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Recently, there has been substantial interest in the study of various random networks as mathematical

models of complex systems. As these complex systems grow larger, the ability to generate progressively large

random networks becomes all the more important. This motivates the need for efficient parallel algorithms for

generating such networks. Naïve parallelization of the sequential algorithms for generating random networks

may not work due to the dependencies among the edges and the possibility of creating duplicate (parallel)

edges. In this paper, we present MPI-based distributed memory parallel algorithms for generating random

scale-free networks using the preferential-attachment model. Our algorithms scale very well to a large number

of processors and provide almost linear speedups. The algorithms can generate scale-free networks with 400

billion edges in 5 minutes using 1024 processors.
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1 INTRODUCTION
1.1 Motivation
Preferential attachment is a model that generates random scale-free networks, where a new vertex

makes connections to some existing vertices that are chosen preferentially based on some of the

properties of those vertices. For the preferential attachment model, the only previously known

distributed-memory parallel algorithm is given by Yoo and Henderson [25]. Although useful, the

algorithm has two weaknesses: (i) to deal with dependencies and the required complex synchro-

nization, they came up with an approximation algorithm rather than an exact algorithm; and
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(ii) the accuracy of their algorithm depends on several control parameters, which are manually

adjusted by running the algorithm repeatedly. Several other studies were done on the preferential

attachment based models. Machta and Machta [22] described how an evolving network can be

generated in parallel. Dorogovtsev et al. [13] proposed a model that can generate graphs with

fat-tailed degree distributions. In this model, starting with some random graphs, edges are randomly

rewired according to some preferential choices.

In this section, we study the problem of designing a distributed memory parallel algorithm for

generating massive scale-free networks based on the preferential attachment (PA) model. To the

best of our knowledge, our algorithms are the first distributed-memory parallel algorithms for

generating random graphs while exactly following the preferential attachment model.

The rest of the section is organized as follows. Preliminaries, notations, and a description of the

parallel computation model are given in Section 1.2. In Section 1.3, we describe the problem and

algorithms. Some sequential algorithms are discussed in Section 1.3. In Section 2, we present our

parallel algorithm for distributed memory architecture for the case where each vertex connects

a single edge to the existing network. In Section 3, we extend the algorithm for the general case

where each vertex contributes x edges to the existing network. Experimental results showing the

performance of our parallel algorithms are presented in Section 5. Finally, we conclude in Section 7.

1.2 Preliminaries and Notations
In the rest of the chapter, we use the following notations. We denote a network G (V ,E), where
V and E are the sets of vertices and edges, respectively, withm = |E | edges and n = |V | vertices
labeled as 0, 1, 2, . . . ,n − 1. If (u,v ) ∈ E, we say u and v are neighbors of each other. The set of

all neighbors of v ∈ V is denoted by N (v ), i.e., N (v ) = {u ∈ V |(u,v ) ∈ E}. The degree of v is

dv = |N (v ) |. If u and v are neighbors, sometime we say that u is connected to v and vice versa.

We develop parallel algorithms for the message passing interface (MPI) based distributed memory

system, where the processors do not have any shared memory and each processor has its own

local memory. The processors can exchange data and communicate with each other by exchanging

messages. The processors have a shared distributed file system from which they read-write data

files. However, such reading and writing of the files are done independently.

We use K, M, and B to denote thousands, millions and billions, respectively; e.g., 2 B stands for

two billion.

1.3 Background: Preferential Attachment Model
The preferential attachment model is a model for generating random evolving scale-free networks

using a preferential attachment mechanism. In a preferential attachment mechanism, a new vertex

is added to the network and connected to some existing vertices that are chosen preferentially

based on some properties of the vertices. In the most common application, preference is given

to vertices with larger degrees: the higher the degree of a vertex, the higher the probability of

choosing it. In this paper, we study only the degree-based preferential attachment, and in the rest

of the paper, by preferential attachment (PA) we mean degree-based preferential attachment.

Before presenting our parallel algorithms for generating PA networks, we briefly discuss the

sequential algorithms for the same.

Barabási-Albert Model. One way to generate a random PA network is to use the Barabási-Albert

(BA) model. Many real-world networks have two important characteristics: (i) they are evolving

in nature and (ii) the network tends to be scale free [8]. They provided a model, known as the

Barabási-Albert (BA) model, where a new vertex is connected to an existing vertex that is chosen

with probability directly proportional to its current degree.
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The BA model works as follows. Starting with a small clique of x̂ vertices, in every time step, a

new vertex t is added to the network and connected to x ≤ x̂ randomly chosen existing vertices:

Ft (k ) for 1 ≤ k ≤ x with Ft (k ) < t ; that is, Ft (k ) denotes the k-th vertex which t is connected to.

Thus each phase adds x new edges (t , Ft (1)), (t , Ft (2)), . . . , (t , Ft (x )) to the network, which exhibits
the evolving nature of the model. For each of the x new edges, vertices Ft (1), Ft (2), . . . , Ft (x ) are
randomly selected based on the degrees of the vertices in the current network. In particular, the

probability Pt (i ) that vertex t is connected to vertex i < t is given by Pt (i ) =
di∑
j dj

, where dj
represents the degree of vertex j.
The networks generated by the BA model are called the BA networks, which bear those two

characteristics of a real-world network. BA networks have power law degree distribution. A degree

distribution is called power law if the probability that a vertex has degree d is given by Pr [d] ∝ d−γ ,
where γ is a positive constant. Barabási and Albert showed this preferential attachment method of

selecting vertices results in a power-law degree distribution [8].

First, we assume x = 1, and for this case, we use Ft for Ft (1). We discuss the general case x ≥ 1

later. One naïve approach is to maintain a list of the degrees of the vertices, and in each time time

step t , generate a uniform random number in

[
1,

t−1∑
i=0

di

]
and scan the list of the degrees sequentially

to find Ft . In this case, phase t takesΘ(t ) time, and the total time is Ω(n2). Batagelj and Brandes give
an efficient algorithm with running time O (m) [9]. This algorithm maintains a list of vertices such

that each vertex i appears in this list exactly di times. The list can easily be updated dynamically

by simply appending u and v to the list whenever a new edge (u,v ) is added to the network. Now

to find Ft , a vertex is chosen from the list uniformly at random. Since each vertex i occurs exactly

di times in the list, we have Pr [Ft = i] =
di∑
j dj

. A sequential implementation of this algorithm is

given in the graph algorithm library NetworkX [17].

Copy Model. As it turns out, the BA model does not easily lend itself to an efficient parallelization

[3]. Another algorithm called the copy model [19, 20] preserves preferential attachment and power-

law degree distribution. The copy model works as follows. Similar to the BA model, it starts with a

small clique of x̂ vertices and in every time step, a new vertex t is added to the network to create

x ≤ x̂ connections to existing vertices Ft (ℓ) for 1 ≤ ℓ ≤ x with Ft (ℓ) < t . For each connection

(t , Ft (ℓ)) from vertex t the following steps are executed:
Step 1: First a random vertex k ∈ [0, t − 1] is chosen with uniform probability.

Step 2: Then Ft (ℓ) is determined as follows:

Ft (ℓ) =

{
k with prob. p (Direct Edge) (1)

Fk (l ) with prob. 1 − p (Copy Edge) (2)

where l is a random outgoing connection from vertex k . Note that we also assume Fk (l ) = k where

k < x̂ . We also denote Ft = {Ft (1), Ft (2), . . . , Ft (x )} to be the set of outgoing vertices from vertex

t .
It can be easily shown that a connection from vertex t to vertex i is made with probability

Pr [i ∈ Ft ] =
di∑
j dj

when p = 1

2
. Thus, when p = 1

2
, this algorithm follows the Barabási-Albert

model as shown in Theorem 1.1 [2, 3].

Theorem 1.1. The Barabási-Albert model is a special case of the copy model when p = 1

2
.

Proof. A vertex i can be selected in Ft in two mutually exclusive ways: i) i is chosen in the first

step and assigned to an outgoing edge of t in the second step (Equation 1); this event occurs with

probability
1

t · p; or ii) a neighbor of i , v ∈ {u |i ∈ Fu }, is chosen in the first step, and the outgoing

edge to i is selected (out of x outgoing edges from v) in the second step (Equation 2); this event

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 01. Publication date: May 2018.



01:4 M. Alam et al.

occurs with probability
di−x
t · (1 − p) · 1x where di is the total degree of vertex i . Thus, we have:

Pr [i ∈ Ft ] =
1

t
· p +

di − x

t
· (1 − p) ·

1

x

=
xp + (di − x ) (1 − p)

xt

=
xp + (di − x ) (1 − p)

1

2

∑
j dj



∑
j

dj = 2xt


(3)

When p = 1

2
, Pr [i ∈ Ft ] =

di∑
j dj

. □

The copy model is more general than the BA model and produces networks with degree distribu-

tion following a power law d−γ , where the value of the exponent γ depends on the choice of p [20].

