Exact-Differential Simulation: Differential Processing of
Large-Scale Discrete Event Simulations

MASATOSHI HANALI, Nanyang Technological University, Singapore

TOYOTARO SUZUMURA, IBM TJ. Watson Research Center, USA

ELVIS S. LIU, Southern University of Science and Technology, China

GEORGIOS THEODOROPOULQS, Southern University of Science and Technology, China
KALYAN S. PERUMALLA, Oak Ridge National Laboratory, USA

Using computer simulation to analyze large-scale discrete event systems requires repeated executions with
various scenarios or parameters. Such repeated executions can induce significant redundancy in event pro-
cessing when the modification from a prior scenario to a new scenario is relatively minor, and when the
altered scenario influences only a small part of the simulation. For example, in a city-scale traffic simulation,
an altered scenario of blocking one junction may only affect a small part of the city for considerable length of
time. However, traditional simulation approaches would still repeat the simulation for the whole city even
when the changes are minor. In this paper, we propose a new redundancy reduction technique for large-scale
discrete event simulations, called exact-differential simulation, which simulates only the altered portions of
scenarios and their influences in repeated executions while still achieving the same results as the re-execution
of entire simulations. The paper presents the main concepts of the exact-differential simulation, the design of
its algorithm, and an approach to build an exact-differential simulation middleware that supports multiple
applications of discrete event simulation. We also evaluate our approach by using two case studies, PHOLD
benchmark and a traffic simulation of Tokyo.

CCS Concepts: « Computing methodologies — Modeling and simulation; Discrete-event simulation;
Massively parallel and high-performance simulations.

Additional Key Words and Phrases: Differential processing; incremental processing; what-if simulation;
redundancy reduction

ACM Reference Format:

Masatoshi Hanai, Toyotaro Suzumura, Elvis S. Liu, Georgios Theodoropoulos, and Kalyan S. Perumalla. 2010.
Exact-Differential Simulation: Differential Processing of Large-Scale Discrete Event Simulations. ACM Trans.
Model. Comput. Simul. 0, 0, Article 0 (2010), 25 pages. https://doi.org/0000001.0000001

1 INTRODUCTION

Parallel Discrete Event Simulation (PDES) is a beneficial method for fast and scalable execution of
large-scale discrete event simulations such as city-/country-scale traffic simulation or Internet-scale
network simulation. PDES is able to deal with large numbers of simulated entities executed in
a synchronized manner across multiple processors and multiple computers. Recent studies have

Authors’ addresses: Masatoshi Hanai, Nanyang Technological University, Singapore, mhanai@acm.org; Toyotaro Suzumura,
IBM T.J. Watson Research Center, USA, tsuzumura@acm.org; Elvis S. Liu, Southern University of Science and Technology,
China, esyliu@sustc.edu.cn; Georgios Theodoropoulos, Southern University of Science and Technology, China, georgios@
sustc.edu.cn; Kalyan S. Perumalla, Oak Ridge National Laboratory, USA, perumallaks@ornl.gov.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2010 Copyright held by the owner/author(s). Publication rights licensed to ACM.

XXXX-XXXX/2010/0-ARTO $15.00

https://doi.org/0000001.0000001

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

0:2 M. Hanai et al.

shown the outstanding scalability of PDES, where over one hundred million states and over 30
trillion events can be handled on systems with up to 2 million CPU cores [1, 2, 5].

Since large-scale systems consist of numerous events and states, the use of PDES to analyze them
requires a large number of repeated simulations based on various what-if scenarios and parameter
patterns. For example, the Tokyo traffic simulation [15, 25, 26, 29] made 770,000 (770K) repeated
simulations to analyze what happens if one of the roads was blocked, since there are 770K junctions

and thus generated the same number of blocking scenarios. If pairs of blocks of the junctions are
770K

5) If scenarios become more

complex, the number of simulations would increase exponentially and reach 277°K = ZZ?K (77?K)

However, repeating the entire simulation leads to a lot of redundancy in event processing
especially when the altered scenarios affect only a small part of the simulation and, as a result, most
of the events and simulation results would be the same as the prior simulations. Furthermore, since
it would be difficult to determine how much the altered scenarios affect the final results, therefore
it is generally difficult to identify the altered parts before repeating the simulation. In fact, this
problem can also be seen in the Tokyo traffic simulation—some road blocks affect a very limited
part of Tokyo but others affect wide areas, and the level of influence cannot be determined before
repeating the simulation.

In this paper, we propose exact-differential simulation, a differential processing technique for
large-scale discrete event simulations. This technique only simulates the parts changed by the
altered scenarios while keeping other parts of the simulation intact. The word “exact” implies
that the final results are identical to the results obtained from traditional simulation of the altered
scenario. The word “differential” implies that only events which differ from the base simulation,
and subsequent causal effects are reprocessed. The main steps of the exact-differential simulation
are as follows: (1) in the initial baseline simulation, the simulator processes the entire scenario
and stores the logs of all states and events of the simulation, and (2) in a subsequent repeating
simulation, the simulator only reprocesses altered events and their influences on other events by
using the stored logs of the baseline simulation.

simulated, the total number of simulations exceeds 296 billion (

1.1 Challenges and Contributions

The challenges of the exact-differential simulation fall in two different areas: (1) algorithmic
challenges and (2) software challenges.

(1) How can the impact of altered scenarios be determined and reprocessed? Which types of
logs are required for these processes?

(2) How can the system be built to separate the application logic from the implementation? In
other words, is it possible to construct the system as a middleware, where it does not need
additional application code by the simulation user, in order to exploit the exact-differential
mechanisms?

Addressing these challenges, the main contributions of the paper are as follows:

(1) It presents a mechanism of exact-differential simulation by using optimistic PDES.

(2) The potential performance improvement of the proposed mechanism as well as the impact of
altered scenarios to the number of reprocessing events are analyzed statically.

(3) The architecture of a middleware of exact-differential simulation is presented, which facilitates
exact-differential simulation without requiring any additional application-specific code. The
middleware only reuses original application codes.

(4) The performance improvement of the exact-differential simulation is evaluated by using
two different types of applications: a synthetic PDES benchmark (PHOLD) and a large-scale
microscopic traffic simulation of Tokyo city.

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

Exact-Differential Simulation 0:3

Based on our previous work on differential processing for traffic simulations [13], we extend its
applicability to general PDES. In addition, we present a new static analysis based on states’ data
structure of the simulation model, and an empirical analysis of the synthetic benchmark (PHOLD)
using our simulator.

The rest of the paper is organized as follows. Section 2 briefly describes the background of PDES.
Section 3 presents the principles in the design of the exact-differential simulation as well as a
discussion on static analysis. Section 4 presents and discusses the implementation of the proposed
system. Section 5 evaluates the proposed system by using two different applications. In Section 6, a
review of the related work is given, before concluding the paper in Section 7.

2 PARALLEL DISCRETE EVENT SIMULATION

PDES is concerned with parallelizing a sequential timestamp-ordered discrete event simulation on
multiple processors or multiple computers. In a PDES, a simulation is divided into multiple units of
sequential event processing, called logical process (LP); each LP includes a local clock, a local state,
and a timestamp-ordered priority queue for future events. An LP locally processes its own events
in timestamp order while advancing its clock time. Since the events may be communicated among
LPs and their local clocks influence each other, performing time synchronization to obtain the same
simulation results as sequential simulation is a key challenge of PDES, which has been studied
extensively over the years. In particular, optimistic synchronization is a well-known approach,
featuring rollback and restart mechanisms. PDES with optimistic synchronization can be referred
to as optimistic PDES, which is described in the following subsection.

Optimistic Parallel Discrete Event Simulation

In optimistic PDES, isolated LPs execute their events speculatively and concurrently in timestamp
order. When a newly generated event is assigned to an LP, it will be immediately sent to this
destination LP and added to a timestamp-ordered priority queue. Such speculative process may
lead to causality violations of the events’ timestamp order. For example, an LP may sometimes
receive new events with a timestamp earlier than its local clock time. To recover from the causality
violation, the optimistic PDES employs a rollback mechanism, which requires every LP to keep a
history of three types of intermediate data, including: (1) future events in the priority queue, (2)
negative copies of the generated event messages after the process (referred to as anti-messages),
and (3) data required to rollback state updates (referred to as state data), such as an entire state
in each update (referred to as copy state saving) or the modified parts of the state (referred to as
incremental state saving). By using these intermediate data, the causality violation can be recovered
by using the following approach.

e If an LP receives a new event that has a timestamp earlier than its local clock time, then the
LP corrects its local clock time and local state to the received event’s timestamp (i.e. rollback).
After that, the new event is inserted to the LP’s priority queue. Since the new event may
cause additional causality violations (i.e. different results in the subsequent event processing),
stored anti-messages later than the corrected time are sent to their destinations to recover
the causality violations. Finally, the LP restarts local processing.

e If an LP receives a new anti-message, it carries out a process based on the following two
cases.

