
1 23

Data Science and Engineering

ISSN 2364-1185
Volume 4
Number 1

Data Sci. Eng. (2019) 4:61-75
DOI 10.1007/s41019-019-0088-6

Novel Parallel Algorithms for Fast Multi-
GPU-Based Generation of Massive Scale-
Free Networks

Maksudul Alam, Kalyan S. Perumalla &
Peter Sanders

1 23

Your article is published under the Creative

Commons Attribution license which allows

users to read, copy, distribute and make

derivative works, as long as the author of

the original work is cited. You may self-

archive this article on your own website, an

institutional repository or funder’s repository

and make it publicly available immediately.

Vol.:(0123456789)1 3

Data Science and Engineering (2019) 4:61–75
https://doi.org/10.1007/s41019-019-0088-6

Novel Parallel Algorithms for Fast Multi‑GPU‑Based Generation
of Massive Scale‑Free Networks

Maksudul Alam1  · Kalyan S. Perumalla1 · Peter Sanders2

Received: 21 March 2018 / Revised: 4 December 2018 / Accepted: 20 March 2019 / Published online: 30 March 2019
© The Author(s) 2019

Abstract
A novel parallel algorithm is presented for generating random scale-free networks using the preferential attachment model.
The algorithm, named cuPPA, is custom-designed for “single instruction multiple data (SIMD)” style of parallel processing
supported by modern processors such as graphical processing units (GPUs). To the best of our knowledge, our algorithm
is the first to exploit GPUs, and also the fastest implementation available today, to generate scale-free networks using the
preferential attachment model. A detailed performance study is presented to understand the scalability and runtime charac-
teristics of the cuPPA algorithm. Also another version of the algorithm called cuPPA-Hash tailored for multiple GPUs is
presented. On a single GPU, the original cuPPA algorithm delivers the best performance, but is challenging to port to multi-
GPU implementation. For multi-GPU implementation, cuPPA-Hash has been used as the parallel algorithm to achieve a
perfect linear speedup up to 4 GPUs. In one of the best cases, when executed on an NVidia GeForce 1080 GPU, the original
cuPPA generates a scale-free network of two billion edges in less than 3 s. On multi-GPU platforms, cuPPA-Hash generates
a scale-free network of 16 billion edges in less than 7 s using a machine consisting of 4 NVidia Tesla P100 GPUs.

Keywords  GPU · Preferential attachment · Random networks · Scale-free networks

1  Introduction

Networks are prevalent in many complex systems such as
circuits, chemical compounds, protein structures, biological
networks, social networks, the Web, and XML documents.
Recently, there has been substantial interest in the study of

a variety of random networks to serve as mathematical mod-
els of complex systems. Various network theories, metrics,
topology, and mathematical models have been proposed to
understand the underlying properties and relationships of
these systems. Among the proposed network models, the
first and the most studied model is the Erdős–Rényi model
[14]. However, the Erdős–Rényi model does not exhibit the
characteristics observed in many real-world complex sys-
tems [8]. Barabási and Albert [8] discovered a class of inho-
mogeneous networks, called scale-free networks, character-
ized by a power-law degree distribution P(k) ∝ k−� , where k
represents the degree of a vertex and � is a constant. While
high degree vertices are improbable in Erdős–Rényi net-
works, they do occur with statistically significant probability
in scale-free networks. Furthermore, the work of Albert et al.
[6] suggests these high degree vertices appear to play an
important role in the behavior of scale-free systems, particu-
larly with respect to their resilience [11]. For example, the
Barabasi–Albert model can be used for evaluating the North
American electric grid with high reliability [11].

As these complex systems of today grow larger, the abil-
ity to generate progressively large random networks becomes
all the more important. It is well known that the structure of

This paper has been authored by UT-Battelle, LLC, under contract
DE-AC05-00OR22725 with the U.S. Department of Energy.
Accordingly, the United States Government retains, and the
publisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive, paid-
up, irrevocable, worldwide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for
United States Government purposes.

 *	 Kalyan S. Perumalla
	 perumallaks@ornl.gov

	 Maksudul Alam
	 alamm@ornl.gov

	 Peter Sanders
	 sanders@kit.edu

1	 Oak Ridge National Laboratory, Oak Ridge, TN, USA
2	 Karlsruhe Institute of Technology, Karlsruhe, Germany

http://orcid.org/0000-0002-4941-463X
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-019-0088-6&domain=pdf

62	 M. Alam et al.

1 3

larger networks is fundamentally different from that of small
networks, and many patterns such as communities emerge
only in massive networks [20]. Although various random net-
work models have been used and studied over the last several
decades, even efficient sequential algorithms for generating
such networks were nonexistent until recently. The efficient
sequential algorithms are able to generate networks with mil-
lions of edges in a reasonable amount of time; however, gener-
ating networks with billions of edges can take a prohibitively
large amount of time. This motivates the need for efficient
parallel algorithms for generating such networks. Naïve paral-
lelization of the sequential algorithms for generating random
networks may not work due to the dependencies among the
edges and the possibility of creating duplicate (parallel) edges.

One of the earliest known parallel algorithms for the pref-
erential attachment model is given by Yoo and Henderson
[26]. Although useful, the algorithm has two weaknesses:
(1) for ease of handling dependencies and avoid the required
complex synchronization, they adopted an approximation
algorithm rather than an exact algorithm; and (2) to correctly
generate the network, the algorithm needs manual adjust-
ment of several control parameters. An exact distributed-
memory parallel algorithm was presented in [4]. A literature
review of the recent developments is presented in Sect. 6.

Graphics processors (GPUs) are a cost-effective, energy-
efficient, and widely available parallel processing platform.
GPUs are highly parallel, multi-threaded, many-core proces-
sors that have greatly expanded beyond graphics operations
and are now widely used for general purpose computing.
The use of GPUs is prevalent in many areas such as scien-
tific computation, complex simulations, big data analytics,
machine learning, and data mining. However, there is a lack
of GPU-based graph/network generators, especially for scale-
free networks such as those based on the preferential attach-
ment model. There exist GPU-based network generators for
Erdős–Rényi networks [23] and small-world model [18]. How-
ever, until recently we found no GPU-based algorithm to gen-
erate scale-free networks [3]. In this paper, we present cuPPA,
a novel GPU-based algorithm for generating networks con-
forming to the preferential attachment model. The algorithm
adopts the copy model [17] and employs a simpler synchroni-
zation technique suitable for GPUs. With cuPPA, one can gen-
erate a network with two billion edges using a modern NVidia
GPU in less than 3 s. To the best of our knowledge, this is the
first GPU-based algorithm to generate networks using the exact
preferential attachment model. Although cuPPA works really
well on a single GPU, generating bigger networks with multi-
ple GPUs is a challenging issue due to the complex synchroni-
zation and message communication required among the GPUs.
We present another algorithm called cuPPA-Hash to gener-
ate networks using preferential attachment model on multiple
GPUs. The algorithm uses hashing instead of pseudorandom
number generators and does not require any communication

among the GPUs. With cuPPA-Hash, we generated a network
of 16 billion edges in less than 7 s using a machine consisting
of 4 NVidia Tesla P100 GPUs.

