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Abstract
A novel parallel algorithm is presented for generating random scale-free networks using the preferential attachment model. 
The algorithm, named cuPPA, is custom-designed for “single instruction multiple data (SIMD)” style of parallel processing 
supported by modern processors such as graphical processing units (GPUs). To the best of our knowledge, our algorithm 
is the first to exploit GPUs, and also the fastest implementation available today, to generate scale-free networks using the 
preferential attachment model. A detailed performance study is presented to understand the scalability and runtime charac-
teristics of the cuPPA algorithm. Also another version of the algorithm called cuPPA-Hash tailored for multiple GPUs is 
presented. On a single GPU, the original cuPPA algorithm delivers the best performance, but is challenging to port to multi-
GPU implementation. For multi-GPU implementation, cuPPA-Hash has been used as the parallel algorithm to achieve a 
perfect linear speedup up to 4 GPUs. In one of the best cases, when executed on an NVidia GeForce 1080 GPU, the original 
cuPPA generates a scale-free network of two billion edges in less than 3 s. On multi-GPU platforms, cuPPA-Hash generates 
a scale-free network of 16 billion edges in less than 7 s using a machine consisting of 4 NVidia Tesla P100 GPUs.

Keywords  GPU · Preferential attachment · Random networks · Scale-free networks

1  Introduction

Networks are prevalent in many complex systems such as 
circuits, chemical compounds, protein structures, biological 
networks, social networks, the Web, and XML documents. 
Recently, there has been substantial interest in the study of 

a variety of random networks to serve as mathematical mod-
els of complex systems. Various network theories, metrics, 
topology, and mathematical models have been proposed to 
understand the underlying properties and relationships of 
these systems. Among the proposed network models, the 
first and the most studied model is the Erdős–Rényi model 
[14]. However, the Erdős–Rényi model does not exhibit the 
characteristics observed in many real-world complex sys-
tems [8]. Barabási and Albert [8] discovered a class of inho-
mogeneous networks, called scale-free networks, character-
ized by a power-law degree distribution P(k) ∝ k−� , where k 
represents the degree of a vertex and � is a constant. While 
high degree vertices are improbable in Erdős–Rényi net-
works, they do occur with statistically significant probability 
in scale-free networks. Furthermore, the work of Albert et al. 
[6] suggests these high degree vertices appear to play an 
important role in the behavior of scale-free systems, particu-
larly with respect to their resilience [11]. For example, the 
Barabasi–Albert model can be used for evaluating the North 
American electric grid with high reliability [11].

As these complex systems of today grow larger, the abil-
ity to generate progressively large random networks becomes 
all the more important. It is well known that the structure of 
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larger networks is fundamentally different from that of small 
networks, and many patterns such as communities emerge 
only in massive networks [20]. Although various random net-
work models have been used and studied over the last several 
decades, even efficient sequential algorithms for generating 
such networks were nonexistent until recently. The efficient 
sequential algorithms are able to generate networks with mil-
lions of edges in a reasonable amount of time; however, gener-
ating networks with billions of edges can take a prohibitively 
large amount of time. This motivates the need for efficient 
parallel algorithms for generating such networks. Naïve paral-
lelization of the sequential algorithms for generating random 
networks may not work due to the dependencies among the 
edges and the possibility of creating duplicate (parallel) edges.

One of the earliest known parallel algorithms for the pref-
erential attachment model is given by Yoo and Henderson 
[26]. Although useful, the algorithm has two weaknesses: 
(1) for ease of handling dependencies and avoid the required 
complex synchronization, they adopted an approximation 
algorithm rather than an exact algorithm; and (2) to correctly 
generate the network, the algorithm needs manual adjust-
ment of several control parameters. An exact distributed-
memory parallel algorithm was presented in [4]. A literature 
review of the recent developments is presented in Sect. 6.

Graphics processors (GPUs) are a cost-effective, energy-
efficient, and widely available parallel processing platform. 
GPUs are highly parallel, multi-threaded, many-core proces-
sors that have greatly expanded beyond graphics operations 
and are now widely used for general purpose computing. 
The use of GPUs is prevalent in many areas such as scien-
tific computation, complex simulations, big data analytics, 
machine learning, and data mining. However, there is a lack 
of GPU-based graph/network generators, especially for scale-
free networks such as those based on the preferential attach-
ment model. There exist GPU-based network generators for 
Erdős–Rényi networks [23] and small-world model [18]. How-
ever, until recently we found no GPU-based algorithm to gen-
erate scale-free networks [3]. In this paper, we present cuPPA, 
a novel GPU-based algorithm for generating networks con-
forming to the preferential attachment model. The algorithm 
adopts the copy model [17] and employs a simpler synchroni-
zation technique suitable for GPUs. With cuPPA, one can gen-
erate a network with two billion edges using a modern NVidia 
GPU in less than 3 s. To the best of our knowledge, this is the 
first GPU-based algorithm to generate networks using the exact 
preferential attachment model. Although cuPPA works really 
well on a single GPU, generating bigger networks with multi-
ple GPUs is a challenging issue due to the complex synchroni-
zation and message communication required among the GPUs. 
We present another algorithm called cuPPA-Hash to gener-
ate networks using preferential attachment model on multiple 
GPUs. The algorithm uses hashing instead of pseudorandom 
number generators and does not require any communication 

among the GPUs. With cuPPA-Hash, we generated a network 
of 16 billion edges in less than 7 s using a machine consisting 
of 4 NVidia Tesla P100 GPUs.

The rest of the paper is organized as follows: In Sect. 2, 
background material is provided in terms of preliminary 
information, notations, an outline of the network generation 
problem, and two leading sequential algorithms. In Sect. 3, 
our parallel cuPPA algorithm for the GPU is presented. In 
Sect. 4, we present a multi-GPU algorithm called cuPPA-
Hash. The experimental study and performance results 
using cuPPA are described in Sect. 5. We present a review 
of related works in Sect. 6. Finally, Sect. 7 concludes with a 
summary and an outline of future directions.

