overall program. Further analyses were needed to get to the source of this run time discrepancies in
the profiles.

To address this, we performed profiling on the Summit supercomputer as well as on a standalone
GPU machine. Systematic experiments confirmed the following findings:

e On Summit, when two DGEMM operations are executed back-to-back, the former execution
appears to complete faster than the latter execution.

e On the standalone GPU machine, the DGEMM operations executed back-to-back exhibit
exactly the same run time for each execution, with little variation across iterations or across
multiple program invocations.

e The discrepancy between execution times seems to get larger on Summit as the matrix size is
increased.

The variance is obtained by running HiOp multiple times, one execution after another. On
Summit supercomputer, this is achieved by invoking the same HiOp program multiple times within
the same batch submission (i.e., within the same bsub script). The average time taken per matrix
operation within one HiOp execution is recorded and these average times are plotted with error bars
to indicate the variance. This experiment is repeated for increasing matrix sizes.

Figure 17 shows the average GPU time per iteration of each DGEMM call along with the 95%
confidence intervals. As seen in the figure Summit exhibits more variances in per iteration time
compared to the Summit proxy server. However the memory copy operation does not exhibit much
variation compared to the DGEMM computation.

To better understand and compare the results we used relative standard deviation (standard
deviation as a percentage of average) as shown in Figure 18. As seen from the figure, Summit exhibits
a higher relative standard deviation for both DGEMM and memory copy operations compared to the
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Figure 17: Average GPU Time (seconds) per DGEMM call
execution on our Summit proxy node. For larger matrix sizes, the computation time is much more

consistent with Summit proxy (less than 5% relative standard deviation) than the actual Summit
node (more than 20% relative standard deviation).
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Figure 18: Relative Standard Deviation of DGEMM operations on Summit and Linux Proxy
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D.4 JIRA Substory 4: SCOPFlow performance profile

Points: 5 pts

Date Due: Sep 30, 2020

Date Completed: Sep 30, 2020

Authors: Kalyan Perumalla and Maksudul Alam

JIRA Description: Preliminary performance profile of SCOPFlow.

D.4.1 Building ExaGO Software Stack on Profiling Machine

The SCOPFlow program has been converted to a new ExaGO program. It is now enabled to use HiOp
as one of the underlying solvers and can exploit the GPUs. The software dependencies are complex
due to its use of all technologies used by HiOp in addition to its own. We have ported all these
packages needed by ExaGO in order to prepare for the new profiling effort needed to understand
its performance characteristics on GPU and CPU-based execution. To be able to profile ExaGO
with support for HiOp-based solutions, we needed to port it to the standalone Linux-based Summit
proxy server machine, which has different software modules and software stack than the Summit
and Ascent machine architectures. The differences resulted in the need to rework and customize the
build scripts, and also work around some of the CMake tool idiosyncrasies (or bugs). We have now
successfully resolved all software dependencies, and developed the necessary build scripts to run it
on the profiling proxy machine. Considerable effort went into determining the correct compiler and
linker configurations and library specifications necessary for different modules such as netlib and
MAGMA. The packages involved in this chain are listed in Table 3.

The following versions have been successfully compiled and linked. Execution of tests has just
been started, and runtime errors are being resolved. Work is to be continued to resolve the runtime
errors and then subject the entire software stack to the range of profiling techniques we have identified
and developed as part of the projec so far.

Table 3: Packages Compiled and Linked as part of ExaGO

Package Name | Version Installation Source
CUDA 11 NVIDIA

GCC 7.5.0 Ubuntu

Cmake 3.18.2 Spack

OpenMPI 3.1.6 Spack

OpenBLAS 0.3.10 Build From Source
MAGMA master Build From Source
mpfr 4.1.0 Build From Source
Suiteparse 5.8.1 Build From Source
SuiteSparse 0.11.0 Build From Source
Umpire 3.0.0 Build From Source
GMP 6.1.2 Spack

Metis 5.1.0 Spack

HiOp raja-noineq-fix Build From Source
PetSC 3.13.5 Build From Source
ExaGO opflow-fix-unit-test-accuracy | Build From Source
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E JIRA ADSE22-333: Close-out Report

Points: 50 pts

Date Due: Mar 31, 2021

Date Completed: Mar 31, 2021

Authors: Kalyan Perumalla and Maksudul Alam

JIRA Description: Tulip One-node - Performance profiling of ExaGO and HiOp

1. HiOP build/execute with profiling readiness

2. HiOP-1node initial profile of routines

3. Attempt HiOP-1node roofline or approximation
4. ExaGO-1node initial profile of routines

5. Attempt ExaGO-1node roofline or approximation

Get preliminary profiling results for ExaGO and HiOp on Tulip (AMD/HIP) platform and
compare with profiling results on Summit. Use same test cases — for HiOp Example 4 (a
convex problem) and Texas 2000-bus grid for ExaGO. Identifying top time-consuming kernels
and running roofline analysis for them is highly desirable. Share performance results with
RAJA team.

Also, evaluate profiling tools available on Tulip. Compare profiling capability on Tulip with
that available on Summit.

E.1 HiOp build/execute with profiling readiness

We have successfully built and executed HiOP along with ExaGO and all their dependencies on
other packages (including RAJA, Umpire, Metis and MAGMA) on Summit proxy machine (V100),
Tulip (AMD pre-exascale readiness machine) and Ascent (Summit continuous integration machine).