— Case 1: The timestamp of the received anti-message is earlier than the LP’s local clock time.
In this case, the LP sets its local clock time and local state to the anti-message’s timestamp
(i-e., rollback). After that, stored anti-messages with a later timestamp are resent recursively.

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

0:4 M. Hanai et al.

— Case 2: The timestamp of the anti-message is later than the LP’s local clock time. In this
case, a stored future event, which is identical to the anti-messages, is deleted from its
priority queue.

After that, the receiving LP restarts local processing again.

During the speculative process, the minimum local clock time, called Global Virtual Time (GVT),
is periodically shared among LPs to clean up useless data of the past, such as events, anti-messages,
and states. Specifically, stored data with a timestamp earlier than the GVT are ensured to be no
longer used by the rollback process and are removed from the LPs. Furthermore, if GVT reaches
the end time of simulation, all LPs are ensured that they can no longer rollback before the end time.
Hence, the simulation can be terminated.

Optimistic synchronization has been studied extensively since the publication of its first paper
[19]. Moreover, the book “Parallel and Distributed Simulation Systems” [11] provides a comprehen-
sive summary of PDES and its synchronization techniques.

3 EXACT-DIFFERENTIAL SIMULATION

Exact-differential simulation is a differential processing method for timestamp-ordered discrete
event simulation based on optimistic synchronization. It consists of two main steps: initial baseline
simulation and one or more repeating simulation(s). In the initial baseline simulation, all future
events, anti-messages and state data are kept in the simulator; while in the repeating simulation,
the simulator reprocesses altered scenarios and their influences, which are detected by using the
mechanism of causality violation recovering in optimistic PDES. Generally, the initial baseline
simulation is executed once, followed by multiple repeating simulations using various what-if
scenarios and/or parameters.

3.1 Initial Baseline Simulation

In the initial baseline simulation, scenarios are processed at the beginning in the same way as a
typical optimistic PDES. The future events, anti-messages, and state data are kept in the system
instead of being removed during the GVT calculation; therefore, they are ensured to be no longer
used for rollback. The LPs speculatively process their events in parallel. If causality violation
occurs, rollback is carried out to recover it as described in Section 2. In GVT calculation, unlike the
optimistic PDES where historical events, anti-messages, and state data older than GVT are released
from memory space, the historical data are kept on each LP in timestamp order and will be reused
in repeating simulations.

3.2 Repeating Simulation

In the repeating simulation, the simulator only processes altered events and their influences by
recovering causality violation as described in Section 2. Figure 1 shows an example of the repeating
simulation, which starts from the “altered scenario” at LP, and influences LP,,_y — LP, 3. For the
sake of simple illustration, only the priority queues of future events are illustrated in the figure and
the priority queues of anti-messages and state data are omitted.

The repeating simulation starts from altered scenarios, in which the starting LPs roll back their
changes. The changes then spread to other LPs, which recursively roll back their changes, and again
cascade to other LPs. Furthermore, multiple alternations are allowed, and in this case, the processes
are conducted in parallel and their concurrency is controlled by the optimistic synchronization.

The altered scenarios are assigned to LPs according to their space and time, that is, starting
LP’s identifier (ID) and starting time. Based on the ID and time, the starting LPs correct their local
clock time to the altered scenarios’ time from infinity (or the finish time of the initial baseline

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

Exact-Differential Simulation 0:5

Priority Queue for Future Events
RERO0000000I0ICI0 T O 0000000000

e 0000 O g 00000 Dol
LPy.1 [e]e[e[o]e] -:- [o

New Event / —— —

Altered
Scenario

LP, |ole[e]e[®] -

0 Time

@ : Old Event Q: New Event Y : Deleted Event : Reprocessing Part

Fig. 1. Repeating Simulation

execution) and send anti-messages to the neighbor LPs in the same way as a rollback in traditional
optimistic synchronization. After that, the starting LPs reprocess scenarios based on the local
clock time. When new events are assigned to other LPs, they are immediately sent to the assigned
LPs. When the assigned LPs receive events and/or anti-messages, they recover causal violation in
the same way as traditional optimistic synchronization. Specifically, if they receive events and/or
anti-messages which have a timestamp earlier than their local clock, they correct their clock and
send new anti-messages recursively. On the other hand, if they receive events and/or anti-messages
that have a timestamp later than their local clock, they insert the events to the future event priority
queue (in the case of events) or remove the events (in the case of anti-messages). The GVT is
calculated in the same way as optimistic PDES starting from the altered scenario time, and if the
GVT reaches finish time, then the repeating simulation is finished.

Figure 1 illustrates an example of this process. In this example, the repeating simulation starts
from the “Altered Scenario” at LP,,. Firstly, (1) the LP,, corrects its local clock time and rolls back
its state. After that, (2) the LP, sends anti-messages to LP, and LP,, to delete old events making
the causality violation. Then, (3) it processes events from the corrected time and generates new
events sending to LP,,_; and LP,. In LPs which receive new events or anti-messages (i.e. LP,—; and
LP, 1), they roll back their local clock time and state and process their events recursively. Finally,
the influence cascades to some parts of entire LPs shown as “Reprocessing Part”, and the simulation
reaches finish time and terminates.

Compared to a traditional (complete, non-differential) repeating simulation, which starts from
the beginning and processes all scenarios, this approach could significantly reduce the number of
processed events.

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

0:6 M. Hanai et al.

3.3 Static Analysis of Exact-Differential Simulation

This subsection discusses the performance characteristics of the exact-differential simulation. We
first formulate speed up based on the number of processing events and reprocessing rate. We
then analyze and discuss the reprocessing rate in the repeating execution. Holistic performance
evaluation of the actual simulator including a simulation model, a synchronization method, thread
management, the number of parallel processors, hardware environments, and so forth, is discussed
and evaluated in Section 4 and Section 5. In this section, we focus on the relation between the
performance and the number of processing events since this is a key deciding performance factor
derived directly from the exact-differential simulation.
Table 1 lists notations used for the reprocessing rate formulation.

Table 1. Notation for Static Analysis

Description
E Set of events
T(E) Wall-clock time to process events E
Ean Set of all events in the repeating simulation (processed events in naive simulation)
Eex-diff Set of ex-diff reprocessing events in the repeating simulation
tall Average elapsed time of processing single event in naive simulation
tex-diff Average elapsed time of processing single event in ex-diff repeating simulation
a Overhead of exact-differential repeating simulation from naive simulation
S Speed up of exact-differential repeating simulation from naive simulation
r Reprocessing rate (<|Eex_diff|> /{|Ean1l))
|Etocal (Ip, m)| Number of local events between m-th and m + 1-th message communications at Ip
i Counter of Average-case Model
|LPap;] Number of all LPs
ILPinfiuence(i)| || Number of influenced LPs in the repeating simulation in average model

3.3.1 Speed Up. First, we estimate the speed up of the exact-differential simulation over a simula-
tion which naively processes all events (referred to as naive simulation). Let E be a set of events and
T(E) be the wall-clock time to process E. We use the operator | * | as the number of elements in .
Suppose E,j; is a set of all events in the repeating simulation, the wall-clock time of the repeating
simulation by the naive simulation is denoted as T(E,y;). t,y; is defined as the average wall-clock
time for processing a single event in the naive simulation. The wall-clock time using the naive
simulation is expressed as follows.

T(Eanr) = tai - |Eaul

Similarly, let Eox_qirf (S Eanr) be a set of processed events in the repeating execution by using
the exact-differential simulation, and t,,_q4iff be the average wall-clock time of processing a single
event in the exact-differential repeating simulation. The wall-clock time of the repetition using the
exact-differential simulation is expressed as follows.

T(Eex-aiff) = tex-diff = |Eex-diffl

We define the speed up of the exact-differential simulation as the division of the naive simulation’s
wall-clock time (i.e. T(Eq;)) by the exact-differential simulation’s wall-clock time (i.e. T(Ecx-aifs))-

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

Exact-Differential Simulation 0:7

The speed up is expressed as follows.
T(Ean)
T(Eex-aiff)
tan_ |Eanl

tex-diff |Eex-diffl
o

>

r

(Speed Up) =

where a := tq1;/tex-aify is the overhead of event processing in the exact-differential simulation
from the naive simulation, and we refer to r as reprocessing rate, which is defined as follows.

r:=|Eex-airfl/|Eanl (1)
We will discuss its details in the next subsection.

3.3.2 Reprocessing Rate. Second, we estimate reprocessing rate, namely parameter r as stated
before. From the view point of event processing in each LP, the reprocessing in the exact-differential
simulation is basically caused by event communication, which is characterized by the frequency of
events communication and the number of neighboring LPs to communicate events. For example, in
Figure 1, the number of reprocessing events is obviously related to the number of events sent. If the
frequency of sending events becomes higher, the number of reprocessing events can be expected to
increase.