The rest of the paper is organized as follows: In Sect. 2,
background material is provided in terms of preliminary
information, notations, an outline of the network generation
problem, and two leading sequential algorithms. In Sect. 3,
our parallel cuPPA algorithm for the GPU is presented. In
Sect. 4, we present a multi-GPU algorithm called cuPPA-
Hash. The experimental study and performance results
using cuPPA are described in Sect. 5. We present a review
of related works in Sect. 6. Finally, Sect. 7 concludes with a
summary and an outline of future directions.

2 � Background

2.1 � Preliminaries and Notations

In the rest of this paper, we use the following notations.
We denote a network G(V, E), where V and E are the sets
of vertices and edges, respectively, with m = |E| edges
and n = |V| vertices labeled as 0, 1, 2,… , n − 1 . For any
(u, v) ∈ E , we say u and v are neighbors of each other.
The set of all neighbors of v ∈ V is denoted by N(v), i.e.,
N(v) = {u ∈ V|(u, v) ∈ E} . The degree of v is dv = |N(v)| . If
u and v are neighbors, sometimes we say that u is connected
to v and vice versa.

We develop parallel algorithms using the CUDA (Com-
pute Unified Device Architecture) framework on the GPU.
A GPU contains multiple streaming multiprocessors (SMs).
An SM is a group of core processors. Each core processor
executes only one thread at a time. All core processors can
execute their corresponding threads simultaneously. If some
threads perform operations that have to wait for data fetches
with high latencies, those are put into the waiting state
and other pending threads are executed. Therefore, GPUs
increase throughput by keeping the processors busy. All
thread management, including the creation and scheduling of
threads, is performed entirely in hardware with virtually zero
overhead and requires negligible time for launching work
on the GPU. For these advantages, modern supercomputers
such as Summit and Titan, two of the largest supercomputers
in the USA, are built using GPUs in addition to conventional
central processing units (CPUs).

We use K, M, and B to denote thousand, million, and bil-
lion, respectively, e.g., 2 B stands for two billion.

2.2 � Preferential Attachment‑Based Models

The preferential attachment model is a model for generat-
ing randomly evolved scale-free networks using a prefer-
ential attachment mechanism. In a preferential attachment

63Novel Parallel Algorithms for Fast Multi‑GPU‑Based Generation of Massive Scale‑Free Networks﻿	

1 3

mechanism, a new vertex is added to the network and connected
to some existing vertices that are chosen preferentially based on
some properties of the vertices. In the most common method,
preference is given to vertices with larger degrees: The higher
the degree of a vertex, the higher is the probability of choosing
it. In this paper, we study only the degree-based preferential
attachment, and in the rest of the paper, by preferential attach-
ment (PA) we mean degree-based preferential attachment.

Before presenting our parallel algorithms for generating
PA networks, we briefly discuss the sequential algorithms
for the same. Many preferential attachment-based models
have been proposed in the literature. Two of the most promi-
nent models are the Barabási–Albert model [8] and the copy
model [17] as discussed below.

2.3 � Sequential Algorithm: Barabási–Albert Model

One way to generate a random PA network is to use the
Barabási–Albert (BA) model. Many real-world networks
have two important characteristics: (1) They are evolving in
nature and (2) the network tends to be scale-free [8]. In the
BA model, a new vertex is connected to an existing vertex
that is chosen with probability directly proportional to the
current degree of the existing vertex.

The BA model works as follows: Starting with a small
clique of d̂ vertices, in every time step, a new vertex t is added
to the network and connected to d ≤ d̂ randomly chosen exist-
ing vertices: F

�
(t) for 1 ≤ � ≤ d with F

�
(t) < t ; that is, F

�
(t)

denotes the � th vertex which t is connected. Thus, each phase
adds d new edges (t,F1(t)), (t,F2(t)),… , (t,Fd(t)) to the net-
work, which exhibits the evolving nature of the model. Let
� (t) =

{
F1(t),F2(t),… ,Fd(t)

}
 be the set of outgoing vertices

from t. Each of the d end points in the set � (t) is randomly
selected based on the degrees of the vertices in the current
network. In particular, the probability Pi(t) that an outgoing
edge from vertex t is connected to vertex i < t is given by
Pi(t) =

di∑
j dj

 , where dj represents the degree of vertex j.

The networks generated by the BA model are called the
BA networks, which bear the aforementioned two charac-
teristics of a real-world network. BA networks have power-
law degree distribution. A degree distribution is called
power law if the probability that a vertex has degree d is
given by Pr [d] ∝ d−� , where � ≥ 1 is a positive constant.
Barabási and Albert showed that the preferential attach-
ment method of selecting vertices results in a power-law
degree distribution [8].

A naïve implementation of network generation based
on the BA model takes Ω(n2) time where n is the number
of vertices. Batagelj and Brandes give an efficient algo-
rithm with a running time of (m) where m is the number
of edges [9]. This algorithm maintains a list of vertices

such that each vertex i appears in this list exactly di times.
The list can easily be updated dynamically by simply
appending u and v to the list whenever a new edge (u, v)
is added to the network. Now, to find F(t), a vertex is cho-
sen from the list uniformly at random. Since each vertex i
occurs exactly di times in the list, we have the probability
Pr [F(t) = i] =

di∑
j dj

.

2.4 � Sequential Algorithm: Copy Model

As it turns out, the BA model does not easily lend itself to
an efficient parallelization [4]. Another algorithm called
the copy model [16, 17] preserves preferential attachment
and power-law degree distribution. The copy model works
as follows: Similar to the BA model, it starts with a small
clique of d̂ vertices and in every time step, a new vertex
t is added to the network to create d ≤ d̂ connections to
existing vertices F

�
(t) for 1 ≤ � ≤ d with F

�
(t) < t . For

each connection (t,F
�
(t)) from vertex t, the following steps

are executed:
Step 1: First, a random vertex k ∈ [0, t − 1] is chosen with

uniform probability.
Step 2: Then, F

�
(t) is determined as follows:

where l is a random outgoing connection from vertex k.
We also denote � (t) =

{
F1(t),F2(t),… ,Fd(t)

}
 to be the

set of outgoing vertices from vertex t.
It can be easily shown that a connection from vertex t to

vertex i is made with probability Pr [i ∈ � (t)] =
di∑
j dj

 when

p =
1

2
 . Thus, when p =

1

2
 , this algorithm follows the Bara-

bási–Albert model as shown in [2, 4].
Thus, the copy model is more general than the BA model.

It has been previously shown [17] that the copy model
produces networks with degree distribution that follows a
power-law d−� , where the value of the exponent � depends
on the choice of p. Further, it is easy to see the running
time of the copy model is (m) . The copy model has been
used to develop efficient parallel algorithms for generating
preferential attachment networks in distributed-memory and
shared-memory machines [4, 7]. In our work presented in
this paper, we adopt the copy model as a starting point to
design and develop our GPU-based parallel algorithm.

3 � GPU‑based Parallel Algorithm: cuPPA

The PA model imposes a critical dependency that every
new vertex needs to have the state of the previous net-
work to compute its edges. This poses a major challenge in

(1)F
�
(t) = k with prob. p (Direct edge)

(2)= Fl(k) with prob. (1 − p) (Copy edge)

64	 M. Alam et al.

1 3

parallelizing preferential attachment algorithms. In phase
v, to determine F(v), it requires that Fi is known for each
i < v . As a result, any algorithm for preferential attachment
apparently seems to be highly sequential in nature: Phase v
cannot be executed until all previous phases are completed.