Further, it is easy to see that the running time of the copy model is O (m). We found that the copy

model leads to more efficient parallel algorithm for generating preferential attachment networks

and develop our parallel algorithm based on the copy model.

To summerize, Table 1 lists the symbols used in this paper.

Table 1. Symbols used in this paper

Symbol Description

n The number of vertices

V The set of vertices

m The number of edges

E The set of edges

x The number of outgoing edges generated from each new vertex

p The probability of creating a direct edge in the copy model

N (v ) The set of neighbors of vertex v

dv The degree of vertex v

Ft (k ) The outgoing end of k-th edge from vertex t

Ft The set of outgoing ends of edges from vertex t

2 SIMPLIFIED PARALLEL APPROACH FOR x = 1

The dependencies among the edges pose a major challenge in parallelizing preferential attachment

algorithms. In phase t , to determine Ft , it requires that Fi is known for each i < t . As a result, any
algorithm for preferential attachment seems to be highly sequential in nature: phase t cannot be
executed until all previous phases are completed. However, a careful observation reveals that Ft can
be partially, or sometimes completely, determined even before completing the previous phases. The

copy model helps us exploit this observation in designing a parallel algorithm. However, it requires

complex synchronizations and communications among the processors. To keep the algorithm

efficient, such synchronizations and communications must be done carefully. In this section, we

present a parallel algorithm based on the copy model. For ease of discussion, we first present our

algorithm for the case x = 1. We present the general case x ≥ 1 in Section 3.
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Let P be the number of processors. The set of vertices V is partitioned into P disjoint subsets

of vertices V0,V1, . . . ,VP−1; that is, Vi ⊂ V , such that for any i and j, Vi ∩ Vj = ∅ and
⋃

i Vi = V .
Processor Pi is responsible for computing and storing Ft for all t ∈ Vi . The load balancing and

performance of the algorithm crucially depend on how V is partitioned. The details of vertex

partitioning are presented in Section 4.

ALGORITHM 1: Simplified Parallel Algorithm for x = 1

/* Each processor Pi executes the following in parallel: */

1 foreach t ∈ Vi do
2 k ← a uniform random vertex in [0, t − 1]

3 c ← a uniform random number in [0, 1]

4 if c < p then // i.e., with probability p
5 Ft ← k

6 else
7 Ft ← NULL // to be set later to Fk
8 send message ⟨request, t ,k⟩ to Pj , where k ∈ Vj

/* Next, processor Pi receives messages sent to it and processes them as follows: */

9 Upon receipt of message ⟨request, t ′,k ′⟩ from P ′j : // note that k ′ ∈ Vi

10 if Fk ′ , NULL then
11 send message ⟨resolved, t ′, Fk ′⟩ to P

′
j

12 else
13 store t ′ in queue Qk ′

14 Upon receipt of message ⟨resolved, t ,v⟩:

15 Ft ← v

16 foreach t ′ ∈ Qt do
17 send message ⟨resolved, t ′,v⟩ to Pj where t

′ ∈ Vj

2.1 Parallel Algorithm
The basic principle behind our parallel algorithm is as follows. Recall the sequential algorithm for

the copy model. Each processors Pi can independently compute step 1 for each t ∈ Vi , as a random
k ∈ [0, t − 1] is chosen with uniform probability (independent of the vertex degrees). Also, in step

2, if Ft is chosen to be k , Ft is determined immediately. If Ft is chosen to be Fk , determination of

Ft needs to wait until Fk is known. If k ∈ Vj where i , j, processor Pi sends a request message to

processor Pj to find Fk . Note that at the time when processor Pj receives this message, Fk can still

be unknown. If so, Pj keeps this message in a queue called waiting queue until Fk is known. Once

Fk is known, Pj sends back a resolved message to Pi . The basic method executed by a processor Pi
is given in Algorithm 1. An example instance of the execution of this algorithm with seven vertices

is depicted in Fig. 1.

2.2 Analysis of the Simplified Algorithm: Dependency Chains
In our parallel algorithm, it is possible that computation of Ft for some vertex t can wait until Fk
for some other vertex k is known. Such waiting can form a chain, namely a dependency chain. For
example, as demonstrated in Fig. 1, computation of F5 is waiting for F3, which in turn is waiting
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01:6 M. Alam et al.

0 1 2 53 4 6

(a)

0 1 2 53 4 6

(b)

Fig. 1. A network with 7 vertices generated by Algorithm 1: a) an intermediate instance of the network in
the middle of the execution of the algorithm, b) the final network. Solid lines show final resolved edges, and
dashed lines show waiting of the vertices. For example, for vertex t = 4, k is chosen to be 2, F4 is chosen
to be set to k = 2 (in Line 2-5), and thus edge (4, 2) is finalized immediately. For vertex t = 5, k is 3 and F5
is set to be F3 (in Line 7); as a result, determination of F5 is waited until F3 is known. At the end, we have
F5 = F3 = F2 = 1.

for F2, and thus we have chain of dependency ⟨5, 3, 2⟩. If the lengths of these chains are large, the
waiting period for some vertices can be quite long, leading to poor performance of the parallel

algorithm. Fortunately, the length of a dependency chain is small, and the performance of the

algorithm is hardly affected by such waiting.

For the ease of analysis, first we formally define a dependency chain for x = 1 and provide a

rigorous analysis showing that the maximum length of a dependency chain is at most O (logn) with
high probability (w.h.p.). For large n, O (logn) is small compared to n. Moreover, while O (logn)
is the maximum length, most of the chains have much smaller length. It is easy to see that for a

constant p, the average length of a dependency chain is also constant, which is at most
1

p . For an

arbitrary p, the average length is still bounded by logn as shown in Theorem 2.3. Thus, while for

some vertices a processor may need to wait for O (logn) steps, the processor hardly remains idle as

it has other vertices to work with.

For the purpose of analysis, first we introduce another chain named a selection chain. In the first

step (Line 2 of Algorithm 1), for each vertex t , another vertex k ∈ [0, t − 1] is selected. In turn for

vertex k , another vertex in [0,k − 1] is selected. We can think that such a selection process creates

a chain called a selection chain. Formally, we define a selection chain St starting at vertex t to be
a sequence of vertices ⟨u0,u1,u2, . . . ,ui , . . .ux ⟩ such that u0 = t ,ux = 0, and ui+1 is selected for

vertex ui for 0 ≤ i < x . Notice that a selection chain must end at vertex 0. The length of a selection

chain St denoted by |St | is the number of vertices in St .
In the next step (see Equation 2 and Line 2-5 of Algorithm 1), Ft is computed by assigning k or

Fk to it. If Fk is selected to be assigned to Ft , Ft cannot be determined until Fk is known; that is,

the computation of Ft for vertex t depends on vertex k . In such a case, we say vertex t is dependent
on k ; otherwise, we say vertex t is independent. In turn, vertex k can depend on some other vertex,

and eventually such successive dependencies can form a dependency chain. Formally, a dependency
chain Dt starting at vertex t is a sequence of vertices ⟨v0,v1,v2, . . . ,vi , . . .vy⟩ such that v0 = t , vi
depends on vi+1 for 0 ≤ i < y, and vy is independent. Notice that if vi ∈ Dt , Dvi is a subsequence

and a suffix of Dt . Also it is easy to see that Dt is a subsequence and a prefix of St , and we have

|Dt | ≤ |St |. Examples of a selection chain and a dependency chain are shown in Fig. 2. Bounds

on the length of dependency chains are given in Theorem 2.3. The following lemmas, Lemma 2.1

and 2.2, are needed to prove Theorem 2.3.

Lemma 2.1. Let Pt (i ) be the probability that vertex i is in selection chain St starting at vertex t .
Then for any 1 ≤ i < t , Pt (i ) = 1

i .

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 01. Publication date: May 2018.
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0 1 2 ji k t
u0u1u2u3uy

v0v1v2vz

Fig. 2. Selection chain and dependency chain. The entire chain, which is marked by the solid lines, is a
selection chain ⟨t ,k, j, i, 2, 1, 0⟩, and the sub-chain marked by the thick solid lines is a dependency chain
⟨t ,k, j, i⟩.