We used the spack package management software to compile on all the platforms. The configu-
rations are illustrated in Figure 19 and Figure 20.

exago@rebase-hip-porting-dev
+hip+gputhiop+ipopt “mpi+petsc+raja build_type=Release amdgpu_target=gfx908
“exasgd.hiop@hip-porting-v0.3.99.0-dev
+deepchecking+hip+gputkron™mpi+raja+shared”deepchecking
build_type=Release amdgpu_target=gfx908
“builtin.petsc™mpi~hdf5 hypre
%clang@12.0.0-rocm

Figure 19: spack specification for building ExaGO on Tulip

E.2 HiOp 1-node initial profile of routines

Using different profilers on the different architectures, we have have been able to produce initial

runtime profiles of all routines in the ExaGO and HiOP-based software repositories of ExaSGD. The

NVIDIA nvprof and AMD ROCM profiler have been used to obtain detailed runtime information of

the execution on two scenarios representing medium-scale and large-scale electric grid network sizes.
The profiles are included along with ExaGO profiles in Section E.4.
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exago@0.99.2%gcc@7.5.0

+cudat+gputhiop+ipopt+mpi+petsc+raja build_type=Release cuda_arch=70
“cuda@11.0
“cmake@3.18.2
“exasgd.hiop@0.3.99.2

+cudat+gputkron+mpi+raja+shared”deepchecking build_type=Release cuda_arch=70
“magma@2.5.4 cuda_arch=70
“builtin.raja+cuda~examples”exercises cuda_arch=70
“builtin.umpire+cuda”examples+openmp
“ipopt+mumps
“python@3.7.0

Figure 20: spack specification for building ExaGO on Summit Proxy

E.3 Attempt HiOP 1-node roofline or approximation

A performance roofline based on floating point operations (FLOP) was possible to generate on
the Summit supercomputing architecture because of the availability of NVIDIA V100’s support for
obtaining FLOP information from profiling on the device with native hardware support.

However, roofline based on FLOPs was not possible to be obtained directly on AMD pre-exascale
machine (Tulip) because of lack of native support for instrumentation of execution for FLOP counts
on the MI600 and MI100 cards. Nevertheless, a close approximation could be obtained from another
natively supported metric, namely, the instruction counts, which are maintained and provided by
the hardware.

Overall, we have been successful in collecting runtime data and generating detailed roofline plots
for the full execution across key representative electric grid scenarios.

Since HiOP is exercised as part of the ExaSGD’s ExaGO application, the rooflines for HIOP are
included as part of the ExaGO roofline profiles shown later in Section E.5.

E.4 ExaGO 1-node initial profile of routines
E.4.1 Summit Proxy

All ExaGO profiles on the Summit Proxy machine were exercised on the largest available scenario
of the application that would fit within one GPU node. This is the 10,000 node electric grid, which
results in the underlying computational square matrix elements of size 23K along each dimension.

Dealing with Profiling Overheads The full profiling runs that collect all the runtime metrics
such as FLOP counts, intensities, etc. consume an inordinately long amount of time to execute on the
machine. Therefore, a detailed runtime profile of the entire program execution is nearly infeasible to
obtain for large electric grid sizes. To deal with this problem, we adopted a two-pronged approach.
First, we run the entire program from start to completion (of the global optimization problem)
with basic profiling information that provides us the list of top-10 routines that are most relevant
for detailed roofline analyses. Next, we run the application under detailed profiling specifications
(including per-routine FLOP information) only as long as the wall clock time is a reasonable amount
to wait for on a single run (in our experiments, we ran the application for up to 7 days continuously).
The profiling runtime, fortunately, provided the ability to interrupt the program and still produce
the detailed profile information, even though the run is a partial one.

We ran a basic profiling execution using nvprof for the full run. To collect the FLOP counts
and memory transactions, we used a partial run that was executed up to 7 days. The partial run
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was quite slow to progress — it completed the initialization phase and entered the solving iterations
but completed the first iteration partially by the time the 7-day wall clock time elapsed in profiling.
All profiles are obtained with no source modifications.
We collected top 10 of each GPU routines from the profiling information based on four categories.
The top 10 routines based on each category are shown in Figure 21.

1. Total Duration of Full Run

2. Partial FLOP Count

w

. Partial Arithmetic Intensity
4. Partial FLOP Rate

RAJA--hiopMatrixRajaDense::timesMatTrans_local (24.269%)
volta_dgemm_128x64_nt (18.847%)
A volta_dgemm_64x64_nt (4.158%)
v iamax_kernel (0.987%)
gemv2N_kernel (0.208%)
® scal_kernel_val (0.144%)
dswap_kernel (0.083%)
gemmk1_kernel (0.004%)
~«  copy_kernel (0.004%)
B RAJA--hiopMatrixRajaSparseTriplet::timesMatTrans (0.002%)

(a) Top 10 Sorted by Total Duration
(% time in full optimization run)

RAJA--hiopMatrixRajaDense::timesMatTrans_local (2004.035)
RAJA--OPFLOWComputeEqualityConstraintsArray_PBPOLRAJAHIOP-2 (52.817)

» RAJA--OPFLOWComputeEqualityConstraintsArray_PBPOLRAJAHIOP-1 (15.667)
RAJA--hiopVectorRajaPar::axpy (13.205)

A volta_dgemm_64x64_nt (11.922)
volta_dgemm_128x64_nt (11.105)
RAJA--OPFLOWSetVariableBoundsArray_PBPOLRAJAHIOP-1 (1.667)
gemmk1_kernel (0.35)

® RAJA--OPFLOWComputeGradientArray_PBPOLRAJAHIOP (0.346)
RAJA--OPFLOWComputeObjectiveArray_PBPOLRAJAHIOP (0.304)

(c) Top 10 Sorted by Arithmetic Intensity
(FLOP /byte in partial profiling run)