In [4], a distributed-memory-based algorithm was pro-
posed that exploits the copy model to relieve this sequential-
ity and run in parallel. We re-examined that exploitation and
designed cuPPA, an efficient parallel algorithm for generat-
ing preferential attachment-based networks on a single GPU
as described next. Here, we assume that the entire network
can be stored in the GPU memory.

Let T be the number of threads in the GPU. The set of
vertices V is partitioned into T disjoint subsets of vertices
V0,V1,… ,VT−1 ; that is, Vi ⊂ V  , such that for any i and j,
Vi ∩ Vj = � and

⋃
i Vi = V  . Thread i is responsible for

computing and updating F(v) for all v ∈ Vi . The algorithm

starts with an initial network, which is a clique of the first
d vertices labeled 0, 1, 2,… , d − 1 . For each vertex v, the
algorithm computes d edges (t,F1(v)), (t,F2(v)),… , (t,Fd(v))
and ensures that such edges are distinct without any parallel
edges. We denote the set of vertices {F1(v),F2(v),… ,Fd(v)}
by � (v) . The algorithm works in two phases. In the first
phase of the algorithm (called execute copy model), we
execute the copy model for all vertices in parallel (using all
threads). This phase creates all the direct edges and some of
the “copy” edges (Eq. 2). However, many copy edges might
not be fully processed due to the dependencies. The incom-
plete copy edges are put in a waiting queue called  . In the
second phase of the algorithm (called resolve incomplete
edges), we resolve the incomplete edges from the waiting
queue  and finalize the copy edges. The pseudocode of
cuPPA is given in Algorithm 1. A list of symbols used in
the paper is presented in Table 1.

Algorithm 1: cuPPA

1

n Number of vertices
d Number of outgoing edges from each vertex
p Probability of creating a direct edge
Vi The set of vertices processed by thread Ti
F(u) The set of outgoing ends of edges from vertex u
Fi(u) The i-th outgoing edge from vertex u
Q A queue for the current set of unfinished edges
Q′ A queue for the next set of unfinished edges

2 with T threads do in parallel /* Each thread Ti executes the following in
parallel: */

// Phase 1: Execute Copy Model
3 foreach v ∈ Vi do
4 for � = 1 to d do
5 u ← a uniform random vertex in [0, v − 1]
6 c ← a uniform random number in [0, 1]
7 if c < p then // i.e., with prob. p
8 if u /∈ F(v) then
9 F�(v) ← u

10 else
11 l ← a uniform random integer in [1, d]
12 if Fl(u) �= NULL and Fl(u) /∈ F(v) then // Resolved
13 F�(v) ← Fl(u)

14 else // Unresolved edge into Q
15 F�(v) ← NULL
16 Add 〈u, l〉 to Q

// Phase 2: Resolve Incomplete Edges
17 while Q �= ∅ do
18 foreach 〈u, l〉 ∈ Q do
19 if Fl(u) �= NULL then
20 F�(v) = Fl(u)

21 else
22 Append 〈u, l〉 to Q′

23 Swap Q and Q′

24 Q′ ← ∅

65Novel Parallel Algorithms for Fast Multi‑GPU‑Based Generation of Massive Scale‑Free Networks﻿	

1 3

In the first phase (lines 3–21), the algorithm executes the
copy model for all of its vertices. The edges that could not
be completed are stored in a queue  to be processed later.
We call the queue a waiting queue. Each of the other vertices
from d to n − 1 generates d new edges. There are funda-
mentally two important issues that need to be handled: (1)
how we select F

�
(v) for vertex v where 1 ≤ � ≤ d , and (2)

how we avoid duplicate edge creation. Multiple edges for a
vertex v are created by repeating the same procedure d times
(line 4), and duplicate edges are avoided by simply checking
if such an edge already exists—such a check is done when-
ever a new edge is created.

For the � th edge of a vertex v, another vertex u is chosen
from [1, v − 1] uniformly at random (line 5, 6). Edge (v, u) is
created with probability p (line 7). However, before creating
such an edge (v, u) in line 8, the existence of such an edge is
checked immediately before creating them in line 9. If the
edge already exists at that time, the edge is discarded and
the process is repeated again (line 5). With the remaining
1 − p probability, v is connected to some vertex in � (u) ; that
is, we make an edge (v,F

�
(u)) , such that � is chosen from

[1, d] uniformly at random.
After the first phase is completed, the algorithm starts to

resolve all incomplete edges by processing the waiting queue
(lines 22–29). If an item in the current queue  could not be
resolved during this step, it is subsequently placed in another
queue ′ . After all incomplete edges on the queue  are pro-
cessed, the queues  and ′ are swapped and ′ is cleared.
We repeat this process until both the queues are empty. Note
that there is no circular dependency in the copy edges. For
two vertices u > v , copy edges from u may depend on edges
from v but not vice versa. Therefore, there would be no cir-
cular waiting and no deadlock situation for the waiting queue
to complete.

3.1 � Graph Representation

We use one array G of nd elements to represent and store the
entire graph. Each vertex u connects to d existing vertices.
The neighbors of u are stored between the indices inclusive
from ud to (u + 1)d − 1 that represents the other end-point
vertices. We call these indices the outgoing vertex list for
vertex u. The initial network consists of the d2 vertices from
the start of the array. For any edge u, v where u > v and
u, v > d , the edge is represented by storing v in one of the d
items in the outgoing vertex list of u. Note that the graph G
contains exactly nd edges as defined by the Barabási–Albert
or the copy model. Any vertex with the index 0 ≤ i < nd of
the array G denotes the (t mod d) th end point of the vertex
i

d
.

3.2 � Partitioning and Load Balancing

Recall that we distribute the computation among the threads
by partitioning the set of vertices V = {0, 1,… , n − 1} into
T subsets V0,V1,… ,VT−1 as described at the beginning of
Sect. 3, where T is the number of available threads. Although
several partitioning schemes are possible, our study suggests
that the round-robin partitioning (RRP) scheme best suits
our algorithm. In this scheme, vertices are distributed in a
round-robin fashion among all threads. Partition Vi contains
the ver t ices ⟨i, i + T , i + 2T ,… , i + kT⟩ such that
i + kT ≤ n < i + (k + 1)T  ; that is, Vi = {j|j mod T = i} . In
other words, vertex i is assigned to set Vi mod T . Therefore,
the number of vertices in the sets is almost equal., i.e., the
number of vertices in a set is either

⌈
n

T

⌉
 or

⌊
n

T

⌋
 . The round-

robin partitioning scheme is illustrated in Fig. 1.