2 � Background

2.1 � Preliminaries and Notations

In the rest of this paper, we use the following notations. 
We denote a network G(V, E), where V and E are the sets 
of vertices and edges, respectively, with m = |E| edges 
and n = |V| vertices labeled as 0, 1, 2,… , n − 1 . For any 
(u, v) ∈ E , we say u and v are neighbors of each other. 
The set of all neighbors of v ∈ V  is denoted by N(v), i.e., 
N(v) = {u ∈ V|(u, v) ∈ E} . The degree of v is dv = |N(v)| . If 
u and v are neighbors, sometimes we say that u is connected 
to v and vice versa.

We develop parallel algorithms using the CUDA (Com-
pute Unified Device Architecture) framework on the GPU. 
A GPU contains multiple streaming multiprocessors (SMs). 
An SM is a group of core processors. Each core processor 
executes only one thread at a time. All core processors can 
execute their corresponding threads simultaneously. If some 
threads perform operations that have to wait for data fetches 
with high latencies, those are put into the waiting state 
and other pending threads are executed. Therefore, GPUs 
increase throughput by keeping the processors busy. All 
thread management, including the creation and scheduling of 
threads, is performed entirely in hardware with virtually zero 
overhead and requires negligible time for launching work 
on the GPU. For these advantages, modern supercomputers 
such as Summit and Titan, two of the largest supercomputers 
in the USA, are built using GPUs in addition to conventional 
central processing units (CPUs).

We use K, M, and B to denote thousand, million, and bil-
lion, respectively, e.g., 2 B stands for two billion.

2.2 � Preferential Attachment‑Based Models

The preferential attachment model is a model for generat-
ing randomly evolved scale-free networks using a prefer-
ential attachment mechanism. In a preferential attachment 
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mechanism, a new vertex is added to the network and connected 
to some existing vertices that are chosen preferentially based on 
some properties of the vertices. In the most common method, 
preference is given to vertices with larger degrees: The higher 
the degree of a vertex, the higher is the probability of choosing 
it. In this paper, we study only the degree-based preferential 
attachment, and in the rest of the paper, by preferential attach-
ment (PA) we mean degree-based preferential attachment.

Before presenting our parallel algorithms for generating 
PA networks, we briefly discuss the sequential algorithms 
for the same. Many preferential attachment-based models 
have been proposed in the literature. Two of the most promi-
nent models are the Barabási–Albert model [8] and the copy 
model [17] as discussed below.

2.3 � Sequential Algorithm: Barabási–Albert Model

One way to generate a random PA network is to use the 
Barabási–Albert (BA) model. Many real-world networks 
have two important characteristics: (1) They are evolving in 
nature and (2) the network tends to be scale-free [8]. In the 
BA model, a new vertex is connected to an existing vertex 
that is chosen with probability directly proportional to the 
current degree of the existing vertex.

The BA model works as follows: Starting with a small 
clique of d̂ vertices, in every time step, a new vertex t is added 
to the network and connected to d ≤ d̂ randomly chosen exist-
ing vertices: F

�
(t) for 1 ≤ � ≤ d with F

�
(t) < t ; that is, F

�
(t) 

denotes the � th vertex which t is connected. Thus, each phase 
adds d new edges (t,F1(t)), (t,F2(t)),… , (t,Fd(t)) to the net-
work, which exhibits the evolving nature of the model. Let 
� (t) =

{
F1(t),F2(t),… ,Fd(t)

}
 be the set of outgoing vertices 

from t. Each of the d end points in the set � (t) is randomly 
selected based on the degrees of the vertices in the current 
network. In particular, the probability Pi(t) that an outgoing 
edge from vertex t is connected to vertex i < t is given by 
Pi(t) =

di∑
j dj

 , where dj represents the degree of vertex j.

The networks generated by the BA model are called the 
BA networks, which bear the aforementioned two charac-
teristics of a real-world network. BA networks have power-
law degree distribution. A degree distribution is called 
power law if the probability that a vertex has degree d is 
given by Pr [d] ∝ d−� , where � ≥ 1 is a positive constant. 
Barabási and Albert showed that the preferential attach-
ment method of selecting vertices results in a power-law 
degree distribution [8].

A naïve implementation of network generation based 
on the BA model takes Ω(n2) time where n is the number 
of vertices. Batagelj and Brandes give an efficient algo-
rithm with a running time of (m) where m is the number 
of edges [9]. This algorithm maintains a list of vertices 

such that each vertex i appears in this list exactly di times. 
The list can easily be updated dynamically by simply 
appending u and v to the list whenever a new edge (u, v) 
is added to the network. Now, to find F(t), a vertex is cho-
sen from the list uniformly at random. Since each vertex i 
occurs exactly di times in the list, we have the probability 
Pr [F(t) = i] =

di∑
j dj

.

2.4 � Sequential Algorithm: Copy Model

As it turns out, the BA model does not easily lend itself to 
an efficient parallelization [4]. Another algorithm called 
the copy model [16, 17] preserves preferential attachment 
and power-law degree distribution. The copy model works 
as follows: Similar to the BA model, it starts with a small 
clique of d̂ vertices and in every time step, a new vertex 
t is added to the network to create d ≤ d̂ connections to 
existing vertices F

�
(t) for 1 ≤ � ≤ d with F

�
(t) < t . For 

each connection (t,F
�
(t)) from vertex t, the following steps 

are executed:
Step 1: First, a random vertex k ∈ [0, t − 1] is chosen with 

uniform probability.
Step 2: Then, F

�
(t) is determined as follows:

where l is a random outgoing connection from vertex k.
We also denote � (t) =

{
F1(t),F2(t),… ,Fd(t)

}
 to be the 

set of outgoing vertices from vertex t.
It can be easily shown that a connection from vertex t to 

vertex i is made with probability Pr [i ∈ � (t)] =
di∑
j dj

 when 

p =
1

2
 . Thus, when p =

1

2
 , this algorithm follows the Bara-

bási–Albert model as shown in [2, 4].
Thus, the copy model is more general than the BA model. 

It has been previously shown [17] that the copy model 
produces networks with degree distribution that follows a 
power-law d−� , where the value of the exponent � depends 
on the choice of p. Further, it is easy to see the running 
time of the copy model is (m) . The copy model has been 
used to develop efficient parallel algorithms for generating 
preferential attachment networks in distributed-memory and 
shared-memory machines [4, 7]. In our work presented in 
this paper, we adopt the copy model as a starting point to 
design and develop our GPU-based parallel algorithm.