RAJA--hiopMatrixRajaDense::timesMatTrans_local (16001.2 GFLOP)
RAJA--hiopMatrixRajaSparseTriplet::timesMatTrans (0.6 GFLOP)

volta_dgemm_128x64_nt (0.279 GFLOP)

volta_dgemm_64x64_nt (0.164 GFLOP)
RAJA--OPFLOWComputeDenseEqualityConstraintjacobian_PBPOLRAJAHIOP-1 (0.01 GFLOP)
RAJA--OPFLOWComputeEqualityConstraintsArray_PBPOLRAJAHIOP-1 (0.003 GFLOP)
gemv2N_kernel (0.002 GFLOP)

RAJA--OPFLOWSetVariableBoundsArray_PBPOLRAJAHIOP-1 (0.001 GFLOP)
RAJA--OPFLOWComputeEqualityConstraintsArray_PBPOLRAJAHIOP-2 (0 GFLOP)
gemmk1_kernel (0 GFLOP)

(b) Top 10 Sorted by FLOP
(GFLOP in partial profiling run)

>
[ ]

v

volta_dgemm_128x64_nt (3580.15 GFLOPS)

volta_dgemm_64x64_nt (2861.43 GFLOPS)
RAJA--OPFLOWSetVariableBoundsArray_PBPOLRAJAHIOP-1 (157.34 GFLOPS)
gemv2N_kernel (100.03 GFLOPS)
RAJA--hiopMatrixRajaDense::timesMatTrans_local (35.46 GFLOPS)

gemmk1_kernel (13.59 GFLOPS)
RAJA--OPFLOWComputeEqualityConstraintsArray_PBPOLRAJAHIOP-1 (5.18 GFLOPS)
scal_kernel_val (4.08 GFLOPS)
RAJA--OPFLOWComputeObjectiveArray_PBPOLRAJAHIOP (3.65 GFLOPS)
iamax_kernel (1.12 GFLOPS)

(d) Top 10 Sorted by FLOP Rate
(GFLOP/sec in partial profiling run)

Figure 21: Top 10 Routines on VOLTA V100

E.4.2 Tulip

All ExaGO profiles on the Tulip machine were exercised on a medium-sized scenario (2K electric grid
size = 4.8K matrix sizes). We ran profiling using rocprof for the full run. The profiling support
was found to be limited on Tulip. As mentioned earlier, the FLOP operations are not possible to
get at the moment using the device counters. Therefore, we used instruction counters. All profiles

are obtained with no source modifications.

We collected the top 10 routines among all the GPU routines from the profiling information
based on four categories. The top 10 routines based on each category are shown in Figure 22.

1. Total Duration of Full Run

2. Total Instruction Count

w

. Arithmetic Intensity

4. Instruction Rate
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Cijk_Ailk_Bjlk (18.72%) Cijk_Ailk_Bjlk (5366.61 GInst)

B gemvn_kernel (17.92%) B gemvn_kernel (1596.869 Glnst)
copy_kernel (15.018%) rocblas_copy_void_ptr_matrix_kernel (111.996 GInst)

A rocblas_reduction_strided_batched_kernel_partl (14.352%) A rocblas_reduction_strided_batched_kernel_partl (64.672 GInst)
rocblas_scal_kernel (9.012%) copy_kernel (60.957 Glnst)

» RAJA::hiopMatrixRajaDense::timesVec (7.956%) rocblas_scal_kernel (18.397 Glnst)
RAJA::hiopMatrixRajaDense::transAddToSymDenseMatrixUpperTriangle (5.231%) v RAJA::addUpperTriangleToSymDenseMatrixUpperTriangle (16.368 Glnst)
RAJA::hiopMatrixRajaDense::transTimesVec (2.951%) RAJA::hiopMatrixRajaDense::transAddToSymDenseMatrixUpperTriangle (15.602 Glnst)
RAJA::hiopMatrixRajaSparseTriplet::addMDinvMtransToDiagBlockOfSymDeMatUTri (2.31 RAJA::hiopMatrixRajaSparseTriplet::addMDinvMtransToDiagBlockOfSymDeMatUTri (14.813 Glinst)

@ rocblas_reduction_strided_batched_kernel_part2 (1.825%) » RAJA:hiopMatrixRajaDense::timesVec (11.631 Glnst)

(a) Top 10 Sorted by Total Duration (b) Top 10 Sorted by Instructions
(% time in full optimization run) (GInst in full profiling run)
Cijk_Ailk_Bjlk (5.412 Inst/Byte) Cijk_Ailk_Bjlk (1245.949 GlInst/sec)

A rocblas_reduction_strided_batched_kernel_partl (4.923 Inst/Byte) W gemvn_kernel (387.291 Glinst/sec)

@ rocblas_reduction_strided_batched_kernel_part2 (4.069 Inst/Byte) rocblas_copy_void_ptr_matrix_kernel (287.335 GlInst/sec)

W gemvn_kernel (2.803 Inst/Byte) v RAJA::addUpperTriangleToSymDenseMatrixUpperTriangle (71.361 GInst/sec)
RAJA::hiopMatrixRajaSparseTriplet::addMDinvMtransToDiagBlockOfSymDeMatUTri (2.56( RAJA::OPFLOWComputeDenseHessian_PBPOLRAJAHIOP (48.051 Ginst/sec)
rocblas_copy_void_ptr_matrix_kernel (2.44 Inst/Byte) RAJA::hiopMatrixRajaSparseTriplet::addMDinvMtransToDiagBlockOfSymDeMatUTri (27.873 Glnst/sec)

v RAJA:addUpperTriangleToSymDenseMatrixUpperTriangle (1.879 Inst/Byte) A rocblas_reduction_strided_batched_kernel_partl (19.584 Glnst/sec)
RAJA::OPFLOWComputeDenseHessian_PBPOLRAJAHIOP (1.749 Inst/Byte) copy_kernel (17.641 Glnst/sec)
copy_kernel (1.219 Inst/Byte) RAJA::hiopMatrixRajaDense::transTimesVec (13.432 GInst/sec)
rocblas_scal_kernel (0.818 Inst/Byte) RAJA::hiopMatrixRajaDense::transAddToSymDenseMatrixUpperTriangle (12.963 Ginst/sec)