Therefore, in the following part, we only focus on the performance features caused by the
frequency of event communication and the number of neighboring LPs to communicate events.
Other performance factors, such as the simulation model, the synchronization method, and the
hardware environment are simplified or omitted in this discussion. The holistic performance results
are shown in Section 5.

Let Ejocai(Ip, m) be a set of processing events between message communications which causes
new event at the destination LP as shown in Figure 2. Ej,.q;(Ip, m) has two independent variables,
Ip and m € N. [p is the identifier of the LP. m identifies a message. It starts with 0 and increments per
message in each LP. If an event generates two messages, Ejocq1(Ip, m) is empty (e.g. |Ejocai (LPn, 2)|
in Figure 2). Then, the total number of reprocessing events using the exact-differential simulation
is represented as follows.

[Msg(Ip)
|Eex-diff| = Z Z |Elocal(lp’ m) l,
IpeLPs m=0
where |Msg(Ip)| is the number of messages that are sent from Ip and causes new event at the
destination.
For further discussion, we consider an average case to simplify the model as follows.

e Every LP processes {|Ejocq1|) €vents in average between two message communications.
e Let i be a counter which initializes at zero and increments every time when each influenced
LP processes {|Ejocq1|) events. The simulation will finish at end (i.e. 0 < i < end).
e The number of influenced LPs at i is defined as |LPinfiuence (i)|-
Figure 3 shows the exact-differential simulation represented by the simplified average model.
Under this assumption, the number of influenced events |E.,_gifr| is expressed as follows.

end

|Eex—diff| = Z |LPinfluence(i)| “{|Eiocatl) -

i=0

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

0:8

LPna
LPns
LPnz
LPny
LPn

LPns1
LPrs2
LPrs3

LPn+4
LPn+5

M. Hanai et al.

mm&ﬂ ®==Y

EJocal(LPn 3)
SITOI0

Scenario

O : Reprocessing Event

Fig. 2. Cascading of Reprocessing Events in Exact-Differential Simulation.

LPrs-s]@ OO0 00000000000000000rE:s
LPns .:I!ﬂ';\lteredl.l. 000000 OIOIOIOIOIOIOIQIOIOIOIOIOIO O--
LPy> -+-J@]e] Scenario)[e .|.|o[o|o|o|o,p|o[01010|01010|01010|0|0|o O--
SR (OO 00 00000000 OIOIOIOIOIOIODIOIOIOIOIOIO O--
T [(5] (6] (o) (] (o] [e] [e] (o] (o] o] (o] s][6] (o] OIOIOIOIOIO‘[O [O[O[O[O[OIO[O - -
LPpi1==-]o]e[eo]e]o]e]e]® IOIOIOIOIQ{O [¢](e][][e][s][e]e[e](e][e][s][e][s] [OXEC
Hmpuuohnhunhohhhhnmohhhhhhbbbbbbbo"
LPrz+=|e]o|e]o/e|e]e]0]e]0][e]|e]e]e]® [e](](s] O OlO[O[OI0I0[0 ==
Lﬂw"hohhhhhhohhhhhhohhhhhnbmmmmmbou
LPy.s++-]e|e]ee[e]e[e]e|o]e]e[e[e]e]e|e[e]e]e[e[e[e|e[e[e[e[e]e]e]0 - -
: i=0 i=1 i=2 i=3

LPn3, LPn2
LP, LPo LPoa ol e s

LPn43, LPnia

..‘ Reusable

< | Ejocall >

Event

<
0000000

O : Reprocessing Event

.: Reusable

Event

Co

Fig. 3. Exact-Differential Simulation of Message Forwarding in Average Model.

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

Exact-Differential Simulation 0:9

The number of events in the naive simulation |E,j| is expressed as follows.

end

Eautl = > ILPautl - (|Eiocatl)
i=0

end - |LPqyi| - {|Ejocall) »

where |LP,j;| is the total number of LPs.
To summarize, the reprocessing rate is expressed as follows.

roi= IEex—diff|/|Eall|
end

Z |LPinfluence(i)| “A|Eiocall)
i=0

end - |Lpall| . <|Elacal|>

end

Z |LPinfluence(i)|
i=0

end - |LPqy|

Reprocessing Rate in Random Forwarding (PHOLD benchmark): We further estimate the
reprocessing rate in the case when the events are forwarded randomly. If there is one altered event
and each LP sends a message to one LP after processing (|Ejocq1|) events as shown in Figure 3 (this
is, for example, the case in the PHOLD benchmark discussed later in Section 5), then the number
of influenced LPs at i can be calculated as below. First, the number of LPs which have not been
influenced at i is expressed as [LPuj;| — |LPinfiuence (i)|. Then we can define a recurrence relation
as follows.

|LPayt| = |Lpinfluence(i)|
|LPa11] '

|LPinfluence(i + 1)' = |LPinfluence(i)| + |LPinfluence(i)| :

Suppose |LPiyfiuence(0)] = 1 (i.e. the what-if scenario alters the state of one LP), then the recurrence
relation can be calculated as follows.

[LPay| - |LPinfluence(i + 1)' _ (lLPalll - LPinfluence(i)|)2
|LPa] |LPa]
2
|LPinfluence(i)| = |LPayl = |LPgy] - (1 - |LPa1[|)

Here, we are interested in how the influenced LPs expand over the simulation. Thus, we suppose
|LP4y| is large enough (i.e. 1/|LP,;;| — 0) and 2 is relatively small (otherwise, ILPinfiuencel would
easily reach to |LP,j;|, and we do not need to analyze the behavior of the influence any more). In
this case, the result becomes much more straightforward.

21
. 1
|LPinfluence(l)| = |LPayl = |LPqyl - (1 - |LPa”|)

14

2[
|LPgyy| — |LP, ll|‘(1_)
¢ ¢ |LPgay]

= 29

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

0:10 M. Hanai et al.

The reprocessing rate in the average model is formulated as follows.

r = |Eexaiffl/|Eaul

end

Z |LPinfluence(i)|
i=0

end - |LPyy|

end

2.7

i=0
end - |LPa11|
z(zend _ 1)
end - |LPyy|

In actual scenarios, end is usually determined by the finish time of simulation. Suppose the
timestamp interval in the i-th iteration is the same for each LP, end is defined as

end = |Tfinish|

= 2
¢’ {|Eiocail) @

where Tf;p;sp is the finish time of simulation, and constant value ¢’ is the average of timestamp
interval between two sequenced events. Finally the formula is expressed as follows.

r = |Eexaiffl/|Eantl
‘Tfinish‘

2(2 Ejocall) — 1)

‘Tfinish‘
c(|Erocal) |LPall|

_ 2¢"{|Ejocail) (2 Erocall) — 1) (3)
|Tfinish| * |LPgy] '

Reprocessing Rate in Grid LPs (Traffic Simulation): In this subsection, we estimate the
reprocessing rate in the case when the events are communicated on a grid structure as shown in
Figure 4 (this is a similar case to the traffic simulation discussed in Section 5). In this case, if the LPs
send events to all 4 neighbors at every interval, then the number of influenced LPs at i is expressed
as |LPinfiuence ()| = |LPinfluence(i)| + 4i. Suppose |LPipfiyence(1)| = 1 (i.e. the what-if scenario
alters the state of one LP), then the recurrence relation can be calculated as follows.

|LPinfluence(i)| = 2(1 - 1) i+ 1,

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

Exact-Differential Simulation 0:11

where |LP;i,f1uence (i)| < |LPgy|. Hence, the reprocessing rate can be calculated as follows.

r = |Eex-aiffl/|Eanl
end

Z |LPianuenL‘E(tW)|
i=0

end - |LPqy|

end

Z{Z(i—1)~i+1}

i=0
end - |LPyy|
371 . (2end® + end)
end - |LP,j|
2end® + 1
3|LPqap1l

1 Tinis 2
- 2(Tyinish|) +10. @)
3|Lpall| cl<|Elocal|>

Py
:
® —9-9-9-0-0— mo%«
-

¢
i=0 i=1 i=2 i=3

® : New influenced LP @ : Already influenced LP

Fig. 4. Influenced LPs in a Grid Structure.

Summarizing the above equations (Equation (3)(4)), these two results indicate that under the
fixed finish time of simulation, the performance is improved by maximizing {|Ejocq1|), Wwhich can
be achieved, for instance, by the reduction of message communication and the increase of the
number of events that are processed locally. In addition, their respective performance profiles
have completely different characteristics. The performance improvement of random forwarding is
more difficult to achieve than that of Grid LPs since the reprocessing rate of random forwarding
(i.e. r) is affected by the term (|Ejocarl) - 21/ Erocat) gg Equation (3), whereas the reprocessing rate
of Grid LPs is affected by the term of (|Ejcq;|) ™ in Equation (4). The respective speed ups (i.e.
a/r) for Equation (3) and Equation (4) are highly different especially for small (|Ejocq1]) since
(<|Elocal|> : 21/<|Elucal|>)_1 < <|Elacal|>2 when (|Ejocqil) is small.