Proof. Vertex i can be in St in two ways: a) vertex i is selected for t (in Line 2 of Algorithm 1);

the probability of such an event is
1

t ; b) vertex k is selected for t , where i < k < t , with probability

1

t , and i is in Sk . Hence, for 1 ≤ i < t , we have

Pt (i ) =
1

t
+

t∑
k=i+1

1

t
Pr [i ∈ Sk ]

tPt (i ) = 1 +

t∑
k=i+1

Pk (i ) (4)

Substituting t with t + 1, for any i with 1 ≤ i < t + 1, we have

(t + 1)Pt+1 (i ) = 1 +

t∑
k=i+1

Pk (i ) (5)

By subtracting Equation 4 from Equation 5,

(t + 1)Pt+1 (i ) − tPt (i ) = Pt (i )

Pt+1 (i ) = Pt (i ) (6)

From Equation 6 by induction, we have Pk (i ) = Pt (i ) for any k and t such that 1 ≤ i < min{k, t }.
Now consider k = i + 1. Notice that i is in Si+1 if and only if i is selected for vertex i + 1; that is,
Pt+1 (i ) =

1

i . Hence, for any t > i , we have

Pt (i ) =
1

i
.

□

Lemma 2.2. Let Ai denote the event that i ∈ St . Then the events Ai for all i , where 1 ≤ i < t , are
mutually independent.

Proof. Consider a subset {Ai1 ,Ai2 , . . . ,Aiℓ } of any ℓ such events where i1 < i2 < . . . < iℓ . To
prove the lemma, it is necessary and sufficient to show that for any ℓ with 2 ≤ ℓ < t ,

Pr



ℓ⋂
k=1

Aik


=

ℓ∏
k=1

Pr

[
Aik

]
. (7)

We know

Pr



ℓ⋂
k=1

Aik


= Pr


Ai1

������

ℓ⋂
k=2

Aik


· Pr



ℓ⋂
k=2

Aik


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When it is given that

⋂ℓ
k=2Aik , i.e., i2, . . . , iℓ ∈ St , by the constructions of selection chains Si2

and St and since i1 < i2, we have i1 ∈ St if and only if i1 ∈ Si2 . Then

Pr


Ai1

������

ℓ⋂
k=2

Aik


= Pr


i1 ∈ Si2

������

ℓ⋂
k=2

Aik


.

Let Ri be a random variable that denotes the random vertex selected for vertex i . Now observe that

the occurrence of event i1 ∈ Si2 can be fully determined by the variables in {R j | i1 < j ≤ i2}; that is,
event i1 ∈ Si2 does not depend on any random variables other than the variables in {R j | i1 < j ≤ i2}.
Similarly, the events i2, . . . , iℓ ∈ St do not depend on any random variables other than the variables

in {R j | i2 < j ≤ t }. Since the random variables Ris are chosen independently at random and the

sets {R j | i1 < j ≤ i2} and {R j | i2 < j ≤ t } are disjoint, the events i1 ∈ Si2 and
⋂ℓ

k=2Aik are

independent; that is,

Pr


i1 ∈ Si2

������

ℓ⋂
k=2

Aik


= Pr

[
i1 ∈ Si2

]
.

By Lemma 2.1, we have Pr

[
i1 ∈ Si2

]
= 1

i1
= Pr [i1 ∈ St ] = Pr

[
Ai1

]
and thus,

Pr



ℓ⋂
k=1

Aik


= Pr

[
Ai1

]
· Pr



ℓ⋂
k=2

Aik


. (8)

Next, by using Equation 8 and applying induction on ℓ, we prove Equation 7. The base case,

ℓ = 2, follows immediately from Equation 8:

Pr



2⋂
k=1

Aik


= Pr

[
Ai1

]
· Pr

[
Ai2

]
.

By induction hypothesis, for ℓ−1 eventsAik , 2 ≤ k ≤ ℓ, we have Pr
[⋂ℓ

k=2Aik

]
=

∏ℓ
k=2 Pr

[
Aik

]
.

Then using Equation 8 for case 2 < ℓ < t , we have

Pr



ℓ⋂
k=1

Aik


= Pr

[
Ai1

]
·

ℓ∏
k=2

Pr

[
Aik

]
=

ℓ∏
k=1

Pr

[
Aik

]
.

□

Theorem 2.3. Let Lt be the length of the dependency chain starting at vertex t and Lmax = maxt Lt .
Then the expected length E[Lt ] ≤ logn and Lmax = O (logn) w.h.p., where n is the number of vertices.

Proof. Let St and Dt be the selection chain and dependency chain starting at vertex t , respec-
tively, and Xt (i ) be an indicator random variable such that Xt (i ) = 1 if i ∈ St and Xt (i ) = 0

otherwise. Then we have

Lt = |Dt | ≤ |St | =
t−1∑
i=1

Xi (t ).

Let Pt (i ) be the probability that i ∈ St ; that is, Pt (i ) = Pr[Xt (i ) = 1] and E[Xt (i )] = Pt (i ) =
1

i . By

linearity of expectation, we have

E[Lt ] =
t−1∑
i=1

E[Xi ] =

t−1∑
i=1

1

i
= Ht−1 ≤ log t ≤ logn
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By Lemma 2.2, the random variables Xt (i ), for 1 ≤ i < t , are mutually independent. Applying

the Chernoff bound on independent Poisson trials, we have

Pr



∑
t

Xt (i ) ≥ (1 + δ )µ

≤

(
eδ

(1 + δ ) (1+δ )

) µ
In the Chernoff bound, we set δ =

6 logn
µ − 1. Since µ ≤ logn, we have δ > 0. Then,

Pr [L ≥ 6 logn] = Pr [L ≥ (1 + δ )µ]

≤

(
eδ

(1 + δ ) (1+δ )

) µ
≤

( e

1 + δ

) µ (1+δ )
≤

(
eµ

6 logn

)
6 logn

≤

(
e logn

6 logn

)
logn6

≤
1(

6

e

)
logn6

≤
1

n6 log
6

e
[alogb = b loga]

≤
1

n4

Thus, with probability at least 1 − 1

n4
, the length of the dependency chain is O (logn). Using the

union bound, it holds simultaneously for all n vertices with probability at least 1 − 1

n3
. Hence, we

can say, the length of the dependency chain is O (logn) w.h.p. □

3 GENERALIZED PARALLEL SOLUTION FOR x ≥ 1

In Section 2, we presented the algorithm for the simpler case x = 1. In this section, we modify

this algorithm for the general case where each vertex creates x ≥ 1 edges. The pseudo-code of the

algorithm is given in Algorithm 2. The basic structure of the algorithm for the general case is the

same as that of the special case x = 1. We focus our discussion only on the modifications required

and the differences between the two cases. The main difference is that, for each vertex t , instead
of computing one edge (t , Ft ), we need to compute x edges (t , Ft (1)), (t , Ft (2)), . . . , (t , Ft (x )), and
make sure such edges are distinct and do not create any parallel edges. For this general case, the

set of vertices {Ft (1), Ft (2), . . . , Ft (x )} is denoted by Ft .

3.1 Parallel Algorithm
The algorithm starts with an initial network, which is a clique of the first x vertices labeled

0, 1, 2, . . . ,x − 1. Each of the other vertices from x to n − 1 generates x new edges. There are

fundamentally two important issues that need to be handled for the general case: i) how we select

Ft (ℓ) for vertex t where 1 ≤ ℓ ≤ x , and ii) how we avoid duplicate edge creation. Multiple edges

for a vertex t are created by repeating the same procedure x times (Line 2), and duplicate edges are

avoided by simply checking if such an edge already exists and redo the copy model. Such checking

is done whenever a new edge is created.
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ALGORITHM 2: Generalized Parallel Algorithm for x ≥ 1

/* Each processor Pi executes the following in parallel: */

1 foreach t ∈ Vi do
2 for ℓ = 1 to x do
3 k ← a uniform random vertex in [0, t − 1]

4 c ← a uniform random number in [0, 1]

5 if c < p then // i.e., with probability p
6 if k < Ft then
7 Ft (ℓ) ← k

8 else
9 go to line 4

10 else
11 l ← a uniform random number in [1,x]

12 Ft (ℓ) ← NULL // to be set later to Fl (k )

13 send message ⟨request, Fℓ (t ), Fl (k )⟩ to Pj , where k ∈ Vj

/* Next, processor Pi receives messages sent to it and processes them as follows: */

14 Upon receipt of message ⟨request, Fℓ′ (t
′), Fl ′ (k

′)⟩ from Pj′ : // note that k ′ ∈ Vi
15 if Fl ′ (k ′) , NULL then
16 send message ⟨resolved, Fℓ′ (t

′), Fl ′ (k
′)⟩ to Pj′

17 else
18 store ⟨Fℓ′ (t

′), Fl ′ (k
′)⟩ in queue Qk ′

19 Upon receipt of message ⟨resolved, Ft (ℓ),v⟩:

20 if v < Ft then
21 Ft (ℓ) ← v

22 foreach ⟨Fℓ′ (t ′), Ft (ℓ)⟩∈ Qt do
23 send message ⟨resolved, Fℓ′ (t

′),v⟩ to Pj where t
′ ∈ Vj

24 else
25 k ← a uniform random vertex in [x , t − 1]

26 l ← a uniform random number in [1,x]

27 re-send message ⟨request, Ft (ℓ), Fl (k )⟩ to Pj , where k ∈ Vj

For the ℓ-th edge of a vertex t , another vertex k is chosen from [0, t − 1] uniformly at random

(Line 3). Edge (t ,k ) is created with probability p (Line 5). However, before creating such an edge

(t ,k ) in Line 7, the existence of such an edge is checked immediately before creating them in Line 6.