3 � GPU‑based Parallel Algorithm: cuPPA

The PA model imposes a critical dependency that every 
new vertex needs to have the state of the previous net-
work to compute its edges. This poses a major challenge in 

(1)F
�
(t) = k with prob. p (Direct edge)

(2)= Fl(k) with prob. (1 − p) (Copy edge)
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parallelizing preferential attachment algorithms. In phase 
v, to determine F(v), it requires that Fi is known for each 
i < v . As a result, any algorithm for preferential attachment 
apparently seems to be highly sequential in nature: Phase v 
cannot be executed until all previous phases are completed.

In [4], a distributed-memory-based algorithm was pro-
posed that exploits the copy model to relieve this sequential-
ity and run in parallel. We re-examined that exploitation and 
designed cuPPA, an efficient parallel algorithm for generat-
ing preferential attachment-based networks on a single GPU 
as described next. Here, we assume that the entire network 
can be stored in the GPU memory.

Let T be the number of threads in the GPU. The set of 
vertices V is partitioned into T disjoint subsets of vertices 
V0,V1,… ,VT−1 ; that is, Vi ⊂ V  , such that for any i and j, 
Vi ∩ Vj = � and 

⋃
i Vi = V  . Thread i is responsible for 

computing and updating F(v) for all v ∈ Vi . The algorithm 

starts with an initial network, which is a clique of the first 
d vertices labeled 0, 1, 2,… , d − 1 . For each vertex v, the 
algorithm computes d edges (t,F1(v)), (t,F2(v)),… , (t,Fd(v)) 
and ensures that such edges are distinct without any parallel 
edges. We denote the set of vertices {F1(v),F2(v),… ,Fd(v)} 
by � (v) . The algorithm works in two phases. In the first 
phase of the algorithm (called execute copy model), we 
execute the copy model for all vertices in parallel (using all 
threads). This phase creates all the direct edges and some of 
the “copy” edges (Eq. 2). However, many copy edges might 
not be fully processed due to the dependencies. The incom-
plete copy edges are put in a waiting queue called  . In the 
second phase of the algorithm (called resolve incomplete 
edges), we resolve the incomplete edges from the waiting 
queue  and finalize the copy edges. The pseudocode of 
cuPPA is given in Algorithm  1. A list of symbols used in 
the paper is presented in Table 1.

Algorithm 1: cuPPA

1

n Number of vertices
d Number of outgoing edges from each vertex
p Probability of creating a direct edge
Vi The set of vertices processed by thread Ti
F(u) The set of outgoing ends of edges from vertex u
Fi(u) The i-th outgoing edge from vertex u
Q A queue for the current set of unfinished edges
Q′ A queue for the next set of unfinished edges

2 with T threads do in parallel /* Each thread Ti executes the following in
parallel: */

// Phase 1: Execute Copy Model
3 foreach v ∈ Vi do
4 for � = 1 to d do
5 u ← a uniform random vertex in [0, v − 1]
6 c ← a uniform random number in [0, 1]
7 if c < p then // i.e., with prob. p
8 if u /∈ F(v) then
9 F�(v) ← u

10 else
11 l ← a uniform random integer in [1, d]
12 if Fl(u) �= NULL and Fl(u) /∈ F(v) then // Resolved
13 F�(v) ← Fl(u)

14 else // Unresolved edge into Q
15 F�(v) ← NULL
16 Add 〈u, l〉 to Q

// Phase 2: Resolve Incomplete Edges
17 while Q �= ∅ do
18 foreach 〈u, l〉 ∈ Q do
19 if Fl(u) �= NULL then
20 F�(v) = Fl(u)

21 else
22 Append 〈u, l〉 to Q′

23 Swap Q and Q′

24 Q′ ← ∅
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In the first phase (lines 3–21), the algorithm executes the 
copy model for all of its vertices. The edges that could not 
be completed are stored in a queue  to be processed later. 
We call the queue a waiting queue. Each of the other vertices 
from d to n − 1 generates d new edges. There are funda-
mentally two important issues that need to be handled: (1) 
how we select F

�
(v) for vertex v where 1 ≤ � ≤ d , and (2) 

how we avoid duplicate edge creation. Multiple edges for a 
vertex v are created by repeating the same procedure d times 
(line  4), and duplicate edges are avoided by simply checking 
if such an edge already exists—such a check is done when-
ever a new edge is created.

For the � th edge of a vertex v, another vertex u is chosen 
from [1, v − 1] uniformly at random (line  5, 6). Edge (v, u) is 
created with probability p (line  7). However, before creating 
such an edge (v, u) in line  8, the existence of such an edge is 
checked immediately before creating them in line  9. If the 
edge already exists at that time, the edge is discarded and 
the process is repeated again (line  5). With the remaining 
1 − p probability, v is connected to some vertex in � (u) ; that 
is, we make an edge (v,F

�
(u)) , such that � is chosen from 

[1, d] uniformly at random.
After the first phase is completed, the algorithm starts to 

resolve all incomplete edges by processing the waiting queue 
(lines 22–29). If an item in the current queue  could not be 
resolved during this step, it is subsequently placed in another 
queue ′ . After all incomplete edges on the queue  are pro-
cessed, the queues  and ′ are swapped and ′ is cleared. 
We repeat this process until both the queues are empty. Note 
that there is no circular dependency in the copy edges. For 
two vertices u > v , copy edges from u may depend on edges 
from v but not vice versa. Therefore, there would be no cir-
cular waiting and no deadlock situation for the waiting queue 
to complete.

3.1 � Graph Representation

We use one array G of nd elements to represent and store the 
entire graph. Each vertex u connects to d existing vertices. 
The neighbors of u are stored between the indices inclusive 
from ud to (u + 1)d − 1 that represents the other end-point 
vertices. We call these indices the outgoing vertex list for 
vertex u. The initial network consists of the d2 vertices from 
the start of the array. For any edge u, v where u > v and 
u, v > d , the edge is represented by storing v in one of the d 
items in the outgoing vertex list of u. Note that the graph G 
contains exactly nd edges as defined by the Barabási–Albert 
or the copy model. Any vertex with the index 0 ≤ i < nd of 
the array G denotes the (t mod d) th end point of the vertex 
i

d
.

