
GPU-based Parallel Algorithm for Generating Massive Scale-free Networks Using
the Preferential Attachment Model

Maksudul Alam and Kalyan S. Perumalla
Oak Ridge National Laboratory

Oak Ridge, Tennessee, USA
{alamm, perumallaks}@ornl.gov

Abstract—A novel parallel algorithm is presented for gen-
erating random scale-free networks using the preferential-
attachment model. The algorithm, named cuPPA, is custom-
designed for single instruction multiple data (SIMD) style
of parallel processing supported by modern processors such
as graphical processing units (GPUs). To the best of our
knowledge, our algorithm is the first to exploit GPUs, and
also the fastest implementation available today, to generate
scale-free networks using the preferential attachment model.
A detailed performance study is presented to understand the
scalability and runtime characteristics of the cuPPA algorithm.
In one of the best cases, when executed on an NVidia GeForce
1080 GPU, cuPPA generates a scale-free network of two billion
edges in less than 3 seconds.

Keywords-GPU; Preferential–Attachment; Random Net-
works; Scale–Free Networks;

I. INTRODUCTION

Networks are prevalent in many complex systems, such as
circuits, chemical compounds, protein structures, biological
networks, social networks, the Web, and XML documents.
Recently, there has been substantial interest in the study
of a variety of random networks to serve as mathematical
models of complex systems. Various network theories, met-
rics, topology, and mathematical models have been proposed
to understand the underlying properties and relationships
of these systems. Among the proposed network models,
the first and the most studied model is the Erdős-Rényi
model [1]. However, the Erdős-Rényi model does not exhibit
the characteristics observed in many real-world complex
systems [2]. Barabási and Albert [2] discovered a class of
inhomogeneous networks, called scale-free networks, char-
acterized by a power-law degree distribution P (k) ∝ k−γ ,
where k represents the degree of a vertex and γ is a con-
stant. While high degree vertices are improbable in Erdős-
Rényi networks, they do occur with statistically significant
probability in scale-free networks. Furthermore, the work

This paper has been authored by UT-Battelle, LLC, under contract
DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly,
the United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, worldwide license to publish
or reproduce the published form of this manuscript, or allow others to do
so, for United States Government purposes.

of Albert et al. [3] suggests these high degree vertices
appear to play an important role in the behavior of scale-
free systems, particularly with respect to their resilience
[4]. For example, the Barabasi-Albert model can be used
for evaluating the North American electric grid with high
reliability [4]. Additional related work is discussed later in
Section V.

As these complex systems of today grow larger, the ability
to generate progressively large random networks becomes
all the more important. It is well known that the structure
of larger networks is fundamentally different from that of
small networks, and many patterns, such as communities,
emerge only in massive networks [5]. Although various
random network models have been used and studied over
the last several decades, even efficient sequential algorithms
for generating such networks were nonexistent until recently.
The efficient sequential algorithms are able to generate
networks with millions of edges in a reasonable amount of
time, however, generating networks with billions of edges
can take prohibitively large amount of time. This motivates
the need for efficient parallel algorithms for generating such
networks. Naı̈ve parallelization of the sequential algorithms
for generating random networks may not work due to the
dependencies among the edges and the possibility of creating
duplicate (parallel) edges.

Graphics processors (GPUs) are a cost-effective, energy-
efficient, and widely available parallel processing platform.
GPUs are highly parallel, multi-threaded, many-core proces-
sors that have greatly expanded beyond graphics operations
and are now widely used for general purpose computing.
The use of GPUs is prevalent in many areas such as scien-
tific computation, complex simulations, big data analytics,
machine learning, and data mining. However, there is a
lack of GPU-based graph/network generators, especially for
scale-free networks such as those based on the preferential
attachment model. In this paper, we present cuPPA, a novel
GPU based algorithm for generating networks conforming
to the preferential attachment model. With cuPPA, one can
generate a network with two billion edges using a modern
NVidia GPU in less than three seconds. To the best of our
knowledge, this is the first GPU-based algorithm to generate

networks using the exact preferential attachment model.
The rest of the report is organized as follows. In the

following Section II, background material is provided in
terms of preliminary information, notations, an outline of
the network generation problem, and two leading sequential
algorithms. In Section III, our parallel cuPPA algorithm
for the GPU is presented. The experimental study and
performance results using cuPPA are described in Section
IV. We present a review of related works in Section V.
Finally, Section VI concludes with a summary and an outline
of future directions.