3.3 � Segmented Round‑Robin Partitioning

However, the naïve round-robin scheme discussed above
also has some technical issues. As described in Sect. 3, the
first phase of Algorithm 1 executes the copy model for every
vertex assigned to it and stores any unresolved copy edge
in the waiting queue. In the second phase, the algorithm
takes out each unresolved edge from the waiting queue and
tries to resolve them. To reduce the memory latency access-
ing the waiting queue, we store the waiting queue  in the
GPU shared memory that offers many folds faster memory
access than the global GPU memory. Note that this memory
is limited in capacity and is shared among all threads run-
ning within the same block. Modern GPUs such as NVidia
GeForce 1080 have 48 KB of ultra-fast shared memory per
block. Since the amount of the shared memory is very lim-
ited, it can only store a limited number of unresolved items
in the queue. Let  denote the total capacity of the waiting

Table 1   Symbols used in this paper

Symbol Description

n The number of vertices
V The set of vertices
m The number of edges
E The set of edges
T The number of threads
d The number of outgoing edges generated from each new

vertex
p The probability of creating a direct edge in the copy model
N(v) The set of neighbors of vertex v
d
v

The degree of vertex v
F
t
(k) The outgoing end of kth edge from vertex t

�
t

The set of outgoing ends of edges from vertex t
 A queue for the current set of unfinished edges
′ A queue for the next set of unfinished edges

66	 M. Alam et al.

1 3

queue. For example, with a 48 KB of shared memory, we
have a total capacity to store  =

48×1024

8
= 6144 items in the

waiting queue where each item takes 8 bytes of memory. If
we use � threads per block, each thread will have a capacity
of 

�
 items to be placed in the waiting queue. Therefore, if

the number of vertices assigned to a thread is too large, it
may generate a large number of unresolved copy edges to be
placed in the waiting queue, essentially forcing the algorithm
to use a large amount of GPU memory instead of the avail-
able shared memory.

In order to exploit the faster shared memory without
overflowing the waiting queue capacity, we use a modified
round-robin partitioning scheme called, segmented round-
robin partitioning (SRRP). In this scheme, the entire set of
vertices V is first partitioned into some k consecutive subsets
S1, S2, S3 … Sk called segments. From the definition of the
copy model, it is clear that vertices on a segment Si may
only depend on vertices on segment Sj where i ≥ j but not
vice versa. Therefore, the segments have to be processed
in a consecutive fashion. Let Bi = |Si| denote the number
of elements (also called the segment size) in segment Si
where 1 ≤ i ≤ k . Next, the parallel algorithm is executed in
k consecutive rounds where round i executes the parallel
algorithm for all the vertices in segment Si . In round i, the
Bi vertices in segment Si are further partitioned into T sub-
sets V0(Si),V1(Si),…VT−1(Si), using the round-robin scheme
discussed above and executed in parallel using the T threads.
The technique is illustrated in Fig. 2.

Next, we need to determine the best segment size to avoid
overflow while using the shared memory. From the copy
model, it is easy to see that the lower the probability p is,
the more likely it is to be in the waiting queue. In the worst
case, when p = 0 , all generated edges consist of copy edges.
Therefore, at most d unresolved copy edges could be placed
in the waiting queue per vertex. Additionally, as the value
of d gets bigger, the number of copy edges increases and

hence, the waiting queue size increases. Therefore, p and
d both have a significant impact on the required size of the
waiting queue. Having that in mind, we use two approaches
for the segment size:

–	 Fixed Segment Size: The simplest way is to use a fixed
sized segments in each round. From the previous discus-
sion, it is clear that in the worst case we need d items per
vertex to be placed on the waiting queue. Therefore, we
can use up to � = min

(


d
, �
)
 threads per block where 

is the total queue capacity and � is the maximum number
of threads per block. Then, the segment size is 

d�
 vertices

per segment. Note that we can exploit the shared memory
for d ≤  ; otherwise, we need to use the global memory.
However, in almost all practical scenarios we have
d ≪  ; hence, we can take advantages of the shared
memory.

–	 Dynamic Segment Size: Although the fixed segment
size scheme ensures that the queue will not overflow in
any round, it may not be the most efficient implementa-
tion. We use another scheme where the segment size is
determined dynamically between two rounds based on
the current state of the algorithm. In this scheme, we start
with the number of threads per block � and the segment
size 

d�
 vertices per segment as was done in the fixed seg-

ment size scheme. However, at the end of each round,
we determine the maximum number of items that were
placed in the waiting queue per thread. If the number of
items placed in the waiting queue in the round is less than
some f factor of the waiting queue capacity per thread 

�
 ,

we increase the total capacity  by a factor of f (typically,
we set f = 2 ). Before the next round, we recompute the
required number of threads per block and update the seg-
ment size accordingly.

Fig. 1   Distributing 21 vertices
among 3 threads using round-
robin partitioning

Fig. 2   Distributing 21 vertices
among 3 threads using seg-
mented round-robin partitioning
with 2 rounds

67Novel Parallel Algorithms for Fast Multi‑GPU‑Based Generation of Massive Scale‑Free Networks﻿	

1 3

3.4 � CUDA‑Specific Deadlock Scenario

In the round-robin scheme, completion of a copy edge of
a vertex in a thread i may depend on some other thread j
where i ≠ j . Due to the nature of dependency, j also may
have a copy edge that depends on another vertex that belongs
to i . Therefore, if any of these threads are not running
simultaneously on the GPU, the other thread will not be able
to complete and a deadlock situation may arise. To avoid
such a situation, we must ensure that either all the GPU
threads are running concurrently or the dependent threads
are put to sleep for a while. In the current CUDA framework,
the runtime engine schedules each kernel block to a stream-
ing multiprocessor, and the blocks of running threads are
non-preemptible. Therefore, to ensure that threads are run-
ning concurrently to avoid deadlock situation, we cannot use
more blocks than the number of available streaming multi-
processors. Note that the upcoming CUDA runtime supports
cooperative groups. On such future systems, the deadlock
situation could be avoided using block sizes larger than the
number of shared multiprocessors.1

4 � Generating Networks Using Multiple GPUs

So far we have presented an algorithm to generate the pref-
erential attachment-based model using a single GPU. Our
algorithm works well if the entire network can be stored
in the GPU memory. However, the size of the generated
network is limited by the amount of GPU memory. Nowa-
days, it is very common to have multiple GPUs in a comput-
ing cluster, even on commodity machines. Therefore, we
could potentially use multiple GPUs to generate even larger
networks. In this section, we discuss how cuPPA can be
extended for multiple GPUs.

Similar to distributing the works of generating edges into
multiple threads as discussed at the beginning of the sec-
tion, we need to distribute the vertices into multiple GPUs.
Let the vertices V be partitioned into g subsets �1,�2,… ,�g
where g is the number of available GPUs. GPU i processes
the edges generated by the vertices �i . Next, we execute
the cuPPA algorithm on each of the GPUs with their set of
vertices. We can immediately see that computing phase 1
of the algorithm can be done independently in all GPUs.
However, resolving the incomplete edges in phase 2 of the
algorithm requires careful attention. Due to the nature of the
dependency, an incomplete edge on a GPU may require the
information resident on the memory of another GPU. There-
fore, a synchronization among the GPUs is required. Such
a synchronization technique between CPUs with distrib-
uted memory was presented in [4]. Although the technique

can be adapted for synchronization between the GPUs, it
requires complex and intricate communications between the
GPUs. NVidia CUDA offers another scheme for accessing
memory across multiple GPUs called the “unified memory
addressing.” In this case, a single memory address space
accessible from any processor in a system is available from
the CUDA runtime application programming interface.
Therefore, any GPU can access the memory of other GPUs.
However, due to the nature of random and sparse memory
access, the approach would not yield the desired benefit. In
the next section, we present cuPPA-Hash, an alternative
algorithm to generate networks using the preferential attach-
ment model using hash functions instead of pseudorandom
number generators.