If the edge already exists at that time, the process is repeated again (Line 9). With the remaining

1 − p probability, t is connected to some vertex in Fk ; that is, we make an edge (t , Fk (ℓ)), such that

ℓ is chosen from [1,x] uniformly at random. Similar to the special case x = 1, if k is in another

processor, a request message is sent to that processor to find Fk (ℓ) (Line 14). The request and

response messages are also processed in the same way.

Duplicate edges can also be created during the execution of Line 19. For example, suppose

vertex t creates two edges (t , Fk (ℓ)) and (t , Fk ′ (ℓ
′)). Also, assume both k and k ′ are not in the same

processor as t . Hence, request messages are sent to the processors containing k and k ′ to resolve

Fk (ℓ) and Fk ′ (ℓ
′). If the ℓ-th edge of k and ℓ′-th edge of k ′ both connect to the same vertex u, then
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Fk (ℓ) = Fk ′ (ℓ
′) = u. Hence, t may create a duplicate edge (t ,u) which could not be detected early.

To deal with such duplicate edges, after receiving a resolved message ⟨resolved, Ft (ℓ),v⟩, the
adjacency list of t is checked to find whether edge (t ,v ) already exists (Line 20). If the edge does

not exist, it is created. Otherwise, new k and ℓ are selected (Line 25-26), and a new request message

is sent (Line 27).

3.2 Analysis of Dependency Chains
For the general case x ≥ 1, each new vertex creates x new edges. Similar to the earlier case, each

of these edges forms a selection and a dependency chain. Notice that all of the x selection chains

originating from a new vertex are independent of each other because they independently executes

the copy model (irrespective of other outgoing edges from the same vertex) and follows the exact

same procedures with the same probabilities as shown in the Lemma 2.1 and Lemma 2.2. We already

showed that the maximum length of a selection chain is at most 6 logn with probability 1 − 1

n4

in Theorem 2.3. For the general case, there are O (nx ) such chains. Using the union bound, the

probability that the maximum length is 6 logn for any of the O (nx ) selection chains is at least

O
(
1 − x

n3

)
. As x ≤ n, we can say that the length of the dependency chain is still O (logn) w.h.p.

Experimental Validation.We also experimentally evaluated the maximum length of dependency

chain using our general algorithm (Algorithm 2). In this experiment, we varied the number of

vertices n from 1K to 64M . For each n, we also varied x from 1 to 128. For each possible combination

of values of n and x , we calculated the maximum length of dependency chain by repeating the

algorithm several times. Fig. 3 shows the maximum length of the dependency chain for each

combination of n and x . We also plotted a fitted line of the function y = a logn+c using logarithmic

regression. The fitted line has a correlation of 0.97. Therefore, the figure clearly suggests that the

maximum length of dependency chain varies logarithmically with n and is independent of x .
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Fig. 3. Experimental result shows that the maximum length of dependency chain is O (logn). The horizontal
axis (in log scale) represents the number of vertices and the vertical axis represents the length of the
dependency chain. Filled circles show the maximum of dependency chain for each pair of n and x . The solid
line represents a logarithmic fit of the function y = a logn + c .

3.3 Validating the Degree Distribution
During the execution of copy model, a new vertex t has to select x distinct vertices out of t existing
vertices 0, 1, 2, . . . , t − 1 to make x edges. Let, Pt (i ) be the probability that vertex i is connected to
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vertex t . Then,

Pt (i ) =




1

t + (1 − p)
t−1∑
k=x

1

t Pk (i ) i < x

p
t + (1 − p)

t−1∑
k=i+1

1

t Pk (i ) i ≥ x

(9)

Therefore, during the generation of edges from vertex t , vertex i is selected with probability Pt (i ).
To demonstrate the degree distribution of the expected network from the probability distribution

defined in 9, we compute the probabilities numerically for n = 10000, x = 4, and p = {0.01, 0.5, 0.99}.
The expected degree of a vertex t is given by:

E[di ] =




n−1∑
k=i+1

Pk (i ) i < x

x +
n−1∑
k=i+1

Pk (i ) i ≥ x

(10)

Fig. 4 shows the expected degree distribution by rounding off the expected degrees of each

vertices to their nearest integer values. As demonstrated in the figure, with p = 0.5 we have

the typical shape of the degree distribution of a Barabási–Albert network. By varying p we can

generate different shape of degree distributions. In the experimental section, we will show that our

implementation produces the similar form of degree distribution for massive generated networks

validating the implementation.
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Fig. 4. Expected degree distribution of the algorithm for n = 10000, x = 4, and p = {0.01, 0.5, 0.99}. With
different values of p different shapes of the degree distribution is achieved.

3.4 Bounding the Maximum Number of Regeneration of Edges
As noted earlier, with x > 1, there is a possibility of making duplicate edge during the edge creation

process. As we are interested only to generate simple graphs with no self-loop or no parallel edges,

we avoid the creation of duplicate edges by checking for potential duplicate edge and execute

the copy model again if necessary. However, if the number of regeneration of edges is very large,

the algorithm will be inefficient and parallelization will suffer. Fortunately, as we show in this
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section, the number of regeneration of edges is not very large for most of the practical scenarios

and parallelization does not suffer.

Let ⟨ui1 ,ui2 , . . .uix ⟩ denotes the x unique vertices to be picked, i.e. ui1 , ui2 , · · · , uix with the

probability distribution shown in Equation 9. We are interested to know how many trials would

be required to pick the x unique vertices from t available vertices. It is not difficult to see that the

problem is a variation of the famous Coupon Collector’s Problem where the probability is not the

same for different objects and x ≤ t distinct objects have to be picked instead of the whole t objects.
Unfortunately, there is no close form results on the expected number of trials required. In [14], the

authors presented a formulation of the problem as follows. Let Xk denotes the number of trials to

get k-th unique vertices given that k − 1-th vertices are unique. Note that X1 = 1, that is the first

vertex is always unique. X2 denotes the number of trials required to get a different vertex than ui1 .
Therefore, the total number of trials are: X = X1 + X2 + X3 + . . . + Xx . Then, the expected number

of trials is given by [14]:

E [Xk ] =

t−1∑
i1,i2,· · ·,ik−1=1

pi1pi2 . . .pik−1
p (i1)p (i1, i2)p (i1, i2, i3) . . .p (i1, i2, i3, . . . , ik−1)

(11)

where, p (i1, i2, i3, . . . , ik ) = 1 − Pt (ui1 ) − Pt (ui2 ) − . . . − Pt (uik ). Unfortunately, the formulation is

too complex to compute beyond several hundreds vertices.

Due to the lack of close form solutions and intractable form of exact solution, we instead analyze

the maximum number of trails using the copy model itself. First, we analyze the maximum number

of trials required per vertex to select x distinct vertices. To do this, we ran the copy model for

different x and p values. For each combination of x and p the copy model is executed 15 times. In

each of the execution of the copy model, we collected the maximum number of trials needed for a

vertex. In Fig. 5, we present the average of the maximum number of trials vs. x for different set of p
probabilities. We also added error bars and shades denoting 95% confidence intervals. Next, we

fitted a line with a equation of the form x logx that explains 99.94% of the variability. Therefore,

we can say that the maximum number of trials required is O (x logx ) for any value of p with at

least 95% confidence.
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Fig. 5. Experimental results show that the maximum number of required trials is O (x logx )

Although, the maximum number of trials is O (x logx ), not all vertices require that many trials.