II. BACKGROUND

A. Preliminaries and Notations

In the rest of this report, we use the following notations.
We denote a network G(V,E), where V and E are the sets
of vertices and edges, respectively, with m = |E| edges
and n = |V | vertices labeled as 0, 1, 2, . . . , n − 1. For any
(u, v) ∈ E, we say u and v are neighbors of each other.
The set of all neighbors of v ∈ V is denoted by N(v), i.e.,
N(v) = {u ∈ V |(u, v) ∈ E}. The degree of v is dv =
|N(v)|. If u and v are neighbors, sometimes we say that u
is connected to v and vice versa.

We develop parallel algorithms using the CUDA (Com-
pute Unified Device Architecture) framework on the GPU.
A GPU contains multiple streaming multiprocessors (SMs).
An SM is a group of core processors. Each core processor
executes only one thread at a time. All core processors can
execute their corresponding threads simultaneously. If some
threads perform operations that have to wait for data fetches
with high latencies, those are put into the waiting state
and other pending threads are executed. Therefore, GPUs
increase throughput by keeping the processors busy. All
thread management, including the creation and scheduling
of threads, is performed entirely in hardware with virtually
zero overhead and requires negligible time for launching
work on the GPU. For these advantages, modern supercom-
puters, such as Titan, the largest supercomputer in the USA,
are build using GPUs in addition to conventional central
processing units (CPUs).

We use K, M, and B to denote thousand, million, and
billion, respectively; e.g., 2 B stands for two billion.

B. Preferential Attachment–Based Models

The preferential attachment model is a model for gener-
ating randomly evolved scale-free networks using a prefer-
ential attachment mechanism. In a preferential attachment
mechanism, a new vertex is added to the network and
connected to some existing vertices that are chosen pref-
erentially based on some properties of the vertices. In the
most common method, preference is given to vertices with
larger degrees: the higher the degree of a vertex, the higher
is the probability of choosing it. In this report, we study only
the degree-based preferential attachment, and in the rest of

the report, by preferential attachment (PA) we mean degree-
based preferential attachment.

Before presenting our parallel algorithms for generating
PA networks, we briefly discuss the sequential algorithms for
the same. Many preferential attachment based models have
been proposed in the literature. Two of the most prominent
models are the Barabási–Albert model [2] and the copy
model [6] as discussed below.

C. Sequential Algorithm: Barabási-Albert Model

One way to generate a random PA network is to use
the Barabási-Albert (BA) model. Many real-world networks
have two important characteristics: (i) they are evolving in
nature and (ii) the network tends to be scale-free [2]. In the
BA model, a new vertex is connected to an existing vertex
that is chosen with probability directly proportional to the
current degree of the existing vertex.

The BA model works as follows. Starting with a small
clique of d̂ vertices, in every time step, a new vertex t
is added to the network and connected to d ≤ d̂ ran-
domly chosen existing vertices: F`(t) for 1 ≤ ` ≤ d
with F`(t) < t; that is, F`(t) denotes the `-th vertex
which t is connected. Thus, each phase adds d new edges
(t, F1(t)), (t, F2(t)), . . . , (t, Fd(t)) to the network, which
exhibits the evolving nature of the model. Let F(t) =
{F1(t), F2(t), . . . , Fd(t)} be the set of outgoing vertices
from t. Each of the d end points in the set F(t) are randomly
selected based on the degrees of the vertices in the current
network. In particular, the probability Pi(t) that a outgoing
edge from vertex t is connected to vertex i < t is given by
Pi(t) = di∑

j dj
, where dj represents the degree of vertex j.