4.1 � cuPPA‑Hash: A Hash Function‑Based
Implementation

Notice that the dependency of generating an edge on other
vertices only arises while creating a copy edge, i.e., when a
vertex u tries to connect to an random end point of another
vertex v. We adapt an idea previously used for communi-
cation-free parallel generation of BA graphs [24] to a GPU
setting. Consider a vertex u copying an end point from a
vertex v. Rather than looking up this value from a memory
cell that is filled when vertex v is generated, the end point
is recomputed independently. This is possible using a hash
function to generate the random numbers instead of using
pseudorandom numbers. This approach has the additional
benefit that the exact same graph can be reproduced using
the same hash functions. We also extend [24] by develop-
ing a more general preferential attachment-based algorithm
using the copy model called cuPPA-Hash.

Fig. 3   The degree distributions of the PA Networks ( n = 500M ,
d = 4 ). In log–log scale the degree distribution is a straight line
validating the scale-free property. Further, all four models produce
almost identical degree distributions showing that both versions of
cuPPA produce networks with accurate degree distributions

1  https​://devbl​ogs.nvidi​a.com/paral​lelfo​rall/cuda-9-featu​res-revea​led/.

https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/

68	 M. Alam et al.

1 3

A simplified pseudocode of cuPPA-Hash is presented
in Algorithm 2. The initial set of vertices is first divided
into g mutually exclusive subsets �1,… ,�g where g is
the number of GPUs. Next each GPU k processes the
vertices in set �k using the procedure cuPPA-Hash ( �k ).
We further partition the set of vertices �k into T subsets
V0,V1,… ,VT−1 where T is the number of threads on GPU
k. Thread i executes the copy model on the vertices in set
Vi (line 3). For each of the d outgoing edge of a vertex
v, the function Calculate-Edge calculates the end-point
vertex using the copy model. The � th outgoing edge of
the vertex v is uniquely denoted by the index e = vd + �
(line 7). The edge index e is used to generate a hash value
r using a hash function. We used a 64-bit CRC64 as our
hash function. Note that r denotes the index of the lth
outgoing edge of vertex u calculated in line 9. If u < d
then u denotes an initial vertex and we connect F

�
(v) to u

(line 11). Otherwise, we compute a floating point number
r using a floating point version of the hash function (line
14). If r < p (i.e., with probability p), we connect F

�
(v) to

u. Otherwise, we calculate the outgoing edge of Fl(u) (line
17) recursively. In the actual implementation, we use an
iterative function instead of the recursive one.

Note that the algorithm does not require to access
any GPU memory pertaining to other GPUs. Instead all
copy edges are essentially recomputed. Therefore, this
approach requires more computation than the origi-
nal cuPPA algorithm. However, due to the independent
computations, the algorithm scales very well to multiple
GPUs as shown in the experimental section.

5 � Experimental Results

In this section, we evaluate our algorithm and its perfor-
mance by experimental analysis. In the following sections,
we denote our first algorithm using pseudorandom number
generators as cuPPA-Pure and the second algorithm using
hash function as cuPPA-Hash. We demonstrate the accuracy
of our algorithm by showing that our algorithm produces
networks with power-law degree distribution as desired.
We also compare the runtime of our algorithm using other
sequential and parallel algorithms.

5.1 � Hardware and Software

We used a computer consisting of 6 AMD Phenom(tm) II
6174 processor with 3.3 GHz clock speed and 64 GB sys-
tem memory. The machine also incorporates a NVidia 1080
GPU with 8 GB memory. The operating system is Ubuntu
16.04 LTS, and all software on this machine was com-
piled with GNU gcc 4.6.3 with optimization flags -O3.
The CUDA compilation tools V8 were used for the
GPU code along with nvcc compiler. In additional experi-
ments, we used another system consisting of 4 NVidia Tesla
P100 GPUs with 16 GB memory each.

5.2 � Degree Distribution

To demonstrate the accuracy of cuPPA-Pure and cuPPA-
Hash, we compared those with the sequential Bara-
bási–Albert (SBA) [9] and the sequential copy model
(SCM) algorithms. The degree distributions of the networks

69Novel Parallel Algorithms for Fast Multi‑GPU‑Based Generation of Massive Scale‑Free Networks﻿	

1 3

generated by SBA, SCM, cuPPA-Pure, and cuPPA-Hash
are shown in Fig. 3 in a log–log scale. We used n = 500M
vertices, each generating d = 4 new edges with a total of
two billion ( 2 × 109 ) edges. The distribution is heavy-tailed,
which is a distinct feature of power-law networks. The expo-
nent � of the power-law degree distribution is measured to be
2.7. This supports the fact that for the finite average degree
of a scale-free network, the exponent should be 2 < 𝛾 < ∞
[12]. Also notice that the degree distributions of SBA and
SCM are quite identical. The degree distributions of both
cuPPA algorithms are also similar to both SBA and SCM.

5.3 � Visualization of Generated Graphs

In order to gain an idea of the structure and degree distribu-
tions, we obtained a visualization of some of the networks
generated by our algorithm. We generated the visualizations
using a popular network visualization tool called Gephi.
Bearing aesthetics in mind and to minimize undue clutter,
we focused on a few small networks by choosing n = 10,000 ,
p = 0.5 , and d = 1, 2, 4 . The visualizations are shown in
Figs. 4, 5, and 6.

5.4 � Effect of Edge Probability on Degree
Distribution

As mentioned earlier, the strength of the copy model is the
capability of generating other preferential attachment net-
works by simply varying one parameter, namely, the prob-
ability p. In Fig. 7, we display the degree distribution of the

generated networks by varying p using both cuPPA-Pure
and cuPPA-Hash. When p = 0 , all edges are produced by
copy edges, and thus, the network becomes a star network
where all additional vertices connect to the d initial verti-
ces. With a small value of p ( p = 0.01 ), we can generate a

Fig. 4   Visualization of networks generated by cuPPA using
n = 10,000 , p = 0.5 and d = 1 Fig. 5   Visualization of networks generated by cuPPA using

n = 10,000 , p = 0.5 and d = 2

Fig. 6   Visualization of networks generated by cuPPA using
n = 10,000 , p = 0.5 and d = 4

70	 M. Alam et al.

1 3

network with a very long tail. When we set p = 0.5 , we get
the Barabási–Albert networks which exhibit a straight line
in log–log scale. When we increase p to 1, we get a network
consisting entirely of direct edges that do not form any tail.

5.5 � Waiting Queue Size of cuPPA‑Pure

As mentioned in Sect. 3.3, the waiting queue size depends
on p and d. To evaluate the impact of p and d, we ran simula-
tions using 1280 CUDA threads (20 blocks and 64 threads
per block) where each thread only executed one vertex. The
value of p is varied from 0 to 1 with different probability
values. We also varied the value of d from 1 to 4096 as
increasing powers of 2. In Fig. 8, we show the number of
items placed in the waiting queue per vertex for different
combinations of p and d. We also added the worst case value
as a line in the plot. As seen from the figure, in the worst

case with p = 0 , the maximum size of the waiting queue
increases linearly with d for smaller values of d (up to 64)
and afterward, it does not increase much compared to d.
Therefore, for smaller values of d, we need to have provi-
sions for at least d items per vertex in the waiting queue.