These results are mainly determined by the number of connected neighbors in each LP. In the
random-forwarding case, each LP can potentially communicate with any other LP; in the Grid case,
however, each LP may only communicate with up to 4 neighboring LPs. Hence, in general, in the
former case, the set of influenced LPs would expand exponentially over the simulation, leading
to an exponential increase in the reprocessing rate (Equation (3)); whereas in the latter case, the
influenced LPs would expand polynomially, resulting in an polynomial increase in the reprocessing
rate (Equation (4)). These behaviors are observed also in the experimental analysis in Section 5.

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

0:12 M. Hanai et al.

The theoretical analysis in this section may provide a good guidance for the modeler to effectively
utilize the exact-differential simulation. In order to achieve a good performance improvement, a
clustered distribution of the simulation states to LPs is required so that connectivity and messages
exchanged between LPs are minimized.

4 IMPLEMENTATION

We have implemented the proposed exact-differential simulation by extending an optimistic PDES
simulator. An overview of the system architecture is illustrated in Figure 5 and Figure 6. The system
consists of three modules: application module, simulation runtime module, and communicator
module.

In the application module, the actual simulation logic and algorithms, such as the event handlers
for the PHOLD benchmark and the traffic models, are included. In addition, the exact-differential
simulation mechanism is completely independent of the application code and logic. This module
only processes an event from the simulation runtime module, and then returns new events and a
new updated state to the simulation runtime module by using a simple C/C++ interface.

void eventHandler(Event** newEvents, State* newState,
const Event& event, const State& state);

The function must be implemented by the modeler to be referentially transparent between the
baseline simulation and the repeating simulation. In other words, among the baseline and the
repetitions, the event handler always gives the same new events and new state for the same
argument. By doing so, the exact-differential simulation can safely skip the redundant part of
the baseline simulation. It ensures the results of the exact-differential simulation and the entire
simulation (i.e. the traditional way to repeat simulations by processing every scenario) are identical
for the same what-if scenario. Thus in the stochastic model, for instance, the modeler needs to
implement the random behavior in such a way that the event handler returns the same value for
the same argument (in practice, such mechanism can be implemented by using the same random
seed between the baseline and repeating simulations)

The simulation runtime module manages storage and retrieval of simulation logs such as events,
anti-messages, and state data. It also controls global ordering of events based on optimistic PDES,
including rollback, restarting, and GVT calculation. The state data is obtained by naive copy state
saving in which the LPs simply copy their state value in every event processing task and manage
them through a timestamp-ordered queue. This module also manages the event processing threads
by using a thread pool and the “least timestamp first” queue (LTSF queue) for parallel processing
that is maintained in shared memory. The core mechanism of exact-differential simulation is
implemented in this module and it is not required to add application specific code.

Finally, the communicator module controls node to node communications, which include events
communication and GVT calculation. Its implementation is based on an asynchronous messaging
interface of MPI (i.e. MPI_Isend and MPI_Irecv).

More details of the implementation are available in the public repository of our optimistic PDES
simulator, ScaleSim [12].

4.1 Implementation of Initial Baseline Simulation

In the initial baseline simulation, as shown in Figure 5, events are basically processed in the same
way as the traditional optimistic PDES described in Section 2, where the LPs speculatively process
the events in parallel with the use of rollback and restarting operations. During the process, GVT
is calculated periodically in order to identify which events are no longer rolled back and/or deleted.
Unlike the original optimistic PDES, events, anti-messages, and state values with a timestamp

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

Exact-Differential Simulation 0:13

(/Application NOdel (/Application Node
e e Changed / Affected J Node

Affected Events, States, Node

Event & State
Future event queue Simulation LP Future event queue Node
[e]e]e]e]e[e]o]e] | Runtime [Olo[o[ofo] T T 11
New State State queue ew State State g
Anti-Message IO OO 0QOOM Anti-Messag @...
LP ::> Anti-message queue Node
A [OIoo[ofof | T 11
Cfe?] LP

—

| LP aager Ll orage |
Changing Query,

¥ T i Received Event | v

Node \ E Node

Fig. 5. Initial Baseline Simulation. Fig. 6. Exact-Differential Repeating Simulation.

smaller than GVT are stored in the local storage for later repeating simulation, instead of being
released. The events, anti-messages, and state values are basically stored in memory space. Therefore,
one of the limitations of the proposed approach is the memory capacity of te system. This can
be overcome, for example, by using a system with a larger memory space or extending the local
storage to secondary disk, where it could, however, lead to performance degradation due to the
additional overhead of the disk accesses.

4.2 Implementation of Repeating Simulation

In repeating simulation, the simulator first accepts as input a what-if scenario defined by the
virtual time and the LP ID of an altering scenario and a query type such as ADD, DELETE, or
UPDATE_STATE. Algorithm 1 describes the processing steps of the what-if scenario. In the case of
ADD (line 5 - 9), a new event generated from the ADD query is inserted into the event queue and
the local clock time is corrected to the new event’s time (i.e. rollback). After that, anti-messages
are sent to all affected LPs. In the case of DELETE (line 10 - 15), an old event generated from the
DELETE query is removed. The local clock time is corrected to the old event’s time (i.e. rollback).
Finally, anti-messages are sent to the affected LPs. In the case of UPDATE_STATE (line 16 - 20),
the state is updated by using a value of the scenario and its local time is corrected to the updated
time (i.e. rollback). After processing the what-if scenario, events are processed according to the
corrected time (line 25 - 27).

Figure 6 shows the event processing flow in the repeating simulation. Unlike usual optimistic
PDES, during the event process, events, anti-messages, and state values are required to be loaded
from storage if necessary. Algorithm 2 describes a mechanism to load the events, anti-messages,
and state values. We extend the function of receiving event presented in line 3 — 24 of Algorithm 2.
In our simulation, events received from other LPs are buffered before they are inserted to the event
queues (line 1). If a newly received event has a receiving time smaller than the minimum loaded
time (which is initialized to infinity), then the stored events, anti-messages, and states are loaded
from the storage (line 7 — 9) before they are inserted to the queues (line 14 — 21). After that, the
minimum loaded time is updated to the new received time (line 22), and then the newly received
event is inserted to the event queue as usual (line 25).

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

0:14 M. Hanai et al.

Algorithm 1 What-if Scenario Processing

1: /* What-if Scenario Processing */

2: while hasWhatI f Scenario() do

3. scenario « getWhatl fScenario()

4 lp « getLP(scenario.lp_id)

5. if scenario.type = ADD then

6: newEvent « scenario.event

7 Ip.insert(newEvent)

8 Ip.rollback(newEvent.time)

9: Ip.sendAntiMessagesToNeighbors()
10: else if scenario.type = DELETE then

11: oldEvent « scenario.event

12: Ip.delete(oldEvent)

13: Ip.sendAntiMessage(oldEvent)

14: Ip.rollback(oldEvent.time)

15: Ip.sendAntiMessageToNeighbors()
16: else if scenario.type = UPDATE_STATE then
17: newState « scenario.state

18: Ip.updateState(newState)

19: Ip.rollback(scenario.time)

20: Ip.sendAntiMessagesToNeighbors()
21: endif

22: end while

23:

24: /* Event Processing */

25: while getGlobalVirtualTime() < TIME_TO_FINISH do
26: Reprocess influenced events with optimistic PDES

27: end while

5 EVALUATION

In this section, we present an experimental evaluation of the proposed exact-differential simulation
using two case studies: (1) the PHOLD, which is a standard synthetic benchmark of PDES, and (2) a
microscopic traffic simulation of the city of Tokyo. The objective of the evaluation is to measure
the performance of the exact-differential simulation under both a synthetic workload as well as
a real-world application. According to the theoretical discussion in Section 3, the key theoretical
performance factor is the reprocessing rate (as defined in Equation (1)). Thus, we evaluate not only
the elapsed time of the simulation but also the reprocessing rate since the elapsed time involves
other factors unrelated to the algorithm itself, such as the computational platform and the specific
implementation. The reprocessing rate gives an indicator of the performance improvement that is
only due to the algorithm.

Table 2 presents the details of the evaluation testbed. We used the TSUBAME 2.5 supercomputer
[30] located at the Tokyo Institute of Technology, Japan, which consists of a 12-core CPU and 54GB
main memory per node, while the nodes are connected by InfiniBand. The SUSE Linux Enterprise
Server 11 sp 3, Open MPI 1.6.5, and GCC 5.2 (C++11) were used as its software environment. To
perform the simulations, we employed the ScaleSim [12] simulator, which supports exact-differential
simulation.