The networks generated by the BA model are called the
BA networks, which bear the aforementioned two character-
istics of a real-world network. BA networks have power-law
degree distribution. A degree distribution is called power-
law if the probability that a vertex has degree d is given
by Pr [d] ∝ d−γ , where γ ≥ 1 is a positive constant.
Barabási and Albert showed that the preferential attachment
method of selecting vertices results in a power-law degree
distribution [2].

A naı̈ve implementation of network generation based on
the BA model takes Ω(n2) time where n is the number of
vertices. Batagelj and Brandes give an efficient algorithm
with a running time of O(m) where m is the number of
edges [7]. This algorithm maintains a list of vertices such
that each vertex i appears in this list exactly di times. The
list can easily be updated dynamically by simply appending
u and v to the list whenever a new edge (u, v) is added to
the network. Now, to find F (t), a vertex is chosen from the
list uniformly at random. Since each vertex i occurs exactly
di times in the list, we have the probability Pr [F (t) = i] =
di∑
j dj

.

D. Sequential Algorithm: Copy Model

As it turns out, the BA model does not easily lend itself
to an efficient parallelization [8]. Another algorithm called
the copy model [6, 9] preserves preferential attachment and
power-law degree distribution. The copy model works as
follows. Similar to the BA model, it starts with a small
clique of d̂ vertices and in every time step, a new vertex
t is added to the network to create d ≤ d̂ connections to
existing vertices F`(t) for 1 ≤ ` ≤ d with F`(t) < t. For
each connection (t, F`(t)) from vertex t the following steps
are executed:

Step 1: First a random vertex k ∈ [0, t−1] is chosen with
uniform probability.

Step 2: Then F`(t) is determined as follows:

F`(t) = k with prob. p (Direct edge) (1)
= Fl(k) with prob. (1− p) (Copy edge) (2)

where l is a random outgoing connection from vertex k. We
also denote F(t) = {F1(t), F2(t), . . . , Fd(t)} to be the set
of outgoing vertices from vertex t.

It can be easily shown that a connection from vertex t
to vertex i is made with probability Pr [i ∈ F(t)] = di∑

j dj

when p = 1
2 . Thus, when p = 1

2 , this algorithm follows the
Barabási-Albert model as shown in Theorem 1 [8, 10].

Theorem 1. The Barabási-Albert model is a special case of
the copy model when p = 1

2 .

Proof: A vertex i can be selected in F(t) in two
mutually exclusive ways: i) i is chosen in the first step
and assigned to an outgoing edge of t in the second step
(Equation 1); this event occurs with probability 1

t ·p; or ii) a
neighbor of i, v ∈ {u|i ∈ F(u)}, is chosen in the first step,
and the outgoing edge to i is selected (out of d outgoing
edges from v) in the second step (Equation 2); this event
occurs with probability di−d

t ·(1−p) ·
1
d where di is the total

degree of vertex i. Thus, we have the following equation.

Pr [i ∈ F(t)] =
p

t
+
di − d
dt

· (1− p)

=
dp+ (di − d)(1− p)

dt

=
dp+ (di − d)(1− p)

1
2

∑
j dj

(3)

When p = 1
2 , Pr [i ∈ F(t)] = di∑

j dj
.

Thus, the copy model is more general than the BA model.
It has been previously shown [6] that the copy model
produces networks with degree distribution that follows a
power-law d−γ , where the value of the exponent γ depends
on the choice of p. Further, it is easy to see the running
time of the copy model is O(m). Copy model has been
used to develop efficient parallel algorithms for generating
preferential attachment networks in distributed and shared-
memory machines [8, 11]. In our work presented in this

report, we adopt the copy model as a starting point to design
and develop our GPU-based parallel algorithm.