3.2 � Partitioning and Load Balancing

Recall that we distribute the computation among the threads 
by partitioning the set of vertices V = {0, 1,… , n − 1} into 
T subsets V0,V1,… ,VT−1 as described at the beginning of 
Sect. 3, where T is the number of available threads. Although 
several partitioning schemes are possible, our study suggests 
that the round-robin partitioning (RRP) scheme best suits 
our algorithm. In this scheme, vertices are distributed in a 
round-robin fashion among all threads. Partition Vi contains 
the  ver t ices  ⟨i, i + T , i + 2T ,… , i + kT⟩ such that 
i + kT ≤ n < i + (k + 1)T  ; that is, Vi = {j|j mod T = i} . In 
other words, vertex i is assigned to set Vi mod T . Therefore, 
the number of vertices in the sets is almost equal., i.e., the 
number of vertices in a set is either 

⌈
n

T

⌉
 or 

⌊
n

T

⌋
 . The round-

robin partitioning scheme is illustrated in Fig. 1.

3.3 � Segmented Round‑Robin Partitioning

However, the naïve round-robin scheme discussed above 
also has some technical issues. As described in Sect. 3, the 
first phase of Algorithm 1 executes the copy model for every 
vertex assigned to it and stores any unresolved copy edge 
in the waiting queue. In the second phase, the algorithm 
takes out each unresolved edge from the waiting queue and 
tries to resolve them. To reduce the memory latency access-
ing the waiting queue, we store the waiting queue  in the 
GPU shared memory that offers many folds faster memory 
access than the global GPU memory. Note that this memory 
is limited in capacity and is shared among all threads run-
ning within the same block. Modern GPUs such as NVidia 
GeForce 1080 have 48 KB of ultra-fast shared memory per 
block. Since the amount of the shared memory is very lim-
ited, it can only store a limited number of unresolved items 
in the queue. Let  denote the total capacity of the waiting 

Table 1   Symbols used in this paper

Symbol Description

n The number of vertices
V The set of vertices
m The number of edges
E The set of edges
T The number of threads
d The number of outgoing edges generated from each new 

vertex
p The probability of creating a direct edge in the copy model
N(v) The set of neighbors of vertex v
d
v

The degree of vertex v
F
t
(k) The outgoing end of kth edge from vertex t

�
t

The set of outgoing ends of edges from vertex t
 A queue for the current set of unfinished edges
′ A queue for the next set of unfinished edges
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queue. For example, with a 48 KB of shared memory, we 
have a total capacity to store  =

48×1024

8
= 6144 items in the 

waiting queue where each item takes 8 bytes of memory. If 
we use � threads per block, each thread will have a capacity 
of 

�
 items to be placed in the waiting queue. Therefore, if 

the number of vertices assigned to a thread is too large, it 
may generate a large number of unresolved copy edges to be 
placed in the waiting queue, essentially forcing the algorithm 
to use a large amount of GPU memory instead of the avail-
able shared memory.

In order to exploit the faster shared memory without 
overflowing the waiting queue capacity, we use a modified 
round-robin partitioning scheme called, segmented round-
robin partitioning (SRRP). In this scheme, the entire set of 
vertices V is first partitioned into some k consecutive subsets 
S1, S2, S3 … Sk called segments. From the definition of the 
copy model, it is clear that vertices on a segment Si may 
only depend on vertices on segment Sj where i ≥ j but not 
vice versa. Therefore, the segments have to be processed 
in a consecutive fashion. Let Bi = |Si| denote the number 
of elements (also called the segment size) in segment Si 
where 1 ≤ i ≤ k . Next, the parallel algorithm is executed in 
k consecutive rounds where round i executes the parallel 
algorithm for all the vertices in segment Si . In round i, the 
Bi vertices in segment Si are further partitioned into T sub-
sets V0(Si),V1(Si),…VT−1(Si), using the round-robin scheme 
discussed above and executed in parallel using the T threads. 
The technique is illustrated in Fig. 2.

Next, we need to determine the best segment size to avoid 
overflow while using the shared memory. From the copy 
model, it is easy to see that the lower the probability p is, 
the more likely it is to be in the waiting queue. In the worst 
case, when p = 0 , all generated edges consist of copy edges. 
Therefore, at most d unresolved copy edges could be placed 
in the waiting queue per vertex. Additionally, as the value 
of d gets bigger, the number of copy edges increases and 

hence, the waiting queue size increases. Therefore, p and 
d both have a significant impact on the required size of the 
waiting queue. Having that in mind, we use two approaches 
for the segment size:

–	 Fixed Segment Size: The simplest way is to use a fixed 
sized segments in each round. From the previous discus-
sion, it is clear that in the worst case we need d items per 
vertex to be placed on the waiting queue. Therefore, we 
can use up to � = min

(


d
, �
)
 threads per block where  

is the total queue capacity and � is the maximum number 
of threads per block. Then, the segment size is 

d�
 vertices 

per segment. Note that we can exploit the shared memory 
for d ≤  ; otherwise, we need to use the global memory. 
However, in almost all practical scenarios we have 
d ≪  ; hence, we can take advantages of the shared 
memory.

–	 Dynamic Segment Size: Although the fixed segment 
size scheme ensures that the queue will not overflow in 
any round, it may not be the most efficient implementa-
tion. We use another scheme where the segment size is 
determined dynamically between two rounds based on 
the current state of the algorithm. In this scheme, we start 
with the number of threads per block � and the segment 
size 

d�
 vertices per segment as was done in the fixed seg-

ment size scheme. However, at the end of each round, 
we determine the maximum number of items that were 
placed in the waiting queue per thread. If the number of 
items placed in the waiting queue in the round is less than 
some f factor of the waiting queue capacity per thread 

�
 , 

we increase the total capacity  by a factor of f (typically, 
we set f = 2 ). Before the next round, we recompute the 
required number of threads per block and update the seg-
ment size accordingly.