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

Exact-Differential Simulation 0:15

Algorithm 2 Extension of Receiving Event in Exact-Differential Simulation

1: while receiveEventBuf fer.hasEntity() do
2. newEvent « receiveEventBuf fer.dequeue()
3 /* Extended Part */

4. if newEvent.time < store.minLoadedTime then

5: from < newEvent.time

6 to « store.minLoadedTime

7 oldEvents « store.getEvent(from,to)

8 oldAntiMessages « store.getAntiMessage(from, to)
9 oldStates « store.getState(from, to)
10: while oldEvents.hasEntity() do

11: loadedEvent « oldEvens.dequeue()

12: eventQueue.insert(loadedEvent)

13: end while

14: while oldAntiMessages.hasEntity() do

15: loadedAntiMessages < oldAntiMessages.dequeue()
16: antiMessageQueue.insert(loaded AntiMessage)
17: end while

18: while oldStates.hasEntity() do

19: loadedState « oldStates.dequeue()

20: stateQueue.insert(loadedState)

21: end while

22: store.minLoadedTime < from

23: endif

24: /" Extended Part End */
25: eventQueue.insert(newEvent)
26: end while

Table 2. Cluster Configurations.

Service TSUBAME 2.5 in Tokyo Tech.
of Nodes 2,4,8,16, 32
CPU Intel Xeon X5670/2.93GHz X 2
Memory 54GB per Node (49 GB for application)
Network QDR InfiniBand Interconnect
0os SLES 11 SP3
MPI Open MPI 1.6.5
C/C++ Compiler GCC 5.2 (C++11)
Simulator ScaleSim Ver. at Aug 29, 2016

5.1 Evaluation with the PHOLD Benchmark

PHOLD is a standard benchmark widely used by the PDES research community [10]. A small
portion of PHOLD’s workload is used for generating random numbers, which are required for
calculating destination LPs of new events and events’ simulation time increment. On the other hand,
much of the overall execution involves time synchronization between LPs and data communication
between nodes.

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

0:16 M. Hanai et al.

Leveraging on previous studies [1, 2, 5, 24], we define PHOLD’s workload using two parameters
as follows.

e An event with timestamp ¢ is forwarded to the next LP with a new timestamp ¢’ = ¢ + At per
event handling in each LP.

e At is randomly generated using exponential distribution with a parameter A.

o The destination LP is randomly selected using Remote Ratio.

More specifically, At is determined by the following equation.
b
Prla < At < b;A] = f e M dx,
a

where a, b are constant non-negative real numbers. Since the mean of the exponential distribution
is 171, A essentially implies the event density. The event density increases with an increasing A.

Remote Ratio is the frequency of sending events to other LPs and is simply determined by the
rate at which another LP is selected as the next destination. For example, a Remote Ratio of 10%
means that 10% of newly generated events are sent to other LPs, while 90% are sent back to the
same LP.

This PHOLD benchmark aims to show the degree by which its parameters impact the reprocessing
rate and the execution time. Table 3 presents the default parameters of the evaluation and Table 4
provides the execution results. These default values are set based on the previous work [1, 2, 5, 24].
We evaluate the simulation scenario with 100,000 LPs and 1,600,000 initial events (each LP has
16 events initially) using 16 nodes with 192 cores in total. The default value of A is set to 1.0 and
that of Remote Ratio is set to 27. The simulation end time is fixed to 5.0 in all setting so that the
memory usage becomes up to 49GB, which is the limitation of our computational environment.
The number of resulting events are 7,275,345 in the default setting. To set up a what-if scenario, we
randomly select one state and change it from the beginning of the simulation. The execution of
each setup is conducted 10 times, and the median values of the results are presented in Table 4.

Table 3. Default Parameters.

Table 4. Default Execution Results.

Parameter Default Value
i 0£ %Pi | Event) ;gg’ggg Entire Baseline Simulation
,O n .1a ven S, e — # of Resulting Events 7,275,345
Simulation End Time 5.0 .
- Elapsed Time 50,893 ms
A 1.0 - — -
. _4 | | Exact-Differential Simulation
Remote Ratio 2 — # of Resulting Events 321,690
of Nodes 16 Nodes (192 Cores) | | Elapsed Timeg 12 672’ s
What-if Scenario Randomly Change P ’
1 state from T=0

5.1.1 Impact of Event Density. We first evaluate the impact of event density A. We investigated
different various values of A and set other parameters to a constant value as presented in Table
3. Figure 7 shows the number of resulting events with A extending from 0.25 to 1. In this figure,
the left vertical axis displays the value range for the number of resulting events, which is also
represented by bars; and the right vertical axis displays the value range for the reprocessing rate,
which is also represented by a line.

According to the results, the reprocessing rates of the exact-differential simulation are 0.000028,
0.00011, 0.0019, and 0.044 when A equals to 0.25, 0.5, 0.75, and 1, respectively. The results show that

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

Exact-Differential Simulation 0:17

the reprocessing rate increases as the event density and the number of influenced events increase.
They also indicate that such increase is exponential under linear increase of 1.

These results are consistent with the theoretical analysis as discussed in Section 3.3. Since A
indicates the event density, A and 1/c¢’ in Equation (2) have a linear relationship. Namely, with
a linear increase of A, the reciprocal of timestamp interval between communications (i.e. 1/c’)
increases accordingly. Thus, with the fixed simulation end time (i.e. with |Tf;,;s,| in Equation (2) a
constant), the theoretical reprocessing rate defined in Equation (3) increases exponentially with a
linear increase of A.

107 % Entire Simulation ® Exact—DifferentiaISimulationl 0000 7 Entire Simulation # Exact-Differential Simulation o
2 Y Z % - 40
105 % % / / 10t 50000 Y
AN I . |
§ 1w % / / 7 0 2 E 40000 7 / 30
L;:" 10t é % é % 10° Eﬂ §30000 7 % % » §
% 108 % % % 104 % % / % % Zog
& % / / % g 820000 % / % 15
< 10 / / % / 10 g o / % % 10
- % I % / % " 10000 / / _ .
o 78 8 @ & “° B B. Hm Tm:
°* Aof Ex(;jnential Di:{:iiution ' o Aof Ex(;znential Dii;iiution '

Fig. 7. # of Resulting Events Comparing with Differ- Fig. 8. Elapsed Time Comparing with Different Event
ent Event Density (4 of Exponential Distribution). Density (A of Exponential Distribution).

Figure 8 shows the elapsed time of the proposed simulations. More precisely, the bars represent
the elapsed time of simulations and the line represents the speedup of simulation, which is defined
as (Elapsed Time of Entire Simulation) / (Elapsed Time of Exact-Differential Simulation). The results
clearly indicate that the exact-differential simulation outperforms the entire simulation.

The trend of exact-differential simulation’s elapsed time is somewhat similar to that of the
reprocessing rate. When A increases, the elapsed time of the exact-differential simulation increases
as the number of resulting events increases. In addition, we observe that the number of events
increases approximately by a factor of 4 since the simulation end time is fixed, but the elapsed time
is not increased by the same factor, although theoretically this should be the case. This is due to the
fact that our system handles the scenarios more efficiently when A is large. The events with closer
timestamp are processed collectively and their respective concurrency management is done jointly.
As a result, the cost of the event processing becomes lower than in the case of a smaller lambda.
Thus, even if the number of events increases by a factor of 4, the elapsed time is not increased
accordingly Furthermore, the exact-differential simulation achieves approximately 41.7x, 21.9x,
8.6x, and 6.5x performance improvement when A equals to 0.25, 0.5, 0.75, and 1, respectively..

5.1.2 Impact of Remote Ratio. This section presents the evaluation of the performance of the
proposed exact-differential simulation based on remote ratio. In the simulations, the remote ratio
extends from 278 to 27! and other parameters are set to constant as presented in Table3.

Figure 9 presents the number of resulting events (as represented by bars) and the processing
rate (as represented by a line) at different remote ratios. Clearly, the number of influenced LPs
and the reprocessing rate increase as the remote ratio increases. It is also worth noting that, when
the remote ratio increases from 27* to 271, the reprocessing rate is saturated. This is because the
fraction of LPs not affected by the change in state falls exponentially.

In the case of remote ratio from 278 to 27*%, the experimental results are consistent with the
theoretical analysis in Section 3.3. As the remote ratio increases linearly, so does the reciprocal

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

0:18 M. Hanai et al.

of the average number of local processed events between communications (i.e. 1/ {|Ejpcqi|) in
Equation (3)). Thus, under a fixed simulation end time (i.e. with |Tf;,;sp| in Equation (2) a constant),
the theoretical reprocessing rate increases exponentially as remote ratio increases linearly.