III. GPU–BASED PARALLEL ALGORITHM: CUPPA

The PA model imposes a critical dependency that every
new vertex needs to have the state of the previous network
to compute its edges. This poses a major challenge in
parallelizing preferential attachment algorithms. In phase v,
to determine F (v), it requires that Fi is known for each
i < v. As a result, any algorithm for preferential attachment
apparently seems to be highly sequential in nature: phase v
cannot be executed until all previous phases are completed.

In [8], a distributed–memory based algorithm was pro-
posed that exploits the copy model to relieve this sequen-
tiality and run in parallel. We reexamined that exploitation
and designed cuPPA, an efficient parallel algorithm for
generating preferential attachment based networks on the
GPU as described next. Let T be the number of threads
in the GPU. The set of vertices V is partitioned into
T disjoint subsets of vertices V0, V1, . . . , VT−1; that is,
Vi ⊂ V , such that for any i and j, Vi ∩ Vj = ∅ and⋃
i Vi = V . The graph is stored entirely in the GPU mem-

ory. Thread Ti is responsible for computing and updating
F (v) for all v ∈ Vi. The algorithm starts with an initial
network, which is a clique of the first d vertices labeled
0, 1, 2, . . . , d−1. For each vertex v, the algorithm computes
d edges (t, F1(v)), (t, F2(v)), . . . , (t, Fd(v)) and ensure that
such edges are distinct without any parallel edges. We denote
the set of vertices {F1(v), F2(v), . . . , Fd(v)} by F(v). The
algorithm works in two phases. In the first phase of the
algorithm (called Execute Copy Model), we execute the copy
model for all vertices in parallel (using all threads). This
phase creates all the direct edges and some of the “copy”
edges (Equation 2). However, many copy edges might not
be fully processed due to the dependencies. The incomplete
copy edges are put in a waiting queue calledQ. In the second
phase of the algorithm (called Resolve Implete Edges), we
resolve the incomplete edges from the waiting queue Q and
finalize the copy edges. The pseudocode of cuPPA is given
in Algorithm 1.

In the first phase (Line 3–21) the algorithm executes the
copy model for all of its vertices. The edges that could
not be completed are stored in a queue Q to be processed
later. We call the queue a waiting queue. Each of the other
vertices from d to n − 1 generates d new edges. There are
fundamentally two important issues that need to be handled:
i) how we select F`(v) for vertex v where 1 ≤ ` ≤ d, and
ii) how we avoid duplicate edge creation. Multiple edges
for a vertex v are created by repeating the same procedure
d times (Line 4), and duplicate edges are avoided by simply
checking if such an edge already exists – such a check is
done whenever a new edge is created.

For the `-th edge of a vertex v, another vertex u is chosen
from [1, v−1] uniformly at random (Line 5, 6). Edge (v, u) is

Algorithm 1: cuPPA

1

n Number of vertices
d Number of outgoing edges from each vertex
p Probability of creating a direct edge
Vi The set of vertices processed by thread Ti
F(u) The set of outgoing edges from vertex u
Fi(u) The i-th outgoing edge from vertex u
Q A queue for the current set of unfinished edges
Q′ A queue for the next set of unfinished edges

2 with T threads do in parallel /* Each thread Ti
executes the following in parallel: */

// Phase 1: Execute Copy Model
3 foreach v ∈ Vi do
4 for ` = 1 to d do
5 u← a uniform random vertex in [0, v − 1]
6 c← a uniform random number in [0, 1]
7 if c < p then // i.e., with prob. p
8 if u /∈ F(v) then
9 F`(v)← u

10 else
11 go to line 5

12 else
13 l← a uniform random integer in [1, d]
14 if Fl(u) 6= NULL then // Resolved
15 if Fl(u) /∈ F(v) then
16 F`(v)← Fl(u)