However, as the round progresses, the maximum size
of the waiting queue decreases significantly as shown
in Fig. 9. For this figure, we also ran cuPPA using 1280
CUDA threads (20 blocks and 64 threads per block) to
generate networks with d = 512, 256, 128, 64 and p = 0.5 .
Each CUDA thread processes exactly one vertex per round.
Only the first 100 rounds are shown for brevity. From
Fig. 9, we can see that as the round progresses, the size
of the waiting queue per round decreases dramatically for
all different values of d. This indicates that we could pro-
cess more vertices in later rounds using the same amount
of queue memory. Therefore, we can dynamically change
the size of the segments between two consecutive rounds
to increase parallelization. Based on these observations

Fig. 7   The degree distribu-
tions of the networks by cuPPA
( n = 500M , d = 4 ) with varying
p 

(a) (b)

Fig. 8   Maximum size of the waiting queue per thread for different
values of p and d (both axes in log scale). In the worst case ( p = 0 ),
the maximum size increases linearly with d for smaller values
( d ≤ 64 ). For larger d, the actual maximum size of waiting queue is
comparatively smaller than the worst case

Fig. 9   Size of the waiting queue decreases significantly with rounds
in SRRP scheme

71Novel Parallel Algorithms for Fast Multi‑GPU‑Based Generation of Massive Scale‑Free Networks﻿	

1 3

regarding the size of the waiting queue, we designed an
adaptive version of cuPPA-Pure that monitors the maxi-
mum size of the waiting queue and manages the segment
size accordingly as discussed in Sect. 3.3. We call this ver-
sion cuPPA-Dynamic and use it for all other experiments.

5.6 � Runtime Performance

In this section, we analyze the runtime and performance of
cuPPA-Pure and cuPPA-Hash relative to other algorithms
and show the variation of performances against various
parameters.

5.6.1 � Runtime Comparison with Existing Algorithms
(Single GPU)

To the best of our knowledge, our algorithm is the first GPU-
based parallel algorithm to generate preferential attach-
ment networks. Therefore, it is not possible to compare
the runtime with other GPU-based algorithms. Instead, we
compare with the existing non-GPU algorithms. The total
run times of both versions of cuPPA and the existing algo-
rithms are shown in Fig. 10 for generating two billion edges
( n = 500M , d = 4 ). In this experiment, we used a single
NVidia GeForce 1080 GPU with 8 GB memory.

–	 Sequential Algorithms: We compare cuPPA with two
efficient sequential algorithms: SBA [9] and SCM [17].
For SCM, we used two implementations: one with the
pseudorandom number generators (called SCM-Pure)
and the other with hash functions (called SCM-Hash).
We also compared our algorithm with a reference
sequential graph generation library from the Graph500
[1] reference code that uses SKG to generate networks.

	  As shown in Fig. 10, SKG from Graph500 takes the
longest time to generate 2B scale-free networks—25.39
minutes. In comparison, our GPU-based algorithm is
650× faster.

	  We also found that SCM-Pure is slightly faster than
the SBA algorithm. The hash-based SCM-Hash essen-
tially recomputes all the copy edges and therefore takes
approximately 70% more time than the SCM-Pure algo-
rithm. However, the hashing technique is shown to scale
to a large number of processors making it a viable candi-
date for large network generation using many processors
[24]. On the other hand, the GPU-based cuPPA-Pure
generates the network in just 2.32 s on the NVidia 1080
GPU with 78× to 94× speedup. Also note that cuPPA-
Hash is slightly slower than cuPPA-Pure on a single
GPU due to more computation.

–	 Parallel Algorithms: We also compared cuPPA with a
distributed-memory (PPA-DM) [4] and a shared-memory
(PPA-SM) [7] parallel algorithms. As shown in Fig. 10,
both of the cuPPA algorithms outperform PPA-DM on a
system with 24 processors. The main reason is that unlike
PPA-DM, cuPPA algorithms do not require complex syn-
chronizations and message communications.

	  Due to the unavailability of the PPA-SM code, we
compared the runtime to generate the largest graph
( n = 107, d = 10 ) reported in [7] with the correspond-
ing runtime of cuPPA. PPA-SM generates the network
using 16 cores of Intel Xeon CPU E5-2698 2.30 GHz in
approximately 7.5 s, whereas cuPPA-Pure generates the
same network in just 0.3 s.

5.6.2 � Runtime Versus Number of Vertices (Single GPU)

First, we examine the runtime performance of cuPPA-
Pure (fastest of the two algorithms in a single GPU) with
increasing number of vertices n. Here, we examine two
cases. In the first case, we set d = 4 , vary p = {0, 0.001,
0.25, 0.5, 0.75, 1} , and vary n = {1.9M, 3.9M, 7.8M,
15.6M, 31.25M, 62.5M, 125M, 250M, 500M} to see
how the runtime changes with increasing number of ver-
tices for different p. The corresponding runtime is shown
in Fig. 11. In the second case, we set p = 0.5 , vary

Fig. 10   Runtime of Graph500
generator, SBA, SCM, PPA-
DM, and cuPPA for generating
two billion edges ( n = 500M ,
d = 4 ). Both of our cuPPA algo-
rithms can generate the network
in less than 3 s

72	 M. Alam et al.

1 3

d = {1, 2, 4, 8, 16, 32, 64, 128} , and vary n = {60K, 120K,
240K, 480K, 960K, 1.92M, 3.84M, 7.68M} to see how
the runtime changes with increasing number of vertices for
different d. The corresponding runtime is shown in Fig. 12.

From Figs. 11 and 12, we can observe that for any fixed
set of values for p and d, with increasing n, the runtime
increases linearly, indicating that the algorithm scales very
well with increasing value of n.

5.6.3 � Runtime Versus Degree of Preferential Attachment
(Single GPU)

Next, we examine the runtime performance of cuPPA with
increasing d. The runtime is shown in Fig. 13. Here, we set
n = 7812500 , vary p = {0, 0.00001, 0.001, 0.25, 0.5, 0.75, 1} ,
and vary d = {1, 2, 4, 8, 16, 32, 64, 128} to see how the runt-
ime changes for increasing value of d for different p. As seen
from the figure, with increasing d, the runtime increases
almost linearly. Therefore, the algorithm is observed to scale

well for increasing value of d. Note that higher values of d
are typically unlikely. However, we included higher values
of d for performance measurement purpose. Also notice that
the runtime is the largest for p = 0 . With a small value of
p = 0.00001 , the runtime drops significantly and does not
change much for higher values of p. Since the typical values
of p are much larger than 0, this observation suggests that
cuPPA performs well for real-world scenarios.