107 6 EntireSimulation = Exax:t—DifferentialSimulation1 100000 7 Entire Simulation B Exact-Differential Simulation 1

106 % ,% 2 // 10° 90000 12
" % % % % __ 80000 B
2 1 Y % 7 Z - £ 70000 7 10
Ee ./ 78 "B "B 1 | |
3 10 % % % % g g 40000 % 8
f) % % / / 105 & = 30000 / 4
N B I I | B

1 % % % % 107 0 - 4 7 0

28 24 22 21 28 24 22 21
Remote Ratio Remote Ratio

Fig. 9. # of Resulting Events Comparing with Differ- Fig. 10. Elapsed Time Comparing with Different Re-
ent Remote Ratio. mote Ratio.

The elapsed time for several different remote ratios is shown in Figure 10, where the bars
represent the elapsed time and the line represents the speedup of simulation. The results clearly
show that when the remote ratio increases, the elapsed time becomes larger, which leads to smaller
speedup. The exact-differential simulation yields approximately 11.88x, 6.59x, 0.98x, and 0.87x
speed up when remote ratio equals to 278, 27%, 272, and 27}, respectively. When remote ratio is
smaller than 272, the exact-differential simulation outperforms the entire simulation. However,
when the remote ratio is larger than 272, the number of reprocessing events becomes too large to
achieve a better performance than the entire baseline simulation. Although the exact-differential
simulation processes fewer events than the entire simulation, the overhead of rollback, canceling,
and reprocessing reduces runtime performance.

Most importantly, the results indicate that it is necessary to reduce the remote ratio in order
to get good performance in the exact-differential simulation. Reduction in remote ratio can be
achieved by partitioning of simulation states to LPs in a way to minise inter-LP communication.

5.1.3 Impact of the Number of Nodes. Finally, we evaluate the strong scalability of the exact-
differential simulation of the PHOLD benchmark using our simulator with different number of
nodes and the same input data. Figure 11 shows the elapsed time of simulation with the number
of working nodes ranging from 2 to 32 (i.e. from 24 cores to 384 cores). The results clearly show
that the performance of the exact-differential simulation always outperforms that of the entire
simulation. However, the performance improvement decreases when the number of working nodes
increases. This is because the problem size (i.e. the number of processed events) is not large
enough to process using multiple nodes. The performance improvement in the exact-differential
simulation is saturated at 16 nodes, and the performance reduces when more nodes are involved in
the simulation. Basically, the entire simulation is executed only once, and the exact-differential
repeating simulations are executed many times. Thus, in practice, the saturation point would be
the best setting for the number of nodes.

The evaluation with the PHOLD benchmark has provided very useful insights about the perfor-
mance of the proposed exact-differential simulation approach. However, PHOLD is a very simple
synthetic benchmark, where event processing only involves random message communications with
very little state saving and the events are distributed uniformly among LPs. For a more realistic and

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

Exact-Differential Simulation 0:19

-B-Entire Simulation ~ —-Exact-Differential Simulation
107

106

10° -\\'\\

104 ‘\0—0\’/‘

10°

Execution Time (ms)

2 4 8 16 32
of Nodes (Each node has 12 cores)

Fig. 11. Strong Scaling.

Fig. 12. Road Map of Tokyo Center Area and its 16 Partitions to Computational Nodes using METIS.

thorough evaluation, we have utilized a traffic simulation for the city of Tokyo. In this simulation,
models are more complex, and the events (i.e. vehicles) are skewedly distributed among LPs (i.e.
roads and junctions). The following section presents the results of this analysis

5.2 Evaluation with the Tokyo Traffic Simulation

We first examine the performance of a microscopic traffic simulation of Tokyo on top of the ScaleSim
simulator [12]. Table 5 presents the configuration of the simulation scenarios. We simulate the
traffic of Tokyo center area, which includes 161,364 junctions and 203,363 roads. The roads are
divided by a k-way graph partitioning algorithm [20, 21]. Figure 12 shows the overview of the
Tokyo city, where each line represents the actual road, and the road network is partitioned into 16
computational nodes denoted by different colors.

We create movements of vehicles based on Tokyo’s statistical data collected by the Ministry of
Land, Infrastructure, Transport and Tourism (MLIT) in 2011, where totally 5000 vehicles depart
from their origin within 3 hours. The Origin Destination data (OD data) of each vehicle is randomly
selected, and the path is preprocessed using a shortest path algorithm. Figure 13 shows the
distribution of the number of passing vehicles in each junction (i.e. each LP). Note that this is a

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

0:20 M. Hanai et al.

log-log graph. The distribution is highly skewed. In around 45% of the junctions, there are only up
to 4 passing vehicles, whereas there exist a few junction which over 100 vehicles pass through. The
maximum number of the passing vehicles in a junction is 476. The average number of the passing
vehicles is 8. Figure 14 shows the distribution of the vehicle’s path lengths (i.e. the number of LPs a
vehicle passes through). The major path length of the vehicles is from 101 to 200. And from 201, its
frequency decreases as the increase of the path length. The maximum and average length of the
vehicle paths are 1139 and 283, respectively.

64 25

— _20
§16 Ei
>
g s
o 8 o
3 S
4 =3
= 4 ‘glo
v
& w5
€ 1 2 I
0 - _
0s | s g 8 s s g 8 s 35 %
- o o (=3 (=] (=] [=3 o o o o
< o © o~ < 0 % — ~ @ < 0 © ~ © o £
2 2 o S H] g 2 2 2 = 2 g 2 2 2 2
° o & IS o £ 2 ° 3 3 3 s 3 3 3 3 3
5 @ 2 2 2= 8 B 8 & 8 R 8 B
of Passing Vehicles in Junction - Length of Vehicle's Path
Fig. 13. # of Passing Vehicles in Each Junction. Fig. 14. Vehicle’s Path Length Distribution.

The modeling of traffic movement on optimistic PDES is based on SCATTER [28, 31], in which
one state represents a junction and its out-going roads, as illustrated in Figure 15. The ID assigned
is assigned to an LP based on the junction ID of original data, where IDs are basically random.
Moreover, the traffic in the simulation scenario has a few characteristics. The simulation time
resolution is defined as one second. The vehicle’s movement is modeled by a simple car that
accelerates and decelerates according to the vehicles in front of it. In addition, if a vehicle reaches
the end of a road, it will be sent immediately to the next junction (LP). Specifically, the vehicle is
inserted to the next LP’s queue as one event. If an LP receives a vehicle, its state is updated, and is
be used for the next vehicle moving event. Based on this traffic scenario, the simulation outputs
798,177 events in total. Since this is an optimistic simulation, the actual events that need to be
handled would most certainly exceed 798,177 as some of the processed events suffer rollback. The
resulting events, anti-messages, and states are stored on the 49 GB main memory.

Two types of what-if scenarios are defined in the evaluation. Scenario 1 simulates what happens
if a traffic control occurs at one junction. Specifically, we select one of the junctions from ID 0 to
ID 1610 (1/100 of all) and reduce the speed limit to half from the start to the end. The selection is at
random since LP ID is randomly initialized. This scenario is similar to a traffic accident, where roads
and/or junctions are blocked. Scenario 2 simulates what happens if one of the vehicles changes its
trip pattern. In this case, one of the vehicles is removed and the influence is simulated. Since the
vehicle’s departure time is randomly assigned, the time to change is made at random accordingly.
More complex scenarios, such as route or destination changing, can be modeled by deleting the
original vehicles and adding new vehicles with a different route.

5.2.1 Reprocessing Rate. Figure 16 presents the average number of resulting events. In scenario
1, where one of the states is changed, only 61,206 resulting events are simulated on average and
the reprocessing rate is approximately 0.077. Note that the error bars in the figure represent the
full error range of the results. In the worst case, where 297,181 resulting events are simulated, the
reprocessing rate becomes 0.37.

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

Exact-Differential Simulation 0:21

Table 5. Traffic Simulation Configuration.

Road Map Tokyo Center Area (Figure 12) Fig. 15. Road Map and LP.

— # of Junctions 161,364 4 ISR

— # of Roads 203,363

Scenario of Tokyo’s Traffic > | Logical | e =
- Sum of Departing Vehicles 5000 & —1 +— —
- Trips Origin/Destination Random 4 1 " il

- Simulation Period 3 hours

Result of Entire Simulation — — —
- Total Resulting Events 798,177 *+—— — -—
What-if Scenario

— Scenario 1 Change speed limit of one state t 4 t Y

- Scenario 2 Remove one vehicle trip

The frequency of the what-if scenarios on different numbers of resulting events is shown in
Figure 17. The results show that approximately 45% of the what-if scenarios generate only 0 to
10 events, which implies that 45% of the junctions affect at most 10 events. This is due to the
characteristics of the road map, where hub junctions connect large areas and minor junctions
connect only local parts. Since most vehicles would pass the hub junctions, there is a significant
difference in the influence between the hub and minor junctions.