17 else
18 go to line 5

19 else // Unresolved edge into Q
20 F`(v) ← NULL
21 Add 〈u, l〉 to Q

// Phase 2: Resolve Incomplete Edges
22 while Q 6= ∅ do
23 foreach 〈u, l〉 ∈ Q do
24 if Fl(u) 6= NULL then
25 F`(v) = Fl(u)

26 else
27 Append 〈u, l〉 to Q′

28 Swap Q and Q′
29 Q′ ← ∅

created with probability p (Line 7). However, before creating
such an edge (v, u) in Line 8, the existence of such an edge
is checked immediately before creating them in Line 9. If
the edge already exists at that time, the edge is discarded and
the process is repeated again (Line 5). With the remaining
1 − p probability, v is connected to some vertex in F(u);
that is, we make an edge (v, F`(u)), such that ` is chosen
from [1, d] uniformly at random.

After the first phase is completed, the algorithm starts to
resolve all incomplete edges by processing the waiting queue
(Lines 22–29). If an item in the current queue Q could not

be resolved during this step, it is subsequently placed in
another queue Q′. After all incomplete edges on the queue
Q are processed, the queues Q and Q′ are swapped and Q′
is cleared. We repeat this process until both the queues are
empty.

A. Graph Representation

We use one array G of nd elements to represent and
store the entire graph. Each vertex u connects to d existing
vertices. The neighbors of u are stored between the indices
inclusive from ud to (u+ 1)d− 1 that represents the other
end-point vertices. We call these indices the outgoing vertex
list for vertex u. The initial network consists of the d2

vertices from the start of the array. For any edge u, v where
u > v and u, v > d, the edge is represented by storing v in
one of the d items in the outgoint vertex list of u. Note that
the graph G contains exactly nd edges as defined by the
Barabási–Albert or the copy model. Any vertex withe the
index 0 ≤ i < nd of the array G denotes the (t mod d)-th
end-point of the vertex i

d .

B. Partitioning and Load Balancing

Recall that we distribute the computation among the
threads by partitioning the set of vertices V = {0, 1, . . . , n−
1} into T subsets V0, V1, . . . , VT−1 as described at the
beginning of Section III, where T is the number of available
threads. Although several partitioning schemes are possible,
our study suggests that the Round Robin Partitioning (RRP)
scheme best suits our algorithm. In this scheme, vertices
are distributed in a round robin fashion among all threads.
Partition Vi contains the vertices 〈i, i+T, i+2T, . . . , i+kT 〉
such that i + kT ≤ n < i + (k + 1)T ; that is, Vi = {j|j
mod T = i}. In other words, vertex i is assigned to set
Vi mod T . Therefore, the number of vertices in the sets
are almost equal., i.e., the number of vertices in a set is
either

⌈
n
T

⌉
or
⌊
n
T

⌋
. The round robin partitioning scheme is

illustrated in Figure 1.

0 1 2 3 4 5 6 7 8 9 10 1711 12 13 14 15 16 18 19 20 21

Thread 0 Thread 1 Thread 2
0 3 6 9 12 15 18 21 1 4 7 10 513 16 19 2 8 11 14 17 20

Figure 1: Distributing 21 vertices among 3 threads using
round robin partitioning.

C. Segmented Round Robin Paritioning

However, the naı̈ve round robin scheme discussed above
also has some technical issues. As described in Section III,
the first phase of the Algorihm 1 executes the copy model
for every vertex assigned to it and stores any unresolved
copy edge in the waiting queue. In the second phase, the
algorithm takes out each unresolved edge from the waiting

queue and tries to resolve them. To reduce the memory
latency accessing the waiting queue, we store the waiting
queue Q in the GPU shared memory that offers many folds
faster memory access than the global GPU memory. Note
that this memory is limited in capacity and is shared among
all threads running within the same block. Modern GPUs
such as NVidia GeForce 1080 have 48 KB of ultra-fast
shared memory per block. Since the amount of the shared
memory is very limited, it can only store a limited number
of unresolved items in the queue. Let C denotes the total
capacity of the waiting queue. For example, with a 48
KB of shared memory, we have a total capacity to store
C = 48×1024