Fig. 1   Distributing 21 vertices 
among 3 threads using round-
robin partitioning

Fig. 2   Distributing 21 vertices 
among 3 threads using seg-
mented round-robin partitioning 
with 2 rounds
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3.4 � CUDA‑Specific Deadlock Scenario

In the round-robin scheme, completion of a copy edge of 
a vertex in a thread i may depend on some other thread j 
where i ≠ j . Due to the nature of dependency, j also may 
have a copy edge that depends on another vertex that belongs 
to i . Therefore, if any of these threads are not running 
simultaneously on the GPU, the other thread will not be able 
to complete and a deadlock situation may arise. To avoid 
such a situation, we must ensure that either all the GPU 
threads are running concurrently or the dependent threads 
are put to sleep for a while. In the current CUDA framework, 
the runtime engine schedules each kernel block to a stream-
ing multiprocessor, and the blocks of running threads are 
non-preemptible. Therefore, to ensure that threads are run-
ning concurrently to avoid deadlock situation, we cannot use 
more blocks than the number of available streaming multi-
processors. Note that the upcoming CUDA runtime supports 
cooperative groups. On such future systems, the deadlock 
situation could be avoided using block sizes larger than the 
number of shared multiprocessors.1

4 � Generating Networks Using Multiple GPUs

So far we have presented an algorithm to generate the pref-
erential attachment-based model using a single GPU. Our 
algorithm works well if the entire network can be stored 
in the GPU memory. However, the size of the generated 
network is limited by the amount of GPU memory. Nowa-
days, it is very common to have multiple GPUs in a comput-
ing cluster, even on commodity machines. Therefore, we 
could potentially use multiple GPUs to generate even larger 
networks. In this section, we discuss how cuPPA can be 
extended for multiple GPUs.

Similar to distributing the works of generating edges into 
multiple threads as discussed at the beginning of the sec-
tion, we need to distribute the vertices into multiple GPUs. 
Let the vertices V be partitioned into g subsets �1,�2,… ,�g 
where g is the number of available GPUs. GPU i processes 
the edges generated by the vertices �i . Next, we execute 
the cuPPA algorithm on each of the GPUs with their set of 
vertices. We can immediately see that computing phase 1 
of the algorithm can be done independently in all GPUs. 
However, resolving the incomplete edges in phase 2 of the 
algorithm requires careful attention. Due to the nature of the 
dependency, an incomplete edge on a GPU may require the 
information resident on the memory of another GPU. There-
fore, a synchronization among the GPUs is required. Such 
a synchronization technique between CPUs with distrib-
uted memory was presented in [4]. Although the technique 

can be adapted for synchronization between the GPUs, it 
requires complex and intricate communications between the 
GPUs. NVidia CUDA offers another scheme for accessing 
memory across multiple GPUs called the “unified memory 
addressing.” In this case, a single memory address space 
accessible from any processor in a system is available from 
the CUDA runtime application programming interface. 
Therefore, any GPU can access the memory of other GPUs. 
However, due to the nature of random and sparse memory 
access, the approach would not yield the desired benefit. In 
the next section, we present cuPPA-Hash, an alternative 
algorithm to generate networks using the preferential attach-
ment model using hash functions instead of pseudorandom 
number generators.

4.1 � cuPPA‑Hash: A Hash Function‑Based 
Implementation

Notice that the dependency of generating an edge on other 
vertices only arises while creating a copy edge, i.e., when a 
vertex u tries to connect to an random end point of another 
vertex v. We adapt an idea previously used for communi-
cation-free parallel generation of BA graphs [24] to a GPU 
setting. Consider a vertex u copying an end point from a 
vertex v. Rather than looking up this value from a memory 
cell that is filled when vertex v is generated, the end point 
is recomputed independently. This is possible using a hash 
function to generate the random numbers instead of using 
pseudorandom numbers. This approach has the additional 
benefit that the exact same graph can be reproduced using 
the same hash functions. We also extend [24] by develop-
ing a more general preferential attachment-based algorithm 
using the copy model called cuPPA-Hash.

Fig. 3   The degree distributions of the PA Networks ( n = 500M , 
d = 4 ). In log–log scale the degree distribution is a straight line 
validating the scale-free property. Further, all four models produce 
almost identical degree distributions showing that both versions of 
cuPPA produce networks with accurate degree distributions

1  https​://devbl​ogs.nvidi​a.com/paral​lelfo​rall/cuda-9-featu​res-revea​led/.

https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/
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A simplified pseudocode of cuPPA-Hash is presented 
in Algorithm 2. The initial set of vertices is first divided 
into g mutually exclusive subsets �1,… ,�g where g is 
the number of GPUs. Next each GPU k processes the 
vertices in set �k using the procedure cuPPA-Hash ( �k ). 
We further partition the set of vertices �k into T subsets 
V0,V1,… ,VT−1 where T is the number of threads on GPU 
k. Thread i executes the copy model on the vertices in set 
Vi (line 3). For each of the d outgoing edge of a vertex 
v, the function Calculate-Edge calculates the end-point 
vertex using the copy model. The � th outgoing edge of 
the vertex v is uniquely denoted by the index e = vd + � 
(line 7). The edge index e is used to generate a hash value 
r using a hash function. We used a 64-bit CRC64 as our 
hash function. Note that r denotes the index of the lth 
outgoing edge of vertex u calculated in line 9. If u < d 
then u denotes an initial vertex and we connect F

�
(v) to u 

(line 11). Otherwise, we compute a floating point number 
r using a floating point version of the hash function (line 
14). If r < p (i.e., with probability p), we connect F

�
(v) to 

u. Otherwise, we calculate the outgoing edge of Fl(u) (line 
17) recursively. In the actual implementation, we use an 
iterative function instead of the recursive one.

Note that the algorithm does not require to access 
any GPU memory pertaining to other GPUs. Instead all 
copy edges are essentially recomputed. Therefore, this 
approach requires more computation than the origi-
nal cuPPA algorithm. However, due to the independent 
computations, the algorithm scales very well to multiple 
GPUs as shown in the experimental section.

5 � Experimental Results

In this section, we evaluate our algorithm and its perfor-
mance by experimental analysis. In the following sections, 
we denote our first algorithm using pseudorandom number 
generators as cuPPA-Pure and the second algorithm using 
hash function as cuPPA-Hash. We demonstrate the accuracy 
of our algorithm by showing that our algorithm produces 
networks with power-law degree distribution as desired. 
We also compare the runtime of our algorithm using other 
sequential and parallel algorithms.