5.6.4 � Runtime Versus Probability of Copy Edge (Single
GPU)

Next we examine the runtime performance of cuPPA with
increasing p. The runtime is shown in Fig. 14. Here, we used
three different sets of values for n and d ( ⟨n = 500M, d = 4⟩ ,
⟨n = 125M, d = 16⟩ , and ⟨n = 31.25M, d = 64⟩ ), and vary
p = {0, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 0.99, 1.00} . As seen from the figure, the
runtime reduces dramatically with a slight increase of p = 0 to

Fig. 11   Runtime versus number of edges suggests that cuPPA is very
scalable with increasing n for different values of p with a fixed value
of d = 4

Fig. 12   Runtime versus number of vertices suggests that cuPPA is
very scalable with increasing n for different values of d with a fixed
value of p = 0.5

Fig. 13   Runtime versus d for generating networks with n = 7812500
with varying d = 1, 2, 4, 8, 16, 32, 64, 128 for different values of p.
The runtime almost increases linearly

Fig. 14   Runtime versus p for three sets of values for n and d (x-axis
in log scale). At p = 0 the runtime is the largest which reduces sig-
nificantly with a slight increase. As p increases, the runtime reduces

73Novel Parallel Algorithms for Fast Multi‑GPU‑Based Generation of Massive Scale‑Free Networks﻿	

1 3

p = 0.00001 up to p = 0.1 in all of these three cases. Then, the
runtime reduces almost linearly up to p = 0.9 and then reduces
sharply toward p = 1 . With lower values of p, most of the edges
are produced by copy edges. Therefore, the size of the waiting
queue increases, thereby increasing the runtime. As the value of
p increases toward 1, most of the edges are created using direct
edges, and therefore, fewer items are stored in the waiting queue.

5.6.5 � Runtime Varied with the Number of Threads (Single
GPU)

To understand how the performance of cuPPA depends on
the number of threads, we set p = 0.5 and used four different
sets of n and d to generate networks. We also varied the
number of CUDA threads per block from 64, 128, 256, 512,
to 1024. The runtime (solid lines) and the relative speedup
(dashed lines) of the experiments are shown in Fig. 15. Let
tT be the runtime of cuPPA using T threads. Then, the rela-
tive speedup is defined as tT

t64
 in this experiments, i.e., the

speedup gained compared to the runtime of cuPPA using 64
threads. Figure 15 is shown in two y-axes, the left and right
axis correspond to the runtime and relative speedup, respec-
tively. From the figure, the best performance is observed
with 512 threads per block for all cases. Therefore, in our
final algorithm, we use up to 512 threads per block.

5.7 � Runtime Performance of cuPPA‑Hash (Multiple
GPUs)

Next, we evaluate the performance of cuPPA-Hash for mul-
tiple GPUs. In this experiment, we used a machine consist-
ing of 4 NVidia Tesla P100 GPUs with 16 GB memory each.

5.7.1 � Strong Scaling

To study the strong scaling of the algorithm, we generated a
network of 4B edges using n = 1B and d = 4 . We used 1 to
4 GPUs for the experiment. The strong scaling is presented
in Fig. 16. From the figure, we can clearly see that cuPPA-
Hash achieves perfect linear speedup by the virtue of being
an embarrassingly parallel algorithm.

5.7.2 � Generating Large Networks

Using cuPPA-Hash with 4 GPUs, we are able to generate
a network of 16B edges ( n = 2B and d = 8 ) in just 7 s. That
represents a rate of 2.29 billion edges per second, which is
unprecedented in this domain.

6 � Related Work

Although the concepts of random networks have been used
and well studied over the last several decades, efficient
algorithms to generate the networks were not available until
recently. The first efficient sequential algorithm to generate
Erdős–Rényi and Barabási–Albert networks was proposed
in [9]. A distributed-memory-based algorithm to generate
preferential attachment networks was proposed in [26].
However, their algorithm was not exact, rather an approxi-
mate algorithm and required manually adjusting several con-
trol parameters. The first exact distributed-memory-based
parallel algorithm using the copy model was proposed in
[4]. Another distributed-memory-based parallel algorithm
using the Barabási–Albert model was proposed in [22, 24].
However, instead of using pseudorandom number genera-
tors, they used hash functions to generate the networks. A
shared-memory-based parallel algorithm using the copy
model was proposed in [7].

Several other theoretical studies were done on the pref-
erential attachment-based models. Machta and Machta
[21] described how an evolving network can be generated

Fig. 15   Runtime (solid lines) and relative speedup (dashed lines)
versus number of threads. Best performance is observed with 512
threads per block

Fig. 16   Strong scaling of cuPPA-Hash for 4B edges ( n = 1B and
d = 4 ). cuPPA-Hash exhibits perfect linear speedup

74	 M. Alam et al.

1 3

in parallel. Dorogovtsev et al. [13] proposed a model
that can generate graphs with fat-tailed degree distribu-
tions. In this model, starting with some random graphs,
edges are randomly rewired according to some preferen-
tial choices. There exists other popular network models
to generate networks with power-law degree distribution.
R-MAT [10] and stochastic Kronecker graph (SKG) [19]
models can generate networks with power-law degree dis-
tribution using matrix multiplication. Due to its simpler
parallel implementation, the Graph500 group [1] choose
the SKG model in their supercomputer benchmark. Highly
scalable generators for Erdős-Renyi, 2D/3D random geo-
metric graphs, 2D/3D Delaunay graphs, and hyperbolic
random graphs are described in [15]. The corresponding
software library release also includes an implementation
of the algorithm described in [24]. An efficient and scala-
ble algorithmic method to generate Chung–Lu, block two-
level Erdős–Renyi (BTER), and stochastic blockmodels
was also presented in [5].

There is a lack of GPU-based network generators in
the literature. A GPU-based algorithm for generating
Erdős–Rényi networks was presented in [23]. Another
GPU-based algorithm for generating networks using the
small-world model [25] was presented in [18]. However,
until recently no GPU-based algorithm existed for the pref-
erential attachment model. We introduced cuPPA as the
first preferential attachment-based algorithm on the GPU
using the copy model [3].

7 � Conclusion

A novel GPU-based algorithm, named cuPPA, has been
presented, with a detailed performance study, and its com-
bination of its scale and speed has been tested by achiev-
ing the ability to generate networks with up to two billion
edges in under 3 s of wall clock time. The algorithm is cus-
tomizable with respect to the structure of the network by
varying a single parameter, namely, a probability measure
that captures the preference style of new edges in the pref-
erential attachment model. Also, a high amount of concur-
rency in the generator’s workload per thread or processor
is observed when that probability is at very small frac-
tions greater than zero. In future work, we intend to exploit
code profiling tools for further optimization of the runt-
ime and memory usage on the GPU. Also, the algorithm
needs to be extended to exploit multiple GPUs that may
be colocated within the same node. This would require
periodic data synchronization across GPUs, which can be
efficiently achieved using the NVidia Collective Commu-
nication Library (NCCL). Additional future work involves
porting to GPUs spanning multiple nodes, and also hybrid

CPU-GPU scenarios in order to utilize unused cores of
multi-core CPUs. Methods to incorporate other network
generator models can also be explored with our cuPPA as
a starting point. Finally, future work is needed in convert-
ing our internal, GPU-based graph representation to other
popular network formats for usability.

Acknowledgements  Funding was provided by Oak Ridge National
Laboratory (Grant No. 3X012DCS).