(c¢) Top 10 Sorted by Arithmetic Intensity (d) Top 10 Sorted by Instruction Rate
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Figure 22: Top 10 Routines on Tulip AMD MI100

E.5 Attempt ExaGO 1-node roofline or approximation

We generated a roofline plot for both Summit Proxy and Tulip machines using the data described
previously. On the Summit Proxy, the actual FLOP counts were collected using nvprof. However,
as the time required to collect the FLOP counts are quite large, it only have a partial count of the
FLOP operations. The partial roofline plot is shown in Figure 23.

On the other hand, the Tulip machine does not provide FLOP counts, therefore, we used instruc-
tion counts instead of the FLOP counts for the roofline plot. The instruction based roofline plot is
shown in Figure 24.
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Figure 23: FLOP based Roofline for VOLTA V100
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Figure 24: Instruction Count based Roofline for AMD MI100

E.6 Preliminary performance comparison across architectures

We have performed a preliminary performance comparison across the different architectures impor-
tant for exascale applications. To provide a basic idea, we measured the performance on two network

grid sizes, namely, 2K and 10K. The runtime is categorized into four bins corresponding to the four
phases in the ExaGO solver:

e Main stage
e Reading data
e Set up, and

e Solve.

Across the architectures as well as across the network grid sizes, the solve phase was confirmed to
consume the most amount of runtime, which was useful to eliminate the possibility of any bottlenecks
in the preliminary phases. The solve phase takes the most amount of time because of the primary
optimization operations performed in it.

It was also observed that there is a slight performance difference between Summit proxy and Tulip
machines on the smaller grid size, but that difference becomes a relatively insignificant fraction when
the network size is increased. This informs us that the code is fairly robust except for some constant
overhead on small network sizes which is not a major cost.

e Summit Proxy: HiOp 0.3.99.2, ExaGO 0.99.2, MAGMA 2.5.4, CUDA 11.0

e Tulip: HiOp hip-porting-v0.3.99.0-dev, ExaGO rebase-hip-porting-dev, MAGMA hipMAGMAv2.0.0,
ROCM 4.0.0

e Ascent: Hi0Op 0.3.99.2, ExaGO 0.99.2, MAGMA 2.5.4, CUDA 10.2
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Figure 25: case_ ACTIVSg2000.m
Grid Size 2K (Matrix Size 4.8K)
#Iterations=45
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F JIRA ADSE22-432: Close-out Report

Points: 60 pts

Date Due: Dec 31, 2021

Date Completed: Dec 31, 2021

Authors: Kalyan Perumalla and Maksudul Alam
JIRA Description: Profiling Activities

1. HiOp 1-node initial profiling with TAU and Vampir
2. HiOp multi-node initial profiling with TAU

Get preliminary MPI-profiling results for HiOp on Ascent and Summit. Use same test cases
— for HiOp Example 9 (Primal Decomposition). Identify top time-consuming MPI-Calls and
analyze the variances.

F.1 TAU Based MPI Profiling
F.1.1 Setup

We built the HiOp executables from the github repository and used the nlpPriDec_ex9.exe ex-
ample to perform the MPI profiling. For the profiling, we used TAU 2.30.1 on Summit. For the
visualization we used VAMPIR 9.11.1 (Local) and 9.10 (Summit). The experiments were conducted
on 1, 2, 4, 20, and 128 computing nodes on Ascent for profiling with 1, 12, 24, 120, and 768 GPUs.
We also used a NX = 1000 as the input for the n1pPriDec_ex9.exe. Each MPI process exactly one
recurse problem on the GPU.

F.1.2 Visualization

We are able to successfully produce a visual profile using the VAMPIR tool. One of the visualization
produced is shown in Figure 27. We can see the main timeline and a summary of the functions on
the right. The summary shows total time taken by each type of MPI calls over the whole time
period. We can zoom into finer level of details on the main timeline as shown in Figure 28.

ExBLERE O EEALSE B2 V[

Figure 27: VAMPIR Screenshots of MPI profiling with TAU with 6 GPUs

Using VAMPIR, a group of message exchanges in a small period of time called a message burst
is observed as a big black circle. Zooming into the burst region provides insights into the pattern of
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B Details of execution (N=6)
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Figure 28: Zoom into the timeline for Details of MPI calls using VAMPIR,

the message communications, including the origin and destination of the messages as a black arrows.
The message burst are shown in Figure 29. Message bursts are important visualization tool that
confirms the expected communication patterns.
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Figure 29: Message burst and communication pattern for N = 12

F.2 Extrapolation to Exa-Scale

We have used the detailed profiling data to arrive at rough estimates on the path to reaching exa-
scale. In particular, the floating point computation rates along with specific weights of the top
computationally-intensive routines have been factored to determine reasonable extrapolations. Al-
though, the results are obtained from the Summit architecture, we were able to consider the increased
speeds and capacities of the AMD GPUs based on publicly available information. Figure 30 shows the
extrapolation of peak FLOP /sec with increasing number of GPUs. To obtain the baselines needed
for the extrapolation, we used N = 1,6,12,24 GPUs to get the peak FLOP/sec performance of
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the most computation intensive kernel (volta_gemm_128x64) for the executable nlpPriDec_ex9.exe
with a large input size of 18K. The Peak GFLOP/sec of each run is used in the extrapolation
to get the expected total GFLOP /sec. Extrapolation with N = 1 shows the highest GFLOP /sec
performance.