5.1 � Hardware and Software

We used a computer consisting of 6 AMD Phenom(tm) II 
6174 processor with 3.3 GHz clock speed and 64 GB sys-
tem memory. The machine also incorporates a NVidia 1080 
GPU with 8 GB memory. The operating system is Ubuntu 
16.04 LTS, and all software on this machine was com-
piled with GNU gcc 4.6.3 with optimization flags -O3. 
The CUDA compilation tools V8 were used for the 
GPU code along with nvcc compiler. In additional experi-
ments, we used another system consisting of 4 NVidia Tesla 
P100 GPUs with 16 GB memory each.

5.2 � Degree Distribution

To demonstrate the accuracy of cuPPA-Pure and cuPPA-
Hash, we compared those with the sequential Bara-
bási–Albert (SBA) [9] and the sequential copy model 
(SCM) algorithms. The degree distributions of the networks 
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generated by SBA, SCM, cuPPA-Pure, and cuPPA-Hash 
are shown in Fig. 3 in a log–log scale. We used n = 500M 
vertices, each generating d = 4 new edges with a total of 
two billion ( 2 × 109 ) edges. The distribution is heavy-tailed, 
which is a distinct feature of power-law networks. The expo-
nent � of the power-law degree distribution is measured to be 
2.7. This supports the fact that for the finite average degree 
of a scale-free network, the exponent should be 2 < 𝛾 < ∞ 
[12]. Also notice that the degree distributions of SBA and 
SCM are quite identical. The degree distributions of both 
cuPPA algorithms are also similar to both SBA and SCM.   

5.3 � Visualization of Generated Graphs

In order to gain an idea of the structure and degree distribu-
tions, we obtained a visualization of some of the networks 
generated by our algorithm. We generated the visualizations 
using a popular network visualization tool called Gephi. 
Bearing aesthetics in mind and to minimize undue clutter, 
we focused on a few small networks by choosing n = 10,000 , 
p = 0.5 , and d = 1, 2, 4 . The visualizations are shown in 
Figs. 4, 5, and 6.

5.4 � Effect of Edge Probability on Degree 
Distribution

As mentioned earlier, the strength of the copy model is the 
capability of generating other preferential attachment net-
works by simply varying one parameter, namely, the prob-
ability p. In Fig. 7, we display the degree distribution of the 

generated networks by varying p using both cuPPA-Pure 
and cuPPA-Hash. When p = 0 , all edges are produced by 
copy edges, and thus, the network becomes a star network 
where all additional vertices connect to the d initial verti-
ces. With a small value of p ( p = 0.01 ), we can generate a 

Fig. 4   Visualization of networks generated by cuPPA using 
n = 10,000 , p = 0.5 and d = 1 Fig. 5   Visualization of networks generated by cuPPA using 

n = 10,000 , p = 0.5 and d = 2

Fig. 6   Visualization of networks generated by cuPPA using 
n = 10,000 , p = 0.5 and d = 4
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network with a very long tail. When we set p = 0.5 , we get 
the Barabási–Albert networks which exhibit a straight line 
in log–log scale. When we increase p to 1, we get a network 
consisting entirely of direct edges that do not form any tail.

5.5 � Waiting Queue Size of cuPPA‑Pure

As mentioned in Sect. 3.3, the waiting queue size depends 
on p and d. To evaluate the impact of p and d, we ran simula-
tions using 1280 CUDA threads (20 blocks and 64 threads 
per block) where each thread only executed one vertex. The 
value of p is varied from 0 to 1 with different probability 
values. We also varied the value of d from 1 to 4096 as 
increasing powers of 2. In Fig. 8, we show the number of 
items placed in the waiting queue per vertex for different 
combinations of p and d. We also added the worst case value 
as a line in the plot. As seen from the figure, in the worst 

case with p = 0 , the maximum size of the waiting queue 
increases linearly with d for smaller values of d (up to 64) 
and afterward, it does not increase much compared to d. 
Therefore, for smaller values of d, we need to have provi-
sions for at least d items per vertex in the waiting queue.

However, as the round progresses, the maximum size 
of the waiting queue decreases significantly as shown 
in Fig. 9. For this figure, we also ran cuPPA using 1280 
CUDA threads (20 blocks and 64 threads per block) to 
generate networks with d = 512, 256, 128, 64 and p = 0.5 . 
Each CUDA thread processes exactly one vertex per round. 
Only the first 100 rounds are shown for brevity. From 
Fig. 9, we can see that as the round progresses, the size 
of the waiting queue per round decreases dramatically for 
all different values of d. This indicates that we could pro-
cess more vertices in later rounds using the same amount 
of queue memory. Therefore, we can dynamically change 
the size of the segments between two consecutive rounds 
to increase parallelization. Based on these observations 

Fig. 7   The degree distribu-
tions of the networks by cuPPA 
( n = 500M , d = 4 ) with varying 
p 

(a) (b)

Fig. 8   Maximum size of the waiting queue per thread for different 
values of p and d (both axes in log scale). In the worst case ( p = 0 ), 
the maximum size increases linearly with d for smaller values 
( d ≤ 64 ). For larger d, the actual maximum size of waiting queue is 
comparatively smaller than the worst case

Fig. 9   Size of the waiting queue decreases significantly with rounds 
in SRRP scheme



71Novel Parallel Algorithms for Fast Multi‑GPU‑Based Generation of Massive Scale‑Free Networks﻿	

1 3

regarding the size of the waiting queue, we designed an 
adaptive version of cuPPA-Pure that monitors the maxi-
mum size of the waiting queue and manages the segment 
size accordingly as discussed in Sect. 3.3. We call this ver-
sion cuPPA-Dynamic and use it for all other experiments.

5.6 � Runtime Performance

In this section, we analyze the runtime and performance of 
cuPPA-Pure and cuPPA-Hash relative to other algorithms 
and show the variation of performances against various 
parameters.