In scenario 2, where one of the vehicles is modified, only 44,261 resulting events are simulated
on average and the reprocessing rate is 0.055. In the worst case, the number of resulting events
becomes 233,749 and the reprocessing rate becomes 0.29. In the scenario, we found that the impact
of departing time is insignificant, contrary to the expectations based on the discussion in Section 3.3,
and that the influence of each what-if scenario spreads over time, but not widely. This is due to the
fact that vehicles move around in only a small part of the city during the 3 hours of simulation, and
therefore their influence does not spread widely over the road map. Figure 17 shows the frequency
of what-if scenarios for different number of events. The results indicate that 29% of the what-if
scenarios generate up to 10 events, 6.8% of the what-if scenarios generate 11 to 100 events, 6.6%
of them generate 101 to 1,000 events, 10% of them generate 1,001 to 10,000 events, 27% of them
generate 10,001 to 100,000 events, and 20% of them generate 100,001 to 233,749 events. Similar
to the analysis of Scenario 1, 29% of the vehicles move around local parts and do not affect other
vehicles.

In conclusion, the exact-differential simulation has less than 0.1 reprocessing rate on average
(that is, 0.077 in scenario 1 and 0.055 in scenario 2). That implies that it can reduce more than 90%
of the events on average. In the worst case, the exact-differential simulation has 0.3 reprocessing
rate, which implies that it can reduce more than 60% of the events.

5.2.2 Performance Evaluation. Figure 18 and Figure 19 shows the strong scalability and speedup of
the entire Tokyo traffic simulation. We evaluate the elapsed time using scenario 1 (where one of
the states is modified from the beginning) with the number of nodes extending from 2 to 16. Based
on the previous evaluation, we select two scenarios: a worst case scenario, where the number of
resulting event is 297,181, and an average case scenario, where the number of resulting events is
61,530.

According to Figure 18, the runtime performance of the exact-differential simulation outperforms
the entire simulation in all cases, regardless of how many nodes are employed in the simulations.
It is also worth noting that, although the performance of the exact-differential simulation in the
average case scenario always outperforms the entire simulation, when more nodes are added in

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

0:22 M. Hanai et al.

900000 , 1600 M Scenariol ® Scenario2
800000 | 2 1400
©
» 700000 - § 1200
g A
2 600000 - *= 1000
w -
[T ©
2 500000 £ 800
] H
2 400000 - S 600
& g
4 300000 - / § 400
* I
200000 / g 200 I I I
100000 | Y — — -
o 2252252 fz20 S 0t010' 10'to10? 102to10° 10%to10* 10°to 105 10°to
] .
Entire Simulation Scenario 1 Scenario 2 Range of # Resulting Events

Fig. 16. Average Number of Resulting Events in Sce- Fig. 17. Frequency of What-if Scenarios with Differ-
nario 1 and Scenario 2. ent Number of Resulting Events.

the simulation, its performance improvement is not as good as that of the worst scenario. This
is because the problem size of the average case scenario is not large enough to fully leverage the
processing power of the computing nodes. In fact, the performance is saturated at 16 nodes in the
average case scenario. Furthermore, the performance saturation is also caused by rollbacks. As the
number of nodes increases, the frequency of rollbacks and event reprocessing increases, rendering
their overhead significant.

Figure 19 shows that the performance improvement of the entire simulation decreases as the
number of nodes increases. The average case scenario has 7.27x, 5.20x, 3.64x, and 3.20x speedup
when the number of nodes equals to 2, 4, 8, and 16, respectively. The worst case scenario has 2.22x,
1.80%, 1.55%, and 1.46x speed up when the number of nodes equals to 2, 4, 8, and 16, respectively.
The results show similar characteristics to strong scalability, where the performance improvement
is generally good but is saturated when more nodes are added to the simulation and the system
becomes communication bound and susceptible to more rollbacks.

107 = 8
~e-Entire Simulation -=~Exact-Differential Simulation (Average Scenario)
-B-Exact-Differential Simulation (Worst Scenario)

=s~Exact-Differential Simulation (Worst Scenario)

106 -&-Exact-Differential Simulation (Average Scenario)

1 A\‘\t‘A

104

2 ‘\‘\A

Execution Time (ms)

Speed Up from Entire Simulation

10® 0
2 16 2

4 8 4 8
of Nodes (Each node has 12 cores) # of Nodes (Each node has 12 cores)

Fig. 18. Elapsed Time of Traffic Simulation. Fig. 19. Speed Up from Entire Simulation.

To summarize, the exact-differential simulation achieves a better performance than the entire
simulation until a cut-off point after which the system becomes communication bound with
increased synchronization overheads. It achieves 7.27 times performance improvement in the
average case, and 2.22 times in the worst case.

6 RELATED WORK

An approach highly related to our work is updateable simulation [9]. This approach simulates a
part of events and states in a repeating execution fashion by canceling and reprocessing events

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

Exact-Differential Simulation 0:23

in a similar way as optimistic PDES. The approach defines a “reuse function”, which estimates
the influence of reprocessing events in a repeating simulation and thus enabling the efficient
reprocessing of a part of simulation. In addition to the target application domains, updateable
simulation differs from the exact-differential simulation approach proposed in this paper in two
major ways. First, our approach always yields the exact same results as the original simulation. On
the other hand, the reuse function does not always ensure the exactly same results. Its exactness is
determined by the design of the reuse function. Second, exact-differential simulation is implemented
as a transparent scalable middleware layer with no need for any additional code; in updateable
simulation, users need to define reuse function in addition to the application logic itself.

Cloning techniques [6, 7, 16-18, 22, 32] are also ways to reuse the simulation logs for efficient
repeating simulation. Especially for traffic simulation, the paper [27] shows efficient repeating of
traffic scenario based on the cloning technique. In cloning, the simulation state at some decided time
is replicated, and thenceforth the simulation is branched with different parameters or scenarios. The
difference from our proposal is that such techniques do not have a “differential” feature, namely, the
cloning technique does not simulate a part of the entire state space but instead the entire simulation
is replicated from the designated time. In our previous work we have shown how cloning can be
used with our exact-differential approach in traffic simulation scenarios [14].

Differential processing approaches have been proposed for large-scale parallel and distributed
computing systems other than simulation. The papers [3, 33] present differential processing ap-
proaches for MapReduce[8]. The paper [4] shows differential processing of Pregel, a general and
simplified model of parallel and distributed large-scale graph processing [23]. These approaches
follow a similar philosophy as the exact-differential simulation, whereby the system stores inter-
mediate data of baseline processing and then reuses it for later processing by using some influence
detections. The biggest difference between our approach and these techniques lies in the synchro-
nization method among multiple computers, which is responsible for the influence detections.
MapReduce and Pregel use the Bulk Synchronous Parallel model with barrier synchronization,
while the exact-differential simulation uses asynchronous synchronization making use of the
optimistic-PDES-based influence detections.

7 CONCLUSION

This paper has presented a differential processing approach for large-scale PDES called exact-
differential simulation. The approach is based on optimistic PDES techniques such as rollback and
restarting, and is able to identify and process only the modified parts of repeating simulations,
in order to improve the overall performance of the simulation system. In addition, it can be
implemented as a transparent middleware where no additional code is required for the differential
processing. An extensive quantitative analysis using the PHOLD and a full Tokyo traffic simulation
on 32 computing nodes with 384 cores has revealed significant performance improvement.

Our future work lies in two main directions: optimization of our algorithm and adaptation to
other models. Further redundancy reduction can be achieved by the lazy processing, where the
anti-messages are sent after checking the baseline results, and if the results are the same as the
baseline, the subsequent reprocessing can be ignored. Moreover, we will investigate techniques to
reduce memory consumption of the proposed algorithm since this is one of the limitation in the
exact-differential simulation. Algorithm-level and system-level approaches can be considered. In
algorithm level, we are convinced that applying existing optimization techniques for optimistic
PDES (e.g. incremental state saving, reverse computing, etc.) would provide more efficient memory
handling. We will also investigate new memory optimization techniques for the proposed algorithm.
In system level, new hardware technologies for expanding memory space such as big memory,
deep hierarchical memory, NVRAM, and SSD-based local scratch space could also be employed

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

0:24 M. Hanai et al.

to improve its performance. Memory optimization techniques from other domain, such as, Big
data processing and database systems, could be adopted to deal with a large amount of simulation
results.

We plan to deploy the exact-differential simulation to other large-scale PDES applications and
other large-scale simulation models such as agent-based simulations. We will also investigate the
integration of our approach with other synchronization protocols such as asynchronous conserva-
tive synchronization and barrier synchronization. We will also extend our idea to an “incremental”
simulation, where repeating simulations are executed with a sequence of what-if scenarios, and
the result of each repeating simulation is used for the subsequent execution. The results of the
baseline simulation are accumulatively updated by the first what-if scenario, the second one, the
third one, and so forth. The incremental simulation is useful, for example, when what-if scenarios
are provided in real time at a certain interval and simulation results are required in a faster than
real time fashion.