Projected Peak GFLOP/sec with Increasing GPUs
--N=1 -@-N=6 N=12 -o-N=24
10,000,000,000
1,000,000,000 P
100,000,000 .’
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Figure 30: Projected HiOp Peak GFLOP /sec with Increasing number of GPUs

F.3 Summary

The detailed descriptions and results have been presented in the slides of our ExaSGD technical
seminar (Nov 2, 2021) which is accessible on confluence.

e We faced and overcame multiple software configuration and execution issues with TAU and
VAMPIR tools needed for our profile on Summit. The Summit upgrade introduced additional
challenges which we overcame with close interaction with OLCF support team over multiple
weeks.

o We have successfully developed visual profiling output for the HiOp solver part of the software
stack and generated important insights for the run time behavior. The HiOp team was able
to confirm certain dynamics and also found some additional dynamics to be investigated. For
instance, our profiled visual output was able to to confirm the master GPU’s idle time and
the bursts of messages from master to workers. We also were able to visually determine the
insignificant overhead of the broadcast operation relative to the solver time by all the workers.

e We were able to successfully exercise the visual profile effort to larger number of GPUs. How-
ever, we have encountered post-processing issues to handle the large trace output and are
reaching the limits of the graphical interface. To overcome this in profiling larger runs we
investigated alternative scalable approaches.

e The TAU on upgraded summit has introduced a new limitation that is unexpected. While
previously only one thread was spawned per GPU, now four threads are spawned which quickly
exhausts the thread limit of VAMPIR license. We are now investigating a command line
approach to avoid visual limitations.
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G JIRA ADSE22-436: Close-out Report

Points: 60 pts

Date Due: Mar 31, 2022

Date Completed: Mar 31, 2022

Authors: Kalyan Perumalla and Maksudul Alam
JIRA Description: Profiling Activities

1. Large Summit runs - OTF-based statistics: Get preliminary large-scale MPI-profiling
results for HiOp on Summit. Use same test cases for HiOp (Example 9 Primal De-
composition). Identify top time-consuming MPI-Calls and analyze the variances using
custom-developed scripts for processing Open Trace Format (OTF) files from profiled
MPT runs.

2. ExaGO latest S/W performance results: Measure performance of recent ExaGO version
1.3.0 relative to previous optimization algorithm.

3. HiOp shallow profiles on Crusher: Preliminary porting and performance experiments on
Crusher.

G.1 Hardware Platforms
G.1.1 Hardware Setup

We used multiple systems for the purpose of performance experiments. The configurations of the
systems are given below.

Summit

GPU: 6x Tesla V100-SXM2-16GB:s_7.0
CPU: IBM POWER9

OS: Red Hat Enterprise Linux

Memory: 512GB per node

Local Summit Proxy Node Linux Server

GPU: Tesla V100-SXM2-16GB:s_7.0 (same as Summit GPU)
CPU: Intel(R) Xeon(R) Silver 4110 CPU

OS: UBUNTU 18.04.6 LTS

Memory: 256GB

Newell
e GPU: 2x Tesla V100-SXM2-16GB:s_7.0 (same as Summit GPU)
e CPU: Intel(R) Xeon(R) Silver 4110 CPU
e OS: Red Hat Enterprise Linux
e Memory: 1TB

Crusher
e GPU: 4x AMD MI250X 64 GB Memory
e CPU: 64-core AMD EPYC 7A53
e OS: Red Hat Enterprise Linux
e Memory: 512 GB DDR4
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G.2 Large-Scale MPI Profiling with TAU

Previously, we conducted experiments with TAU-based MPI profiling of HiOp executables (n1pPriDec_ex9.exe)
using up to 120 GPUs. We extended the experiment with large scale runs using 768 GPUs. Here we

document the challenges we faced, and the results we obtained, and alternative solutions to work on

the challenges.

G.2.1 Setup

We built the HiOp executables from the github repository and used the nlpPriDec_ex9.exe ex-
ample to perform the MPI profiling. For the profiling, we used TAU 2.30.1 on Summit. For the
visualization, we used VAMPIR 9.11.1 (Local) and 9.10 (Summit). The experiment was conducted
on 128 computing nodes on Summit for profiling with 768 GPUs. We also used a value of NX = 1000
as the input for the nlpPriDec_ex9.exe. Each MPI process has exactly one recourse problem on
the GPU.

G.2.2 Challenges
We faced the following challenges with large-scale MPI profiling with TAU.

Limitation of Visualization: One of the major problems with large-scale MPI profiling is the
limitation of visualization tools such as VAMPIR that we used. When there are a large number of
MPI processes, the visualization is sometimes difficult to interpret because the output is too unwieldy
and cluttered to be sensible with many MPI ranks. As shown in Figure 31, with a modest parallel
size of 120 GPUs, the window can only show a limited number of threads at a time, which is often
difficult to interpret, especially regarding the inter rank message communications. Furthermore,
VAMPIR displays all threads that are spawned from the MPI processes. The VAMPIR license
currently limits the number of threads visualized to 1000. To further complicate the issue, the
recent RHEL upgrade on Summit increased the number of threads by 4x. Due to these issues, we
were unable to use VAMPIR as the primary profiling tool for large runs on Summit.
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Figure 31: VAMPIR Screenshots of MPI profiling with TAU with 120 GPUs shows a limited number
of threads could be visible in a window.
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Limited Statistics: Furthermore, using VAMPIR, we can only use a preset collection of statistics
that VAMPIR provides, which we found lacking for obtaining important statistics such as standard
deviation measures. As our experiments show, those statistics are important to analyze the perfor-
mance of our HiOp application, particularly timing into the rich set of MPI calls that it makes.