5.6.1 � Runtime Comparison with Existing Algorithms 
(Single GPU)

To the best of our knowledge, our algorithm is the first GPU-
based parallel algorithm to generate preferential attach-
ment networks. Therefore, it is not possible to compare 
the runtime with other GPU-based algorithms. Instead, we 
compare with the existing non-GPU algorithms. The total 
run times of both versions of cuPPA and the existing algo-
rithms are shown in Fig. 10 for generating two billion edges 
( n = 500M , d = 4 ). In this experiment, we used a single 
NVidia GeForce 1080 GPU with 8 GB memory.

–	 Sequential Algorithms: We compare cuPPA with two 
efficient sequential algorithms: SBA [9] and SCM [17]. 
For SCM, we used two implementations: one with the 
pseudorandom number generators (called SCM-Pure) 
and the other with hash functions (called SCM-Hash). 
We also compared our algorithm with a reference 
sequential graph generation library from the Graph500 
[1] reference code that uses SKG to generate networks.

	   As shown in Fig. 10, SKG from Graph500 takes the 
longest time to generate 2B scale-free networks—25.39 
minutes. In comparison, our GPU-based algorithm is 
650× faster.

	   We also found that SCM-Pure is slightly faster than 
the SBA algorithm. The hash-based SCM-Hash essen-
tially recomputes all the copy edges and therefore takes 
approximately 70% more time than the SCM-Pure algo-
rithm. However, the hashing technique is shown to scale 
to a large number of processors making it a viable candi-
date for large network generation using many processors 
[24]. On the other hand, the GPU-based cuPPA-Pure 
generates the network in just 2.32 s on the NVidia 1080 
GPU with 78× to 94× speedup. Also note that cuPPA-
Hash is slightly slower than cuPPA-Pure on a single 
GPU due to more computation.

–	 Parallel Algorithms: We also compared cuPPA with a 
distributed-memory (PPA-DM) [4] and a shared-memory 
(PPA-SM) [7] parallel algorithms. As shown in Fig. 10, 
both of the cuPPA algorithms outperform PPA-DM on a 
system with 24 processors. The main reason is that unlike 
PPA-DM, cuPPA algorithms do not require complex syn-
chronizations and message communications.

	   Due to the unavailability of the PPA-SM code, we 
compared the runtime to generate the largest graph 
( n = 107, d = 10 ) reported in [7] with the correspond-
ing runtime of cuPPA. PPA-SM generates the network 
using 16 cores of Intel Xeon CPU E5-2698 2.30 GHz in 
approximately 7.5 s, whereas cuPPA-Pure generates the 
same network in just 0.3 s.

5.6.2 � Runtime Versus Number of Vertices (Single GPU)

First, we examine the runtime performance of cuPPA-
Pure (fastest of the two algorithms in a single GPU) with 
increasing number of vertices n. Here, we examine two 
cases. In the first case, we set d = 4 , vary p = {0, 0.001, 
0.25,   0.5,   0.75,   1} , and vary n = {1.9M, 3.9M,   7.8M,   
15.6M,   31.25M,   62.5M,   125M,   250M,   500M} to see 
how the runtime changes with increasing number of ver-
tices for different p. The corresponding runtime is shown 
in Fig.  11. In the second case, we set p = 0.5 , vary 

Fig. 10   Runtime of Graph500 
generator, SBA, SCM, PPA-
DM, and cuPPA for generating 
two billion edges ( n = 500M , 
d = 4 ). Both of our cuPPA algo-
rithms can generate the network 
in less than 3 s
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d = {1, 2, 4, 8, 16, 32, 64, 128} , and vary n = {60K, 120K,   
240K,  480K,  960K,  1.92M,  3.84M,  7.68M} to see how 
the runtime changes with increasing number of vertices for 
different d. The corresponding runtime is shown in Fig. 12.

From Figs. 11 and 12, we can observe that for any fixed 
set of values for p and d, with increasing n, the runtime 
increases linearly, indicating that the algorithm scales very 
well with increasing value of n.

5.6.3 � Runtime Versus Degree of Preferential Attachment 
(Single GPU)

Next, we examine the runtime performance of cuPPA with 
increasing d. The runtime is shown in Fig. 13. Here, we set 
n = 7812500 , vary p = {0, 0.00001, 0.001, 0.25, 0.5, 0.75, 1} , 
and vary d = {1, 2, 4, 8, 16, 32, 64, 128} to see how the runt-
ime changes for increasing value of d for different p. As seen 
from the figure, with increasing d, the runtime increases 
almost linearly. Therefore, the algorithm is observed to scale 

well for increasing value of d. Note that higher values of d 
are typically unlikely. However, we included higher values 
of d for performance measurement purpose. Also notice that 
the runtime is the largest for p = 0 . With a small value of 
p = 0.00001 , the runtime drops significantly and does not 
change much for higher values of p. Since the typical values 
of p are much larger than 0, this observation suggests that 
cuPPA performs well for real-world scenarios.

5.6.4 � Runtime Versus Probability of Copy Edge (Single 
GPU)

Next we examine the runtime performance of cuPPA with 
increasing p. The runtime is shown in Fig. 14. Here, we used 
three different sets of values for n and d ( ⟨n = 500M, d = 4⟩ , 
⟨n = 125M, d = 16⟩ , and ⟨n = 31.25M, d = 64⟩ ), and vary 
p = {0, 0.00001,  0.0001,  0.001,  0.01,  0.1,  0.2,  0.3,  0.4,  0.5,  
0.6,  0.7,  0.8,  0.9,  0.99,  1.00} . As seen from the figure, the 
runtime reduces dramatically with a slight increase of p = 0 to 

Fig. 11   Runtime versus number of edges suggests that cuPPA is very 
scalable with increasing n for different values of p with a fixed value 
of d = 4

Fig. 12   Runtime versus number of vertices suggests that cuPPA is 
very scalable with increasing n for different values of d with a fixed 
value of p = 0.5

Fig. 13   Runtime versus d for generating networks with n = 7812500 
with varying d = 1, 2, 4, 8, 16, 32, 64, 128 for different values of p. 
The runtime almost increases linearly

Fig. 14   Runtime versus p for three sets of values for n and d (x-axis 
in log scale). At p = 0 the runtime is the largest which reduces sig-
nificantly with a slight increase. As p increases, the runtime reduces
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p = 0.00001 up to p = 0.1 in all of these three cases. Then, the 
runtime reduces almost linearly up to p = 0.9 and then reduces 
sharply toward p = 1 . With lower values of p, most of the edges 
are produced by copy edges. Therefore, the size of the waiting 
queue increases, thereby increasing the runtime. As the value of 
p increases toward 1, most of the edges are created using direct 
edges, and therefore, fewer items are stored in the waiting queue.