ACKNOWLEDGMENTS

The research was partly supported by Singapore Ministry of Education (MoE) Academic Research
Fund, Tier 1 Grant, number RG 136/14 and by Japan Science and Technology Agency, Core Research
for Evolutional Science and Technology (JST CREST).

REFERENCES

[1] P.D.Barnes, Jr., C.D. Carothers, D.R. Jefferson, and J.M. LaPre. 2013. Warp Speed: Executing Time Warp on 1,966,080
Cores. In Proceedings of the 1st ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (PADS’13). ACM,
327-336.

[2] DW. Bauer Jr., C.D. Carothers, and A. Holder. 2009. Scalable Time Warp on Blue Gene Supercomputers. In Proceedings
of the 23rd ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simulation (PADS’09). IEEE, 35-44.

[3] P.Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquin. 2011. Incoop: MapReduce for Incremental Computations.
In Proceedings of the 2nd ACM Symposium on Cloud Computing (SOCC’11). ACM, 7:1-7:14.

[4] Z.Cai, D.Logothetis, and G. Siganos. 2012. Facilitating Real-time Graph Mining. In Proceedings of the Fourth International
Workshop on Cloud Data Management (CloudDB’12). ACM, 1-8.

[5] C.D. Carothers and K.S. Perumalla. 2010. On Deciding Between Conservative and Optimistic Approaches on Massively
Parallel Platforms. In Proceedings of the 2010 Winter Simulation Conference (WSC’10). IEEE, 678-687.

[6] D. Chen, SJ. Turner, W. Cai, B.P. Gan, and M.Y.H. Low. 2004. Incremental HLA-based Distributed Simulation Cloning.
In Proceedings of the 36th Conference on Winter Simulation (WSC’04). Winter Simulation Conference, 386—-394.

[7] D. Chen, SJ. Turner, W. Cai, B.P. Gan, and M.Y.H. Low. 2005. Algorithms for HLA-based Distributed Simulation
Cloning. ACM Transactions on Modeling and Computer Simulation 15, 4 (2005), 316—345.

[8] J. Dean and S. Ghemawat. 2008. MapReduce: simplified data processing on large clusters. Commun. ACM 51, 1 (2008),
107-113.

[9] S.L.Ferenci, R.M. Fujimoto, M.H. Ammar, K.S. Perumalla, and G.F. Riley. 2002. Updateable Simulation of Communication
Networks. In Proceedings of the 16th ACM/IEEE/SCS Workshop on Parallel and Distributed Simulation (PADS’02). IEEE,
107-114.

[10] R.M. Fujimoto. 1990. Performance of Time Warp under synthetic workload. In Proceedings of the SCS Multiconference
on Distributed Simulations, Vol. 22. 23-28.

[11] R.M. Fujimoto. 2000. Parallel and distributed simulation systems. Wiley New York.

[12] M. Hanai. 2018. ScaleSim - General Purpose Large-Scale Parallel & Distributed Discrete Event Simulator. (2018).
https://github.com/masatoshihanai/ScaleSim (Last access: 19 Nov. 2018).

[13] M.Hanai, T. Suzumura, G. Theodoropoulos, and K.S. Perumalla. 2015a. Exact-Differential Large-Scale Traffic Simulation.
In Proceedings of the 2015 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (PADS’15). ACM,
271-280.

[14] M. Hanai, T. Suzumura, G. Theodoropoulos, and K.S. Perumalla. 2015b. Towards Large-Scale What-if Traffic Simulation
with Exact-Differential Simulation. In Proceedings of the 2015 Winter Simulation Conference (WSC’15). IEEE, 748-756.

[15] M. Hanai, T. Suzumura, A. Ventresque, and K. Shudo. 2014. An Adaptive VM Provisioning Method for Large-Scale
Agent-Based Traffic Simulations on the Cloud. In Proceedings of IEEE 6th International Conference on Cloud Computing
Technology and Science (CloudCom’14). IEEE, 130-137.

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

https://github.com/masatoshihanai/ScaleSim

Exact-Differential Simulation 0:25

[16]
[17]
[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]
[29]
[30]
[31]

[32]

[33]

M. Hybinette. 2004. Just-in-time Cloning. In Proceedings of the 22nd ACM/IEEE/SCS Workshop on Principles of Advanced
and Distributed Simulation (PADS 04). IEEE, 45-51.

M. Hybinette and R.M. Fujimoto. 2001. Cloning Parallel Simulations. ACM Transactions on Modeling and Computer
Simulation 11, 4 (2001), 378-407.

M. Hybinette and R.M. Fujimoto. 2002. Scalability of parallel simulation cloning. In Proceedings of the 35th Annual
Simulation Symposium (55°02). IEEE, 275-282.

D.R. Jefferson. 1985. Virtual Time. ACM Transaction Programming Languages and Systems 7, 3 (1985), 404-425.

G. Karypis and V. Kumar. 1998. Multilevel k-way Partitioning Scheme for Irregular Graph. J. Parallel and Distrib.
Comput. 48, 1 (1998), 96-129.

G. Karypis and V. Kumar. 2013. METIS - A Software Package for Partitioning Unstructured Graphs, Meshes, and
Computing Fill-Reducing Orderings of Sparse Matrices-Version 5.1.0. (2013). http://glaros.dtc.umn.edu/gkhome/metis/
metis/overview (Last access: 19 Nov. 2018).

X. Li, W. Cai, and S.J. Turner. 2015. Cloning Agent-based Simulation on GPU. In Proceedings of the 3rd ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation (PADS’15). ACM, 173-182.

G. Malewicz, M.-H. Austern, AJ.C Bik, J.C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. 2010. Pregel: A System for
Large-scale Graph Processing. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of
Data (SIGMOD’10). ACM, 135-146.

E. Mikida, N. Jain, E. Gonsiorowski, C.D. Carothers, P.D. Barnes Jr., and D. Jefferson. 2016. Towards PDES in a Message-
Driven Paradigm: A Preliminary Case Study Using Charm++. In Proceedings of the 2016 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation (PADS’16). ACM, 99-110.

T. Osogami, T. Imamichi, H. Mizuta, T. Morimura, R. Raymond, T. Suzumura, R. Takahashi, and T. Ide. 2012. IBM Mega
Traffic Simulator. Technical Report. Technical Report RT0896, IBM Research-Tokyo.

T. Osogami, T. Imamichi, H. Mizuta, T. Suzumura, and T. Ide. 2013. Toward simulating entire cities with behavioral
models of traffic. IBM Journal of Research and Development 57, 5 (2013), 6:1-6:10.

P. Pecher, M. Hunter, and R Fujimoto. 2015. Efficient Execution of Replicated Transportation Simulations with
Uncertain Vehicle Trajectories. In Proceedings of 2015 ICCS Workshop on Dynamic Data Driven Applications Systems
(DDDAS’15). Elsevier, 2638 — 2647.

K.S. Perumalla. 2006. A Systems Approach to Scalable Transportation Network Modeling. In Proceedings of the 2006
Winter Simulation Conference (WSC’06). IEEE, 1500-1507.

T. Suzumura and H. Kanezashi. 2013. Accelerating Large-Scale Distributed Traffic Simulation with Adaptive Synchro-
nization Method. In Proceedings of the 20th ITS World Congress. ITS Japan. Paper No.4083.

Tokyo Tech. 2018. TSUBAME. (2018). http://www.t3.gsic.titech.ac.jp/en (Last access: 19 Nov. 2018).

S.B. Yoginath and K.S. Perumalla. 2008. Parallel Vehicular Traffic Simulation using Reverse Computation-based
Optimistic Execution. In Proceedings of the 22nd ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed
Simulation (PADS’08). IEEE, 33-42.

G. Zhang, M. Fang, M. Qian, and S. Xu. 2012. Parallel Cloning Simulation of Flood Mitigation Operations in the
Upper-Middle Reach of Huaihe River. In Proceedings of the 2012 International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC’12). IEEE, 73-80.

Y. Zhang, S. Chen, Q. Wang, and G. Yu. 2015. i> MapReduce: Incremental MapReduce for Mining Evolving Big Data.
IEEE Transactions on Knowledge and Data Engineering 27, 7 (2015), 1906-1919.

ACM Trans. Model. Comput. Simul., Vol. 0, No. 0, Article 0. Publication date: 2010.

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://www.t3.gsic.titech.ac.jp/en

	Abstract
	1 Introduction
	1.1 Challenges and Contributions

	2 Parallel Discrete Event Simulation
	3 Exact-differential simulation
	3.1 Initial Baseline Simulation
	3.2 Repeating Simulation
	3.3 Static Analysis of Exact-Differential Simulation

	4 Implementation
	4.1 Implementation of Initial Baseline Simulation
	4.2 Implementation of Repeating Simulation

	5 Evaluation
	5.1 Evaluation with the PHOLD Benchmark
	5.2 Evaluation with the Tokyo Traffic Simulation

	6 Related work
	7 Conclusion
	Acknowledgments
	References