G.2.3 Our Solution

To get around the limitations of VAMPIR, we decided to generate and process the detailed trace
files from TAU. Fortunately, TAU is capable of generating standard OTF-formatted trace files for
our MPI execution.

We developed customized scripts to directly read the trace files generated by TAU. Additionally,
we are able to generate customized statistics to better analyze and explain the behavior of the
HiOp-based parallel runs (multi-node, multi-GPU).

Visualizations using the data generated by our scripts are shown in Figure 32 and 33.
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Figure 32: Total Time per MPI Calls using customized scripts.
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Figure 33: Avg. percentage of max MPI time spent by each rank in each MPI call.

G.3 Profiling ExaGO

All ExaGO profiles on the Summit Proxy machine were exercised on the largest scenario that fits
within one GPU node. This scenario corresponds to the 10,000-node electric grid case, which results
in the underlying computational square matrix elements to be of size 23K along each dimension.

We used the configuration shown in Figure 34 to build ExaGO on the Summit Proxy. The results
were compared with a run with previous year’s performance executed on March 2021.

As shown in Figure 35, the solving time is significantly reduced in the latest version of the ExaGO
compared to last year. The most significant difference is that it takes fewer iterations to converge
compared to last year (39 iterations latest version vs. 141 iteration last year).
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exago@1.3.0%gcc@7.5.0

+cuda+mpi+raja+ipopt+hiop cuda_arch=70 build_type=Release
“cuda@11.0
“cmake@3.21.3
“hiop@0.5.3

+cuda+mpi+raja+sparse+deepchecking cuda_arch=70
"magma@2.6.1 +cuda cuda_arch=70
“raja@0.14.0+openmp+cuda cuda_arch=70
“umpire@6.0.0+openmp+cuda
“ipopt@3.12.10+coinhsl+metis “mumps
“openblas@0.3.17
“python@3.8.0

Figure 34: spack specification for building ExaGO on Summit Proxy
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Figure 35: ExaGO Solver Execution Times on Platforms
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When we take a deeper look into different stages of the execution shown in Figure 36, we note
that the setup time is significantly reduced compared to last year’s version. Also, there is a slight
improvement of time per iteration in the current version of the ExaGO compared to last year’s. On
Summit-Proxy, we also performed a shallow profile of ExaGO and listed the ExaGO top computa-
tionally intensive kernels that consume at least 5% of total GPU time. They are listed in Figure 37.
Note that these numbers correspond to the parallel dynamics by which ExaGO spends 73% of its
time on GPU (673 seconds on GPU with a total run time of 920 seconds).
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Figure 36: ExaGO Solver Execution Timing/Iteration on Platforms

% of GPU Time

volta_dgemm_128x64_nt 33.51% 225.7 2,466,840 91.5 us 24.6 us

[CUDA memset] 28.55% 192.3 2,805 68.5 ms 1.1 us 10.9 s
volta_dgemm_64x64_nt 7.52% 50.7 949,885 53.3 us 23.0 us 13.8 ms
RAJA-transTimesVec 5.96% 40.1 246  163.1 ms 1.8 us 1.9 s
RAJA-timesVec 5.66% 38.2 156  244.6 ms 8.5 ms 2.3 s
RAJA- 5.48% 36.9 78 473.5ms 1.8 us 2.9 s

transAddToSymDenseMatrixUpperTriangle

Figure 37: ExaGO Top Kernels (>= 5% of GPU Time) on Summit-Proxy [from shallow profiling]
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G.4 Initial Profiling on Crusher (pre-Frontier) Machine

We successfully built HiOp using a pre-compiled set of binaries on Crusher. The build uses the
recent HiOp version 0.5.3. However, on Crusher, not all executables are operational at the time of
this writing. Figure 38 shows a list of the executables that are currently operational on Crusher.

Previously Used Executables states |

nlpMDS_ex4_raja.exe Success
= =exira) Problem known and being investigated
n|pPriDec_eX9.exe Fail « Enters Panic mode
nlpPriDec_ex9_sparse.exe Success ° Continues to try to solve
. . . » Gives up on failing to converge
nlpPriDec_ex9_sparse_raja.exe Fail

Figure 38: List of HiOp examples

We used nlpMDS_ex4 _raja.exe to test the performance of HiOp on Crusher vs. Summit Proxy.
The findings are summarized next.

e While Crusher has 8x more memory, it does not translate to /8x larger matrix size. Instead,
it holds a matrix that is only 1.5x larger. The timings from the scaled matrices are shown in
Figure 39.

e At the moment, it is observed that the experimental performance is not yet reaching the
advertised peak performance for the GPU. To empirically ascertain the peak performance, we
used a set of publicly available micro-kernels to benchmark Crusher’s performance and found
the following advertised-peak vs. observed metrics:

— Peak FP64 FLOP /sec is 19,075.42 (Observed) vs. 47,900 (Advertised) at 38% efficiency
— Peak Bandwidth (GB/s) is 1,220.21 (Observed) vs. 3,276.8 (Advertised) at 37% efficiency
— FLOP /Instruction is 1.97 Avg. FLOP per Instruction

summit-Proxy - Cmsher
Matrix Size Iterations Runtime (sec) Time/Iteration (sec) _—_
30K 14 83.87 5.99
44K
46K

Figure 39: HiOp Performance Comparison: Crusher vs. Summit Proxy

G.4.1 Profiling Challenges on Crusher
The following are some of the challenges we encountered in moving to Crusher.
e The rocprof AMD profiler output seems to miss key information