In fact, as t becomes larger and larger than x the number of trials required becomes smaller. In

Fig. 6 we show the number of trials required in each vertex for different values of x with p = 0.5.
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Only the first 1000 vertices are shown for clarity. As observed from the figure, the number of trials

reduces significantly within the first few vertices and becomes very small as t ≫ x . Therefore, the
retrial policy to avoid duplicate edges does not affect the algorithm significantly.
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Fig. 6. Experimental results show that the number of required trials reduces as t becomes larger and larger
than x

Finally, we demonstrate the overhead incurred for executing copymodel withx > 1. The overhead

is defined as the average number of trials required in excess of x per vertex. For comparing the

overhead for different configurations of n, x , and p, we denote the overhead as a percentage over x .
For the best cases, the overhead should be close to 0%. In Fig. 7 we show the average percentage

overhead per vertex for n = 100K vertices and different x and p values. As observed from the figure,

overhead varies with x and p. The overhead is very big when p is very close to 0. That is because,

most of the vertices are copy edges and few of the vertices have very high and skewed selection

probability compared to other vertices. However, values of p close to 0 is mostly of theoretical

interest rather the most practical scenarios have large values of p. For almost all practical purposes

the average overhead per vertex is very small.
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Fig. 7. Experimental results show that the maximum number of retrials is O (x logx )
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3.5 Analysis of WaitingQueue Size
In our parallel algorithm, after receiving a request message for an edge Fl (k ) (Line 14 of Algorithm 2),

a processor sends a corresponding response message immediately if the edge Fl (k ) is already known.
Otherwise, the request message is stored in a queue called thewaiting queue (Line 18 of Algorithm 2).

If a processor receives a large number of such request messages whose responses could not be sent

immediately, the size of the waiting queues becomes large, leading to a large memory requirement

and the parallel algorithm yields poor performance. Fortunately, the number of such request

messages is not large. In this section, we provide a rigorous analysis showing that the maximum

number of items for the waiting queue of a vertex is O (x logn) with high probability as shown in

Theorem 3.1.

Theorem 3.1. The maximum number of items stored in the waiting queue of a vertex is O (x logn)
with high probability.

Proof. Assume that the l-th outgoing edge of a vertex t executes the copy model and creates an

edge with the endpoint of the ℓ-th edge of a vertex k , i.e., Fl (t ) = Fℓ (k ) (Copy Edge). A request

message ⟨Fl (t ), Fℓ (k )⟩ is sent to processor Pj where k ∈ Vj . If Fk (ℓ) is not known at the time of

receiving the message, the request will be put on a queue Qk for vertex k in processor Pj . The

queue Qk is called the waiting queue for vertex k . Once Fk (ℓ) is known, all the messages in Qk
for that edge will be processed and a corresponding response message will be sent (Line 23 of

Algorithm 2).

Therefore, while creating a copy edge (t , Fk (ℓ)), the event that the request message will be

put in the waiting queue Qk consists of three events: 1) t selects Fk (ℓ), 2) t chooses to make the

copy edge with probability 1 − p, and 3) Fk (ℓ) is not known. According to the step 1 of the copy

model, t picks Fk (ℓ) with probability
1

t−1
1

x . Furthermore, Fk (ℓ) is already known with probability

at least p (Direct Edge). Therefore, Fk (ℓ) is not known with probability at most 1 − p. Let Pkℓ (t )
denotes the probability that any outgoing edge from vertex t makes a copy edge (t , Ft (ℓ)) and the

corresponding request message is put in the waiting queue Qk . Therefore, we have:

Pkℓ (t ) = Pr

[
Fk (ℓ) is selected

]
× Pr

[
copy edge is created

]
× Pr

[
Fk (ℓ) is not known

]

≤
1

t − 1

1

x
(1 − p) (1 − p)

≤ (1 − p)2
1

x (t − 1)
. (12)

Let Xkℓ (t ) be a random variable that denotes the number of request messages stored in Qk for

the edge Fℓ (k ). Vertex t creates x edges independently and each of these edges stores a request

messages in Qk with probability Pkℓ (t ). Therefore, we have:

E
[
Xkℓ (t )

]
= xPkℓ (t ) ≤ (1 − p)2

1

(t − 1)
.

Let Yk (t ) be another random variable that denotes the total number of messages stored in Qk
from vertex t . Therefore, we have:

Yk (t ) =
x∑
ℓ=1

Xkℓ (t ).

According to the parallel algorithm, Qk can store messages from vertex k + 1 to n − 1. Thus, the

total number of messages stored in Qk is given by:

|Qk | =

n−1∑
t=k+1

Yk (t ).
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Therefore, the expected number of request messages stored in the queue Qk is given by:

E
[
|Qk |

]
=

n−1∑
t=k+1

E[Yk (t )] =
n−1∑
t=k+1

x∑
ℓ=1

E
[
Xkℓ (t )

]

≤

n−1∑
t=k+1

x∑
ℓ=1

(1 − p)2
1

(t − 1)

≤ (1 − p)2x
n−1∑
t=k+1

1

t − 1

≤ (1 − p)2x
n−2∑
i=k

1

i

≤ (1 − p)2x (Hn−2 − Hi )

≤ (1 − p)2xHn

≤ (1 − p)2x logn. (13)

Note that the random variables Yk (t ) are mutually independent of each other. Applying the

Chernoff bound on independent random variables, we have:

Pr



∑
t

Yk (t ) ≥ (1 + δ )µ

≤

(
eδ

(1 + δ ) (1+δ )

) µ
In the Chernoff bound, we set δ =

5x logn
µ − 1. Since µ ≤ (1 − p)2x logn, where 0 ≤ p ≤ 1. Note

that when p = 1 no copy edge will be created, therefore, no item will be place in the waiting queue

and the maximum number of items in Qk is 0. For p < 1, we have δ > 0. Then,

Pr [|Qk | ≥ 5x logn] = Pr



∑
t

Yk (t ) ≥ (1 + δ )µ


≤

(
eδ

(1 + δ ) (1+δ )

) µ
≤

( e

1 + δ

) µ (1+δ )
≤

(
eµ

5x logn

)
5x logn

≤

(
e (1 − p)2x logn

5x logn

)
logn5x

≤
1(

5x
e

)
logn5x (1 − p) < 1

≤
1

n5x log
5x
e

[alogb = b loga]

≤
1

n3
[x ≥ 1]
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Thus, with probability at least 1 − 1

n3
, the number of items in the waiting queue is O (x logn).

Using the union bound, it holds simultaneously for all the n waiting queues with probability at

least 1 − 1

n2
. Hence, we can say, the maximum number of items in the waiting queue of any vertex

is O (x logn) w.h.p. □

3.6 Experimental Validation of WaitingQueue Size
In this section, we experimentally evaluate the maximum size of the waiting queues varies with n,
p, and x as shown in Theorem 3.1.

In Fig. 8, we plot the maximum size of the waiting queues by varying n for a set of different x .
We set p = 1

2
in these experiments. In the figure, the circles represent the maximum size of the

waiting queues collected experimentally, and the solid lines present a fit function y = a logn + c
for different values of x . The horizontal axis is plotted in log scale. The figure demonstrates that

the maximum size of a waiting queue is proportional to logn.
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Fig. 8. The maximum size of the waiting queues changes logarithmically with n

In Fig. 9, we plot the maximum size of the waiting queues by varying x for a set of different n.
We also set p = 1

2
in these experiments. In the figure, the circles represent the maximum waiting

queue size collected experimentally, and the solid lines present a linear fit function y = ax + c
for different values of n. The figure demonstrates that the maximum size of a waiting queue is

proportional to x .
In Fig. 10, we plot the maximum size of the waiting queues by varying p for a set of different n

and x . In the figure, the circles represent the maximum waiting queue size collected experimentally,

and the solid lines present a quadratic fit function y = a(1 − p)2 + c for different values of n and x .
The figure demonstrates that the maximum size of a waiting queue is proportional to (1 − p)2.

4 PARTITIONING AND LOAD BALANCING OF PARALLEL EXECUTION
Recall the formal definition of partitioning of the set of vertices V = {0, 1, . . . ,n − 1} into P subsets

V0,V1, . . . ,VP−1 as described at the beginning of Section 2. A good load balancing is achieved by

properly partitioning the set of vertices V and assigning each subset to one processor. Vertex

partitioning has significant effects on the performance of the algorithm. In this section, we study

several partitioning schemes and their effects on load balancing and the performance of the

algorithm. In our algorithm, we measure the computational load in terms of the number of vertices

per processor, the number of outgoing messages (request message) from a processor, and the

number of incoming messages (response messages) to a processor.
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There are several efficiency issues related to the partitioning of the vertices as described below.

It is desirable that a partitioning of the vertices satisfies the following criteria.

A. For any given k ∈ V , finding the processor Pj , where k ∈ Vj (Line 8, Algorithm 1), can be done

efficiently, preferably in constant time without communicating with the other processors.