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

	 1.	 (2010) Graph 500. http://www.graph​500.org/
	 2.	 Alam M (2016) HPC-based parallel algorithms for generating ran-

dom networks and some other network analysis problems. Ph.D.
thesis, Virginia Tech

	 3.	 Alam M, Perumalla KS (2017) Gpu-based parallel algorithm
for generating massive scale-free networks using the preferen-
tial attachment model. In: IEEE international conference on Big
Data (Big Data), pp 3302–3311. https​://doi.org/10.1109/BigDa​
ta.2017.82583​15

	 4.	 Alam M, Khan M, Marathe MV (2013) Distributed-memory par-
allel algorithms for generating massive scale-free networks using
preferential attachment model. In: International conference for
high performance computing, networking, storage and analysis.
https​://doi.org/10.1145/25032​10.25032​91

	 5.	 Alam M, Khan M, Vullikanti A, Marathe M (2016) An efficient
and scalable algorithmic method for generating large: Scale ran-
dom graphs. In: Proceedings of the international conference for
high performance computing, networking, storage and analysis.
IEEE Press, Piscataway, NJ, USA, SC ’16, pp 32:1–32:12. http://
dl.acm.org/citat​ion.cfm?id=30149​04.30149​47

	 6.	 Albert R, Jeong H, Barabási AL (2000) Error and attack tolerance
of complex networks. Nature. https​://doi.org/10.1038/35019​019

	 7.	 Azadbakht K, Bezirgiannis N, de Boer FS, Aliakbary S (2016) A
high-level and scalable approach for generating scale-free graphs
using active objects. In: Proceedings of the annual ACM sympo-
sium on applied computing

	 8.	 Barabási AL, Albert R (1999) Emergence of scaling in random
networks. Science. https​://doi.org/10.1126/scien​ce.286.5439.509

	 9.	 Batagelj V, Brandes U (2005) Efficient generation of large
random networks. Phys Rev E. https​://doi.org/10.1103/PhysR​
evE.71.03611​3

	10.	 Chakrabarti D, Zhan Y, Faloutsos C (2004) R-mat: A recursive
model for graph mining. In: SIAM international conference on
data mining, pp 442–446. https​://doi.org/10.1137/1.97816​11972​
740.43

	11.	 Chassin DP, Posse C (2005) Evaluating North American electric
grid reliability using the Barabási–Albert network model. Physica
A. https​://doi.org/10.1016/j.physa​.2005.02.051

	12.	 Dorogovtsev S, Mendes J (2002) Evolution of networks. In:
Advances in physics, vol 51. https​://doi.org/10.1080/00018​73011​
01125​19

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.graph500.org/
https://doi.org/10.1109/BigData.2017.8258315
https://doi.org/10.1109/BigData.2017.8258315
https://doi.org/10.1145/2503210.2503291
http://dl.acm.org/citation.cfm?id=3014904.3014947
http://dl.acm.org/citation.cfm?id=3014904.3014947
https://doi.org/10.1038/35019019
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1103/PhysRevE.71.036113
https://doi.org/10.1103/PhysRevE.71.036113
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1016/j.physa.2005.02.051
https://doi.org/10.1080/00018730110112519
https://doi.org/10.1080/00018730110112519

75Novel Parallel Algorithms for Fast Multi‑GPU‑Based Generation of Massive Scale‑Free Networks﻿	

1 3

	13.	 Dorogovtsev S, Mendes J, Samukhin A (2003) Principles of sta-
tistical mechanics of uncorrelated random networks. Nucl Phys
B. https​://doi.org/10.1016/S0550​-3213(03),00504​-2

	14.	 Erdős P, Rényi A (1960) On the evolution of random graphs. Pub-
lications of the Mathematical Institute of the Hungarian Academy
of Sciences, pp 17–61

	15.	 Funke D, Lamm S, Sanders P, Schulz C, Strash D, von Looz M
(2018) Communication-free massively distributed graph genera-
tion. In: 32nd IEEE international parallel & distributed processing
symposium (IPDPS), to appear, preprint arXiv​:1710.07565​

	16.	 Kleinberg J, Kumar R, Raghavan P, Rajagopalan S, Tomkins A
(1999) The Web as a graph: measurements, models, and meth-
ods. In: Annual international conference on computing and
combinatorics

	17.	 Kumar R, Raghavan P, Rajagopalan S, Sivakumar D, Tomkins A,
Upfal E (2000) Stochastic models for the web graph. In: Annual
symposium on foundations of computer science, IEEE Comput.
Soc. https​://doi.org/10.1109/SFCS.2000.89206​5

	18.	 Leist A, Hawick K (2011) Graph generation on GPUs using
dynamic memory allocation. In: International conference on par-
allel and distributed processing techniques and applications

	19.	 Leskovec J (2010) Kronecker graphs: an approach to modeling
networks. J Mach Learn Res 11:985–1042

	20.	 Leskovec J, Horvitz E (2008) Planetary-scale views on a large
instant-messaging network. In: International conference on World
Wide Web, ACM Press. https​://doi.org/10.1145/13674​97.13676​
20

	21.	 Machta B, Machta J (2005) Parallel dynamics and computational
complexity of network growth models. Phys Rev E 71(2):26704.
https​://doi.org/10.1103/PhysR​evE.71.02670​4

	22.	 Meyer U, Penschuck M (2016) Generating massive scale-free net-
works under resource constraints. In: Proceeding of the workshop
on algorithm engineering and experiments (ALENEX)

	23.	 Nobari S, Lu X, Karras P, Bressan S (2011) Fast random graph
generation. In: International conference on extending database
technology, p 331. https​://doi.org/10.1145/19513​65.19514​06

	24.	 Sanders P, Schulz C (2016) Scalable generation of scale-free
graphs. Info Proc Lett

	25.	 Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-
world’ networks. Nature (6684). https​://doi.org/10.1038/30918​

	26.	 Yoo A, Henderson K (2010) Parallel generation of massive scale-
free graphs. arXiv CoRR

https://doi.org/10.1016/S0550-3213(03),00504-2
http://arxiv.org/abs/1710.07565
https://doi.org/10.1109/SFCS.2000.892065
https://doi.org/10.1145/1367497.1367620
https://doi.org/10.1145/1367497.1367620
https://doi.org/10.1103/PhysRevE.71.026704
https://doi.org/10.1145/1951365.1951406
https://doi.org/10.1038/30918

	Novel Parallel Algorithms for Fast Multi-GPU-Based Generation of Massive Scale-Free Networks
	Abstract
	1 Introduction
	2 Background
	2.1 Preliminaries and Notations
	2.2 Preferential Attachment-Based Models
	2.3 Sequential Algorithm: Barabási–Albert Model
	2.4 Sequential Algorithm: Copy Model

	3 GPU-based Parallel Algorithm: cuPPA
	3.1 Graph Representation
	3.2 Partitioning and Load Balancing
	3.3 Segmented Round-Robin Partitioning
	3.4 CUDA-Specific Deadlock Scenario

	4 Generating Networks Using Multiple GPUs
	4.1 cuPPA-Hash: A Hash Function-Based Implementation

	5 Experimental Results
	5.1 Hardware and Software
	5.2 Degree Distribution
	5.3 Visualization of Generated Graphs
	5.4 Effect of Edge Probability on Degree Distribution
	5.5 Waiting Queue Size of cuPPA-Pure
	5.6 Runtime Performance
	5.6.1 Runtime Comparison with Existing Algorithms (Single GPU)
	5.6.2 Runtime Versus Number of Vertices (Single GPU)
	5.6.3 Runtime Versus Degree of Preferential Attachment (Single GPU)
	5.6.4 Runtime Versus Probability of Copy Edge (Single GPU)
	5.6.5 Runtime Varied with the Number of Threads (Single GPU)

	5.7 Runtime Performance of cuPPA-Hash (Multiple GPUs)
	5.7.1 Strong Scaling
	5.7.2 Generating Large Networks

	6 Related Work
	7 Conclusion
	Acknowledgements
	References