— No native FLOP counts/efficiency metrics

— Without native FLOP instrumentation on MI250X, we continue to rely on “Instruction-
based Roofline Analysis”

e There is inconsistency in obtaining duration information for the profiled routines
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— The use of rocprof to obtain kernel durations and counters at the same time is problem-
atic

— Profiling involves running the same executable twice

* First without collecting metrics (collecting only the run time duration of each routine)
* Then executing again to obtain individual metrics

e The number of counters that can be collected in any single run is limited by the GPU hardware
to small constant

— Therefore, multiple runs need to be executed to collect all the desired metrics.
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H JIRA ADSE22-440: Close-out Report

Points: 60 pts

Date Due: Jun 30, 2022

Date Completed: Jun 30, 2022

Authors: Kalyan Perumalla and Maksudul Alam
JIRA Description: Profiling Activities

Performance analyses on dense versus sparse solvers
Performance profiles of latest HiOp versions
Performance profiles of latest ExaGO versions

Performance on Summit and Crusher (pre-Frontier) architectures

G e

First roofline results from Crusher (pre-Frontier) system

H.1 Computing Platforms
H.1.1 Hardware Setup

We used multiple systems for the purpose of running the performance profiling experiments. The
configurations of the systems are given below.

Summit
e GPU: 6x Tesla V100-SXM2-16GB:s_7.0
CPU: IBM POWER9
OS: Red Hat Enterprise Linux
Memory: 512GB per node

Local Summit Proxy Node Linux Server

GPU: Tesla V100-SXM2-16GB:s_7.0 (same as Summit GPU)
CPU: Intel(R) Xeon(R) Silver 4110 CPU

OS: UBUNTU 18.04.6 LTS

Memory: 256GB

Newell
e GPU: 2x Tesla V100-SXM2-16GB:s_7.0 (same as Summit GPU)
e CPU: Intel(R) Xeon(R) Silver 4110 CPU
e OS: Red Hat Enterprise Linux
e Memory: 1TB

Crusher
e GPU: 4x AMD MI250X 64 GB Memory
e CPU: 64-core AMD EPYC 7A53
e OS: Red Hat Enterprise Linux
e Memory: 512 GB DDR4

H.1.2 Software Setup

We built the ExaGO executables from the git repository and used the opflow and scopflow exam-
ples to perform the profiling. For the profiling we used three grid scenario datasets: case ACTIVSg200.m,
case_ACTIVSg2000.m, and case_ACTIVSgiOk.m. To build ExaGO on the Crusher, we used the
spack-based configuration shown in Figure 40. For Summit we used the spack-based configuration
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shown in Figure 41. Note that we also compiled another version of ExaGO where the specification
of HiOp was changed from develop to 0.5.4 for each platform. On Crusher we used ROCM 4.5.0
and on Summit as well as Summit proxy we used CUDA 11.4.

exago@develop),clang@14.0.0+rocm+raja+mpi+hiop+ipopt~cuda amdgpu_target=gfx90a
“hiop@developf%clang@14.0.0+rocm+raja+mpi+shared+sparse”cuda amdgpu_target=gfx90a
“libiconvigcc@7.5.0

“ipopt@3.14.5%clang@14.0.0+coinhsl mumps

“openblas@0.3.20%clang@14.0.0

“petsc@3.16.6%clang@14.0.0"hdf5 hypre~superlu-dist
“raja@0.14.0%clang@14.0.0+rocm amdgpu_target=gfx90a
“umpire@6.0.0%clang@14.0.0+rocm amdgpu_target=gfx90a

“magma@2.6.2+rocm”cuda amdgpu_target=gfx90a

Figure 40: spack specification for building ExaGO on Crusher

exago@develop+cuda+hiop+ipopt+mpi+raja cuda_arch=70
“hiop@develop+cuda+cusolver+deepchecking+kron+mpi+rajat+sparse cuda_arch=70
“openblas@0.3.20

“magma@2.6.2+cuda

“raja@0.14.0+cuda cuda_arch=70

“umpire@6.0.0+cuda cuda_arch=70

“ipopt@3.12.10+coinhsl+metis “mumps

“petsc@3.16.6

“openmpi@4.1.3

Figure 41: spack specification for building ExaGO on Summit Proxy

H.2 Performance Analysis of ExaGO with Sparse Solvers

We have measured the run time of ExaGO with sparse solvers using Summit-Proxy, Newell and
Crusher systems and compared the results with those from using the dense GPU solvers.

Here, we first present the performance of sparse solvers across different machines and platforms.
All the experiment were done with the most recent development version of ExaGO with the opflow
example. We used both CPU and GPU-based (cusolver only on NVIDIA GPUs) sparse solvers in
this experiment. The details of the results are shown in Figure 42. The results show that the Crusher
CPU performance outperforms all CPU/GPU execution on other platforms. Note that the outputs
of the CPU and GPU solvers are effectively the same. At the time of this writing, the corresponding
sparse GPU solvers are not available for use with ExaGO for the AMD GPU architectures, and
hence performance comparison is currently not possible to complete for the Crusher system.

Next, we compare the performance of ExaGO using dense and sparse GPU solvers. Figure 43
shows the performance of ExaGO with dense and sparse GPU solvers on Summit-Proxy. As seen
from the table, for larger problem sizes, sparse solver outperforms dense solvers significantly (in this
case by a factor of 72x). Both solvers produce the same results when configured with identical

53



Grid Scenario | Summit Proxy | Summit Proxy Newell Crusher Crusher
CPU-only with GPU with GPU CPU-only GPU-based
200 N/A

0.047 1.891 0.461 0.020
2K 1.851 3.407 3.003 0.813 N/A
10K 5.289 5.933 9.210 2.527 N/A

Figure 42: ExaGO with Sparse solver on 1-GPU of Different Platforms

initialization settings and options. The high speed of the sparse solvers resulting in the same opti-
mization results indicates that sparse solvers would be very useful for solving the grid optimization
problem very efficiently on these systems.