B. The partitioning should lead to a good load balancing. The degrees of the vertices vary

significantly, and a vertex with a larger degree causes more messages to work with. As a

result, naïve partitioning may lead to poor load balancing.

C. As we discuss later, combining multiple messages (to the same destination) and using a

MPI_send operation for them can increase the efficiency of the algorithm. However, combin-

ing multiple messages may not be possible with an arbitrary partitioning as it may cause

deadlocks.

With the objective of satisfying the above criteria, we study the three partition schemes:

(1) Consecutive Partitioning

(2) Round Robin Partitioning

(3) Segmented Partitioning
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4.1 Consecutive Partitioning
In this partitioning scheme, the vertices are assigned to the processors sequentially. Partition Vi
starts at vertexni and ends atni+1−1, wheren0 = 0 andnP = n. That is,Vi = {ni ,ni +1, . . . ,ni+1−1}
for all i . With the consecutive vertex partitioning, the only decision to be made is the number of

vertices to be assigned to each set Vi . The simplest way to do so is to assign an equal number of

vertices in each set, i.e., |Vi | =
⌈
n
P

⌉
for all i . We call such partitioning scheme the Simple Consecutive

Partitioning (SCP).

4.1.1 Simple Consecutive Partitioning. As discussed earlier, the sizes of the partitions are almost

equal. Let B =
⌈
n
P

⌉
. Then, the size of a partition is either B or B− 1. PartitionVi includes the vertices

from iB to (i + 1)B − 1. Finding the rank of the processor from a vertex u is pretty straightforward

in the SCP scheme. For a vertex u ∈ Vi , the rank of the processor Pi is given by i =
⌊
u
B

⌋
.

4.1.2 Optimal Consecutive Partitioning. The simple consecutive partitioning scheme satisfies

Criterion A and C above; however, it is clear that such partitioning can lead to poor load balancing.

The computation in each processor Pi involves the following three types of load:

A. generating random numbers and some other processing for each vertex t ∈ Vi ,
B. sending request messages for the vertices in Vi and receiving their replies, and

C. receiving request messages from other processors and sending their replies.

The computational load for load type A and B above is directly proportional to the number of

vertices in partition Vi . Computational load for load type C depends not only on the number of

vertices in a processors but also on i , the rank of the processor. With simple consecutve vertex

partitioning (SCP), a lower ranked processor receives more request messages than a higher ranked

processor, because with j < k , E[Mj ] > E[Mk ], where Mk is the number of request messages

received for Vertex k (see Lemma 4.1).

Lemma 4.1. Let Mk be the number of request messages received for vertex k . Then E[Mk ] =

(1 − p) (Hn−1 − Hk ), where Hk is the kth harmonic number.

Proof. Vertex k receives a request message from vertex t > k if and only if t randomly picks

k and decided to assign Fk to Ft . The probability of such an event is (1 − p) 1t . Then the expected

number of messages received for Vertex k is given by

n−1∑
t=k+1

(1 − p)
1

t
= (1 − p) (Hn−1 − Hk )

□

Next we calculate the computational load for each processor with an arbitrary number of vertices

assigned to the processors. To do so, we make the following simplifying assumptions: i) Sending a

message takes the same computation time as receiving a message, and ii) p = 1

2
(the same analysis

will follow for arbitrary p by simply multiplying each term with 2(1 − p)). The number of vertices

in Processor Pi is ni+1 −ni . Then computation cost for load of type A and B is c (ni+1 −ni ) for some

constant c . Following Lemma 4.1, the expected load for type C in Processor Pi is

ni+1−1∑
k=ni

(Hn−1 − Hk ) = (ni+1 − ni )Hn−1 −

ni+1−1∑
k=ni

(Hk )

= (ni+1 − ni )Hn−1 − (ni+1Hi+1 − niHni ) + (ni+1 − ni )

= (ni+1 − ni ) (Hn−1 + 1) − (ni+1Hni+1 − niHni ) (14)
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The second last line follows from Equation 2.36 in page 41 of [16]. Thus, using another constant

b = 1 + c , the total computational load at Processor Pi is

c (Pi ) = (ni+1 − ni ) (Hn−1 + b) − (ni+1Hni+1 − niHni )

The combined load for all processors is c ′n for some constant c ′ and desired load in each processor
is

c ′n
P . Thus ni , for all i , can be determined by solving the following system of equations, which is

unfortunately nonlinear.

n0 = 0

nP = n − 1

c (Pi ) = (ni+1 − ni ) (Hn−1 + b) − (ni+1Hni+1 − niHni ) =
c ′n

P
(15)

4.1.3 Linear Consecutive Partitioning. A good load balancing can be achieved by solving the

above system of equations. However two major difficulties arise:

• It seems the only way the above equations can be solved is by numerical methods and can

take a prohibitively large time to compute.

• Criterion A for load balancing may not be satisfied, leading to poor performance.

To overcome these difficulties, guided by experimental results, we approximate the solution of

the above system of equations with a linear function and call the resultant partitioning scheme

linear consecutive partitioning (LCP). Fig. 11 shows the distribution of the vertices among processors

for actual solutions of Equation 15 and linear approximation. As we will see later in Section 5, our

approximate scheme LCP provides a very good load balancing and performance of the algorithm.
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Fig. 11. Distribution of the vertices among processors for actual solutions of Equation 15 and its linear
approximation.

As in the LCP scheme, the number of vertices is increasing linearly with i (the ranks of the
processors), the number of vertices in Processor Pi follows the arithmetic progression a, a + d,
a + 2d, . . . , a + (P − 1)d , that is, the number of vertices in Processor Pi is Bi = a + id , where d is the

slope of the line for linear approximation as shown in Fig. 11. Slope d can be approximated easily by

sampling two points on the actual line. PartitionVi has the vertices from
∑i−1

j=0 (a+ jd ) = i
(2a+(i−1)d )

2

to

∑i
j=0 (a + jd ) − 1 = (i + 1) (2a+id )

2
− 1. Finding the rank of the processor for vetex u is more

complicated in this scheme. Given a vertex u, we need to find the processor Pi such that u ∈ Vi .
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Vertex u satisfies the following inequality:

i−1∑
j=0

(a + jd ) ≤ u <
i∑
j=0

(a + jd )

i (2a + (i − 1)d )

2

≤ u <
(i + 1) (2a + id )

2

(16)

Solving the inequality 16, we have

i =


−(2a − d ) +
√
(2a − d )2 + 8du

2d


(17)

Determining partition parameters a and d . The parameters a and d are determined using the

number of vertices n and the number of processors P . Parameter d is the slope of the straight line

y = a +dx , where y represent the number of vertices in the processor with rank x = i . We calculate

d by finding two points on this straight line. Putting i = 0 and i = P − 1 in Equation 15, we can

compute n1 and nP−1. Then, the number of vertices in the first processor is n1 − n0 = n1 and the

number of vertices in last processor is nP − nP−1 = n − 1 − nP−1. Hence, we have

d =
n − 1 − nP−1 − n1

P
.

Now, we have

P−1∑
j=0

(a + jd ) = n

P (2a + (P − 1)d )

2

= n

a =
n

P
−

(P − 1)d

2

(18)

Message Buffering. The processors exchange two types of messages: request messages and resolve

messages. For each vertex t , a processor may need to send one request message and receive one

resolve message. If ProcessorPi has multiple messages destined to the same processor, say Processor

Pj , Processor Pi can combine them into a single message by buffering them instead of sending

them individually. Each processor can do so by maintaining P − 1 buffers, one for each of the

other processor. If the messages are not combined, for large n, there can be a large number of

outstanding messages in the system, and the system may not be able to deal with such a large

number of messages at a time, limiting our ability to generate a large network. Further message

buffering reduces overhead of packet header and thus improves efficiency.

4.2 Round-Robin Partitioning (RRP)
In this scheme, vertices are distributed in a round robin fashion among all processors. Partition Vi
contains the vertices ⟨i, i +p, i + 2p, . . . , i +kp⟩ such that i +kp ≤ n < i + (k + 1)p; that is,Vi = {j |j
mod P = i}. In other words, vertex i is assigned to set Vi mod p . Similar to SCP, in this RRP scheme

also, the number of vertices in the sets is almost equal. The number of vertices in a set is either

⌈n/p⌉ or ⌊n/p⌋. The difference between the number of vertices in two sets is at most 1.

From Lemma 4.1, it is clear that the expected number of received messages decreases monoton-

ically with increasing vertex labels. Round robin partitioning on such a monotonic distribution

typically performs better. For the round robin vertex partitioning scheme, the computational load

among processors are well-balanced as shown in Lemma 4.2.
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Lemma 4.2. The difference between the computational load for any two processors is at mostO (logn),
while the total computational load is Ω(n).