5.6.5 � Runtime Varied with the Number of Threads (Single 
GPU)

To understand how the performance of cuPPA depends on 
the number of threads, we set p = 0.5 and used four different 
sets of n and d to generate networks. We also varied the 
number of CUDA threads per block from 64, 128, 256, 512,  
to 1024. The runtime (solid lines) and the relative speedup 
(dashed lines) of the experiments are shown in Fig. 15. Let 
tT be the runtime of cuPPA using T threads. Then, the rela-
tive speedup is defined as tT

t64
 in this experiments, i.e., the 

speedup gained compared to the runtime of cuPPA using 64 
threads. Figure 15 is shown in two y-axes, the left and right 
axis correspond to the runtime and relative speedup, respec-
tively. From the figure, the best performance is observed 
with 512 threads per block for all cases. Therefore, in our 
final algorithm, we use up to 512 threads per block.

5.7 � Runtime Performance of cuPPA‑Hash (Multiple 
GPUs)

Next, we evaluate the performance of cuPPA-Hash for mul-
tiple GPUs. In this experiment, we used a machine consist-
ing of 4 NVidia Tesla P100 GPUs with 16 GB memory each.

5.7.1 � Strong Scaling

To study the strong scaling of the algorithm, we generated a 
network of 4B edges using n = 1B and d = 4 . We used 1 to 
4 GPUs for the experiment. The strong scaling is presented 
in Fig. 16. From the figure, we can clearly see that cuPPA-
Hash achieves perfect linear speedup by the virtue of being 
an embarrassingly parallel algorithm.

5.7.2 � Generating Large Networks

Using cuPPA-Hash with 4 GPUs, we are able to generate 
a network of 16B edges ( n = 2B and d = 8 ) in just 7 s. That 
represents a rate of 2.29 billion edges per second, which is 
unprecedented in this domain.

6 � Related Work

Although the concepts of random networks have been used 
and well studied over the last several decades, efficient 
algorithms to generate the networks were not available until 
recently. The first efficient sequential algorithm to generate 
Erdős–Rényi and Barabási–Albert networks was proposed 
in [9]. A distributed-memory-based algorithm to generate 
preferential attachment networks was proposed in [26]. 
However, their algorithm was not exact, rather an approxi-
mate algorithm and required manually adjusting several con-
trol parameters. The first exact distributed-memory-based 
parallel algorithm using the copy model was proposed in 
[4]. Another distributed-memory-based parallel algorithm 
using the Barabási–Albert model was proposed in [22, 24]. 
However, instead of using pseudorandom number genera-
tors, they used hash functions to generate the networks. A 
shared-memory-based parallel algorithm using the copy 
model was proposed in [7].

Several other theoretical studies were done on the pref-
erential attachment-based models. Machta and Machta 
[21] described how an evolving network can be generated 

Fig. 15   Runtime (solid lines) and relative speedup (dashed lines) 
versus number of threads. Best performance is observed with 512 
threads per block

Fig. 16   Strong scaling of cuPPA-Hash for 4B edges ( n = 1B and 
d = 4 ). cuPPA-Hash exhibits perfect linear speedup
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in parallel. Dorogovtsev et  al. [13] proposed a model 
that can generate graphs with fat-tailed degree distribu-
tions. In this model, starting with some random graphs, 
edges are randomly rewired according to some preferen-
tial choices. There exists other popular network models 
to generate networks with power-law degree distribution. 
R-MAT [10] and stochastic Kronecker graph (SKG) [19] 
models can generate networks with power-law degree dis-
tribution using matrix multiplication. Due to its simpler 
parallel implementation, the Graph500 group [1] choose 
the SKG model in their supercomputer benchmark. Highly 
scalable generators for Erdős-Renyi, 2D/3D random geo-
metric graphs, 2D/3D Delaunay graphs, and hyperbolic 
random graphs are described in [15]. The corresponding 
software library release also includes an implementation 
of the algorithm described in [24]. An efficient and scala-
ble algorithmic method to generate Chung–Lu, block two-
level Erdős–Renyi (BTER), and stochastic blockmodels 
was also presented in [5].

There is a lack of GPU-based network generators in 
the literature. A GPU-based algorithm for generating 
Erdős–Rényi networks was presented in [23]. Another 
GPU-based algorithm for generating networks using the 
small-world model [25] was presented in [18]. However, 
until recently no GPU-based algorithm existed for the pref-
erential attachment model. We introduced cuPPA as the 
first preferential attachment-based algorithm on the GPU 
using the copy model [3].

7 � Conclusion

A novel GPU-based algorithm, named cuPPA, has been 
presented, with a detailed performance study, and its com-
bination of its scale and speed has been tested by achiev-
ing the ability to generate networks with up to two billion 
edges in under 3 s of wall clock time. The algorithm is cus-
tomizable with respect to the structure of the network by 
varying a single parameter, namely, a probability measure 
that captures the preference style of new edges in the pref-
erential attachment model. Also, a high amount of concur-
rency in the generator’s workload per thread or processor 
is observed when that probability is at very small frac-
tions greater than zero. In future work, we intend to exploit 
code profiling tools for further optimization of the runt-
ime and memory usage on the GPU. Also, the algorithm 
needs to be extended to exploit multiple GPUs that may 
be colocated within the same node. This would require 
periodic data synchronization across GPUs, which can be 
efficiently achieved using the NVidia Collective Commu-
nication Library (NCCL). Additional future work involves 
porting to GPUs spanning multiple nodes, and also hybrid 

CPU-GPU scenarios in order to utilize unused cores of 
multi-core CPUs. Methods to incorporate other network 
generator models can also be explored with our cuPPA as 
a starting point. Finally, future work is needed in convert-
ing our internal, GPU-based graph representation to other 
popular network formats for usability.
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