Grid
Scenario
200

1.567 1.891 0.8X
2K 7.611 3.407 2.2X
10K 428.274 5.933 72.2X

Figure 43: ExaGO Dense vs. Sparse on 1 GPU of Summit Proxy

H.3 Performance Profiles of Latest HiOp Versions

We executed the latest HiOp version from the development branch N1pPriDecEx2 on Summit proxy
and compared its results against our previous results taken in August 2021. The comparison is
shown in Figure 44. As seen from the figure, the latest runs are significantly faster due to early
convergence. For the larger input size, the number of iterations significantly decreased from 199 to
26. Furthermore, there is a slight reduction in time per iteration. Combined with both improvements
the application is 8times faster on Summit, particularly for the large matrix size,.

H.4 Performance Profiles of Latest ExaGO versions

We profiled the latest version of ExaGO with the following new configurations:
e Deep profiling of ExaGO with Sparse GPU Solvers (cusparse on Summit-Proxy)
e Multi-Node Multi-GPU ExaGO on Summit.

H.4.1 Deep profiling of ExaGO with Sparse GPU Solvers on 1-GPU of Summit Proxy

We measured the FLOP performance of ExaGO with sparse solvers by deep profiling. We used a
medium sized input and a large input to compute the respective change in performance.
For the medium input of 2K bus size we have the following findings:

e Peak FLOP Rate of a kernel

— Kernel: pegasus_csrmvDLL kernel
— 156.38 GFLOP /sec (0.33% of total GPU Time)
— Only 2.25% of GPU Capacity

e FLOP Rate of computationally intensive Kernels
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Figure 44: Timing of HiOp Parallel, Dense: Improvement on Summit

1. Kernel: glu_lcsrsv2_solve_upper nontranspose_kernel
— 6.37 GFLOP/sec (32.7% of total GPU Time)
2. Kernel: glu_csrsv2_solve_upper_nontranspose_kernel

— 0.70 GFLOP//sec (32.51% of total GPU Time)
For the larger input of 10K bus size we have the following findings:
o Peak FLOP Rate of a kernel

— Kernel: pegasus_csrmvDLL kernel
— 651.14 GFLOP //sec (0.22% of total GPU Time)
— Only 10% of GPU Capacity

e FLOP Rate of computationally intensive Kernels

1. Kernel: glu_lcsrsv2_solve_upper_nontranspose_kernel
— 71.89 GFLOP /sec (17.57% of total GPU Time)

2. Kernel: glu_tile_schur_csr_csr_csr_kernel v2
— 0.70 GFLOP/sec (14.63% of total GPU Time)

These performance results indicate that GPU utilization is relatively poor compared to the GPU
capacity. However, as the problem size increases, the utilization gets better.

H.4.2 Multi-Node Multi-GPU ExaGO on Summit

We exercised a multi-node multi-gpu ExaGO execution using the scopflow application on Summit.
Figure4b shows the weak scaling plot of the system. This is our first attempt running the Multi-GPU
version of ExaGO. Additional detailed analyses of this important hardware-software combination is
ongoing.
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Figure 45: Multi-Node, Multi-GPU ExaGO (SCOPFlow) on Summit

H.5 Performance on Summit and Crusher (pre-Frontier) Architecture

We exercised a Multi-Node Multi-GPU execution of HiOp using the example N1pPriDecEx2 on both
Summit and Crusher. The results of the weak scaling is shown in Figure 46. As shown in the figure,
the Crusher runs exhibit linear weak scaling whereas increasing the GPUs seems to affect the weak
scaling performance of Summit.

Elapsed Time to Solve
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Figure 46: Parallel Dense HiOp (Pridec2) on Summit and Crusher

The results indicate an more predictable and well behaved scaling trend on the Crusher system,
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with excellent weak scaling exhibited as the number of GPUs is increased, spanning multiple nodes.

H.6 Preliminary Roofline Performance Results from Crusher (pre-Frontier)
Machine

We used the HiOp (development branch) example N1pPriDecEx2 on 4 GPUs in a single node on
Crusher to execute the deep profiling. We used the parameter settings of NX=100, S=3 for the
experiment. For the profiling we used ROCM.4.5.0.

The key findings of profiling on Crusher are given below:

e It is observed that the currently observed performance has not yet reached the advertised peak
performance for the GPU. Note that this lower efficiency is consistent with the observations
in other applications as well. To empirically ascertain the peak performance, we used a set of
publicly available micro-kernels to benchmark Crusher’s performance and found the following
advertised-peak vs. observed metrics:

— Peak FP64 FLOP//sec is 18,421 (Observed) vs. 47,900 (Advertised) at 40% efficiency
— Peak Bandwidth (GB/s) is 888.5 (Observed) vs. 3,276.8 (Advertised) at 27% efficiency
— FLOP/Instruction is 1.97 Avg. FLOP per Instruction.

Due to lack of native FLOP counters, we used instruction-based roofline (as we previously re-
ported on other pre-Frontier machines such as Tulip and Spock that are based on the AMD ar-
chitectures). The instruction-based roofline measures the performance of the kernels as shown in
Figure 47. The roofline indicates that our kernels do not appear to be running closer to capacity.
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Figure 47: ExaGO Top 10 Kernels by Glnstr/Sec per GPU
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