Proof. The expected number of request messages received for vertex k is (Hn−1 − Hk ) (see
Lemma 4.1). Other loads for any vertex is constant. Then the total load for vertex k is CL(k ) =
(Hn−1 −Hk ) + b, for some constant b. Thus, the total load for Processor Pi with partition Vi = {j |j
mod P = i} is PL(i ) =

∑
k ∈Vi (Hn−1 − Hk + b).

Notice that for any k1 < k2,CL(k1) > CL(k2). As a result, we have PL(i1) > PL(i2) for any i1 < i2.
Thus the largest difference between the loads of two processors is

PL(0) − PL(P − 1) =
∑
k ∈V0

(Hn−1 − Hk + b) −
∑

k ∈VP−1

(Hn−1 − Hk + b) (19)

≤ (Hn−1 + b) ( |V0 | − |VP−1 |) −
∑
k ∈V0

Hk +
∑

k ∈VP−1

Hk (20)

If n is a multiple of P , we have

|V0 | − |VP−1 | = 0, (21)∑
k ∈VP−1

Hk <
∑
k ∈V0

Hk + Hn , (22)

and thus, PL(0) − PL(P − 1) < Hn = O (logn). (23)

Otherwise,

|V0 | − |VP−1 | = 1, (24)∑
k ∈VP−1

Hk ≤
∑
k ∈V0

Hk , (25)

and thus, PL(0) − PL(P − 1) ≤ Hn−1 + b = O (logn). (26)

□

The RRP Scheme also satisfies Criterion A: given a vertex, finding the processor where the vertex

belongs to can be computed in constant time. Finding the rank of processor Pi for a given vertex

u ∈ Vi is determined by i = u mod P .

Message buffering. For consecutive vertex partitioning (both naïve and LCP), message buffering

(combining messages) does not require any special care to avoid deadlock. In SCP and LCP, since

Processor Pi may wait only for Processor Pk such that k < i , there cannot be a circular waiting
among the processors, and therefore deadlock cannot arise.

However, in the RRP scheme, deadlock can occur if the messages are not buffered carefully. The

request messages can be buffered as it is done in SCP or LCP. The resolved message can also be

buffered, but it needs to be done in a special way to avoid deadlock. To avoid deadlock, resolved

messages must be sent out from the buffer (even if the buffer is not full yet) after processing every

group of received messages (when buffering is used, messages are sent and received in groups).

Sending the resolved messages cannot wait any longer. Otherwise, it can cause circular waiting

among the processors leading to a deadlock situation.

4.3 Segmented Partitioning
So far we have studied partitioning schemes where the entire set of vertices are partitioned into P
subsets and each processor works on a partition. In this section, we present another fine-grained

partitioning technique called the Segmented Partitioning.
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In the segmented partitioning technique, first the entire set of vertices are partitioned into k
consecutive subsets S1, S2, S3, . . . , Sk called segments (similar to the consecutive partitioning). From

the copy model definition, clearly vertices on a segment Si may only depend on vertices on segment

S j where i ≥ j but not vice versa. Let Bi = |Si | denotes the number of elements (also called the

segment size) in segment Si where 1 ≤ i ≤ k . Next, the parallel algorithm is executed in k rounds

where round i executes the parallel algorithm for all the vertices in segment Si . In round i , the Bi
vertices in segment Si are further partitioned into P subsets V0 (Si ),V1 (Si ), . . .VP−1 (Si ) (using the
previous schemes) and executed in parallel using the P threads. After a round is completed, every

edges originating from the vertices in the segment is completely determined. We used segmented

partitioning technique for SCP, LCP, and RRP schemes. The technique is illustrated in Fig. 12.

As we will see in the experimental section, the segmented partitioning has several benefits.

First, the technique offers fine grained tuning of load balancing. It also reduces the size of the

waiting queue dramatically, as before going into the next round, all the edges are already processed.

Therefore, the average size of the waiting queue reduces to O ((1 − p)2x log n
k ), where k is the

number of segments and the total number of items in the waiting queue is reduced with increasing

segment size. Additionally, the memory consumption is also reduced.

However, as segment size is kept increasing beyond some point, we start losing the advantages

because of synchronization issues needed to perform in each round. Therefore, there is an optimal

value ofk . We experimentally variedk to determine the optimal value for each partitioning schemes.

5 EXPERIMENTAL RESULTS
In this section, we evaluate the performance of our algorithms experimentally. The accuracy of

our parallel algorithm is demonstrated by showing that the algorithm produces networks with

power law degree distribution. Then we present the strong and weak scaling of the algorithms.

These algorithms scale very well with the number of processors. We also present experimental

results showing the impact of the partitioning schemes on load balancing and performance of the

algorithms.
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Fig. 12. Segmented partitioning with P = 3 processors
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Experimental Setup. We used a high-performance computing cluster of 64 Intel Sandy Bridge

nodes. Each node consists of two dual-socket Intel Sandy Bridge E5-2670 2.60GHz 8-core processors

(16 cores per node) and 64GB of 1600MHz DDR3 RAM. The nodes are interconnected by QLogic

QDR InfiniBand interconnects. For the MPI-based implementation of our algorithms, we used

MPICH2 (version 1.7), which is optimized for QLogic InfiniBand cards.

In the experiments, we used up to 1024 processors. Each of the algorithms we considered

generates the network in main memory, and the run time does not include the time required to

write the graph to disk.

5.1 Validating Scale-Free Property with Degree Distribution
The degree distribution of the graph generated by our parallel algorithm is shown in Fig. 13 in

a log− log scale. We used n = 1B vertices and x = 4 that generates a network with 4B edges. As

shown in the figure, the copy model produces power-law degree distributions for various values

of p. When p = 0.5, the degree distribution is the same as the BA model. As the figure shows, the

distribution is heavy tailed, which is a distinct feature of the real-world power-law networks. The

exponent γ of this power-law degree distribution is measured to be 2.7, which supports the fact

that for a finite average degree of a scale-free network, the exponent γ satisfies 2 < γ < ∞ [12].

When p is very close to 0, the network is mainly built on copy edges, therefore, there is a higher

level of bias towards the higher degree vertices as evident from the longer tail. However, when

p is close to 1, the network mainly consists of direct edges, and we don’t see long tails, a salient

property of many real world networks. The above results show that copy model is more general

and capable of generating many interesting degree distributions. Further, it also shows that our

algorithms produce scale-free networks very accurately.

Fig. 13. The degree distribution (in log− log scale) of the network generated by our parallel algorithms. The
network is generated with n = 10

9 and x = 4.

5.2 Performance of Partitioning and Load Balancing
Vertex partitioning has significant effects on load balancing and performance of the algorithm.

In Section 4, we have discussed three partitioning schemes SCP, LCP, and RRP, and theoretically

analyzed them. In this section, we experimentally study these schemes and their effect on the

performance of the algorithm. In these experiments, we use n = 100M vertices, x = 60 edges per

vertex, and 512 processors. 512 processors are sufficient to demonstrate the behavior and differences

of the partitioning schemes. For each of the three schemes, we measure the computational load in
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the processors by the number of vertices per processor, the number of outgoing messages from

the processors, and the number of incoming messages to the processors. The results are shown in

Fig. 14.

100K

150K

200K

250K

0 128 256 384 512

Processor Rank

N
um

b
er

 o
f 
V

er
tic

es

SCP

LCP

RRP

k=1024

k=128

k=2

Unsegmented

(a) Vertex distribution

0

2M

4M

6M

8M

0 128 256 384 512

Processor Rank
N

um
b
er

 o
f 
M

es
sa

ge
s

SCP
LCP
RRP

k=1024
k=128
k=2
Unsegmented

(b) Outgoing messages

0

10M

20M

30M

0 128 256 384 512

Processor Rank

N
um

b
er

 o
f 
M

es
sa

ge
s SCP

LCP

RRP

k=1024

k=128

k=2

Unsegmented

(c) Incoming messages

20M

30M

40M

0 128 256 384 512

Processor Rank

C
o
st

SCP

LCP

RRP

k=1024

k=128

k=2

Unsegmented

(d) Total computational load

Fig. 14. Vertex and message distribution for the partitioning schemes

Vertex Distribution. The vertex distribution is shown in Fig. 14(a). For SCP and RRP, vertices are

distributed uniformly among the processors, and each processor has about 195K vertices. For LCP,

the number of vertices in the processors are increasing linearly with the rank of the processors.

Message Distribution. In a consecutive partitioning (SCP and LCP), processor Pi sends outgoing

request messages to processors P0 to Pi−1 and receives incoming messages from processors Pi+1
to PP−1. For each vertex, a processor sends a request message with probability at most 1 − p (see

Equation 2). Thus, the expected number of request messages sent by a processor is proportional

to the number of vertices in the processor, as shown in Fig. 14(b). Note that in the SCP and LCP

schemes, processor P0 does not need to send any request messages at all.

Fig. 14(c) shows the number of incoming request messages for each processor. It is clear that a

lower ranked processor receives more messages than a higher ranked processor in consecutive

partitioning (SCP and LCP) as suggested by Lemma 4.1. In the RRP scheme, both incoming and

outgoing messages are evenly distributed among the processors.

Total Load Distribution. Besides sending and receiving messages, for each vertex, a processor

can incur a constant other computational cost. Thus, for analysis purposes, we measure the total

computational load of a processor as the sum of the number of vertices in the processor and
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the number of incoming and outgoing messages. Fig. 14(d) shows the total load for the three

partitioning schemes. The RRP scheme distributes the load almost perfectly among the processors.

Load balancing in the LCP scheme is also quite good. On the other hand, the SCP scheme distributes

the load very poorly. These experimental results verify our theoretical analysis given in Section 4.

Size of theWaiting Queue.With the segmented partitioning scheme, the total size of the waiting

queues is reduced with increasing segment size as shown in Fig. 15. Therefore, segmented partitions

yield better performance in our algorithm.
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Fig. 15. Change of run time based on segment size

Effect of Segment Size. Although an increasing segment size reduces the size of waiting queue,

it also reduces concurrency. Therefore, if the segment size is increased beyond some limit, the

performance would start to decrease. This is demonstrated in Fig. 16.
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Fig. 16. Change of run time based on segment size

Effect of p on Performance. If p is reduced, most of the edges produced consists of copy edges,

therefore requiring more message exchanges. As p is increased towards 1, most edges consist of

direct edges. Therefore communication is reduced. This is shown in Fig. 17.

5.3 Parallel Execution and Scalability

Strong Scaling. Strong scaling of a parallel algorithm shows its performance with an increasing

number of processors keeping the problem size fixed. Fig. 18 shows speedup factors of our algorithms

with segmented and unsegmented techniques using simple consecutive (SCP), linear consecutive

(LCP), and round-robin partitioning (RRP) partitioning schemes, as the number of processors
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Fig. 17. Effect of segmented partitioning on segment size

increases with problem size n = 100M and x = 60. Speedup factors are measured asTs/Tp , whereTs
and Tp are the running time of a sequential algorithm and the parallel algorithm, respectively. We

have implemented the sequential version of our algorithm in C++. This sequential implementation

outperforms the best available implementation of the BA model given in the NetworkX graph

algorithm library [17]. As the sequential algorithm cannot generate more than 6B edges due to

memory limitations, we choose n = 100M and x = 60. We varied the number of processors from 1

to 1024 for this experiment.
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Fig. 18. The strong scaling of our parallel algorithms for the problem size n = 100M and x = 60.

Parallelization of network algorithms is notoriously hard. Furthermore, we have observed that

the problem of generating a scale-free random network is quite sequential in nature due to the

dependencies among the edges. As Fig. 18 shows, the speedups of our algorithms are increasing

almost linearly with the number of processors. Given the sequential nature of the problem, our

algorithms show very good speedup. Further, the speedup of segmented versions performs better.

Note that both B-SCP and B-RRP is performing the best, due to better load balancing and reduced

queue size.
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Weak Scaling. Weak scaling measures the performance of a parallel algorithm when the input

size per processor remains constant. For this experiment, we varied the number of processors

from 16 to 1024. With the number of processors, the input size is also increased proportionally:

for P processors, a network with 10
7P edges is generated. Fig. 19 shows the weak scaling of our

algorithms with the increasing number of processors.
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Fig. 19. Weak scaling of our parallel PA algorithm.

In a perfect weak scaling case, the run time is expected to remain constant as the number of

processors (P ) increases. However, in practice, communication among processors increases with P ,
leading to an increase in run time. Our algorithm with the LCP and RRP schemes shows very good

weak scaling, almost constant run time. Again, due to poor load balancing in the SCP scheme, we

have worse weak scaling.

Generating Large Networks. Our main goal for designing this algorithm is to generate very large

random networks. Using our algorithm with the RRP scheme, we are able to generate a network

with 400 billion edges, with n = 10 B and x = 40. Using 1024 processors, the generation of this

network takes only five minutes.

6 RELATEDWORKS
Although the concepts of random networks have been used and well studied over the last several

decades, efficient algorithms to generate the networks were not available until recently. The first

efficient sequential algorithm to generate Erdős–Rényi and Barabási–Albert networks was proposed

in [9]. A distributed memory–based algorithm to generate preferential attachment networks was

proposed in [25]. However, their algorithm was not exact, rather an approximate algorithm and

required manually adjusting several control parameters. The first exact distributed memory–based

parallel algorithm using the copy model was proposed in [3]. Another distributed memory–based

parallel algorithm using the Barabási–Albert model was proposed in [23, 24]. However, instead of

using pseudo-random number generators, they used hash functions to generate the networks. A

shared–memory-based parallel algorithm using the copy model was proposed in [7].

Several other theoretical studies were done on the preferential attachment-based models. Machta

and Machta [22] described how an evolving network can be generated in parallel. Dorogovtsev
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et al. [13] proposed a model that can generate graphs with fat-tailed degree distributions. In

this model, starting with some random graphs, edges are randomly rewired according to some

preferential choices. There exists other popular network models to generate networks with power

law degree distribution. R-MAT [11] and stochastic Kronecher graph (SKG) [21] models can generate

networks with power–law degree distribution using matrix multiplication. Due to it’s simpler

parallel implementation, the Graph500 group [1] choose the SKG model in their supercomputer

benchmark. Recently, a massively parallel network generators based on the Kronecher model was

presented in [18]. Highly scalable generators for Erdős-Rényi, 2D/3D random geometric graphs,

2D/3D Delaunay graphs, and hyperbolic random graphs are described in [15]. The corresponding

software library release also includes an implementation of the algorithm described in [24]. An

efficient and scalable algorithmic method to generate Chung–Lu, block two–level Erdős–Rényi

(BTER), and stochastic blockmodels were also presented in [4]. Their algorithm can generate

power–law networks with a given expected power–law degree distribution. Recently there is a

trend of using Graphics Processing Unit (GPU) for graph problems. A GPU-based preferential

attachment based algorithm on the GPU using the copy model was proposed in [5, 6].

A summary of runtime performances of parallel algorithms to generate power-law networks is

presented in Table 2. All the corresponding numbers are collected from the corresponding paper.

Although the underlying machines and architectures are different among these implementations,

the numbers present a broad depictions of performance of these implementations. For comparative

analysis among these implementations, we define the number of edges generated by each processor

per second as ourmetrics. In this paper, we used a generalized copymodel to generate the power–law

networks that still have dependencies and communications among processors. A relaxation of using

hash functions instead of using pseudo-random generators can eliminate the communications and

dependencies and hence yields better performance [24]. The Chung–Lu model also performs well

to generate a power–law degree distribution although it does not preserve the network structure

define by the Barabási–Albert or the Copy models [4]. Kronecher products are also very effective

to generate power–law networks that require pre-computed matrices to generate the networks

[18]. The GPU–based algorithms offer a significant improvement on performance, even with the

most constraint Copy model without any relaxation on a single GPU [5, 6]. It remains to be seen

how the algorithm scales with larger networks with multiple GPUs.

Table 2. Runtime performance recent power-law network generators

Implementation Edges Processors Runtime (sec.) Million Edges/Proc./Sec.

Alam et al. [3] (this paper) 4 × 1011 1024 300 4.44

Sanders et al. [10] 10
15

16384 3600 16.95

Alam et. al. [4] 2.5 × 1011 1024 12 20.35

Kepner et. al. [18] 1.15 × 1012 41472 1 27.65

Alam et. al. [5, 6] 2 × 109 1 GPU 2.3 869.57 (Per GPU)

7 CONCLUSION
We developed a parallel algorithm to generate massive scale-free networks using the preferential

attachment model. We analyzed the dependency nature of the problem in detail that led to the

development of an efficient parallel algorithm for the problem. Various vertex partitioning schemes
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and their effect on the algorithm were discussed as well. Our algorithm produces networks which

strictly follow power-law distribution. The linear scalability of our algorithm enables us to produce

400 billion edges in just five minutes. It will be interesting to develop scalable parallel algorithms

for other classes of random networks in the future.
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