8 = 6144 items in the waiting queue where
each item takes 8 bytes of memory. If we use τ threads
per block, each thread will have a capacity of Cτ items to
be placed in the waiting queue. Therefore, if the number of
vertices assigned to a thread is too large, it may generate
a large number of unresolved copy edges to be placed in
the waiting queue, essentially forcing the algorithm to use
a large amount of GPU memory instead of the available
shared memory.

0 1 2 3 4 5 6 7 8 9 10 1711 12 13 14 15 16 18 19 20 21

Thread 0 Thread 1 Thread 2

Round 1

Round 2

Segment 1 Segment 2

0 3 6 9

12 15 18 21

1 4 7 10 5

13 16 19

2 8 11

14 17 20

Figure 2: Distributing 21 vertices among 3 threads using
segmented round robin partitioning with 2 rounds.

In order to exploit the faster shared memory without
overflowing the waiting queue capacity, we use a modified
round robin partitioning scheme called, Segmented Round
Robin Partitioning (SRRP). In this scheme, the entire set of
vertices V is first partitioned into some k consecutive subsets
S1, S2, S3 . . . Sk called segments. From the definition of the
copy model, it is clear that vertices on a segment Si may
only depend on vertices on segment Sj where i ≥ j but not
vice versa. Therefore, the segments have to be processed in
a consecutive fashion. Let Bi = |Si| denotes the number
of elements (also called the segment size) in segment Si
where 1 ≤ i ≤ k. Next, the parallel algorithm is executed
in k consecutive rounds where round i executes the parallel
algorithm for all the vertices in segment Si. In round i,
the Bi vertices in segment Si are further partitioned into T
subsets V0(Si), V1(Si), . . . VT−1(Si), using the round robin
scheme discussed above and executed in parallel using the
T threads. The technique is illustrated in Figure 2.

Next, we need to determine the best segment size to avoid
overflow while using the shared memory. From the copy
model, it is easy to see that the lower the probability p is,
the more likely it is to be in the waiting queue. In the worst
case, when p = 0, all generated edges consist of copy edges.
Therefore, at most d unresolved copy edges could be placed

in the waiting queue per vertex. Additionally, as the value
of d gets bigger, the number of copy edges increases and
hence, the waiting queue size increases. Therefore, p and d
both have a significant impact on the required size of the
waiting queue. Having that in mind, we use two approaches
for the segment size:
• Fixed Segment Size: The simplest way is to use a

fixed sized segments in each round. From the previous
discussion, it is clear that in the worst case we need
d items per vertex to be placed on the waiting queue.
Therefore, we can use up to τ = min

(C
d , θ
)

threads
per block where C is the total queue capacity and θ is
the maximum number of threads per block. Then the
segment size is C

dτ vertices per segment. Note that we
can exploit the shared memory for d ≤ C, otherwise
we need to use the global memory. However, in almost
all practical scenarios we have d � C, hence, we can
take advantages of the shared memory.

• Dynamic Segment Size: Although the fixed segment
size scheme ensures that the queue will not overflow in
any round, it may not be the most efficient implemen-
tation. We use another scheme where the segment size
is determined dynamically between two rounds based
on the current state of the algorithm. In this scheme,
we start with the number of threads per block τ and
the segment size C

dτ vertices per segment as was done
in the Fixed Segment Size scheme. However, at the
end of each round, we determine the maximum number
of items that were placed in the waiting queue per
thread. If the number of items placed in the waiting
queue in the round is less than some f factor of the
waiting queue capacity per thread Cτ , we increase the
total capacity C by a factor of f (typically, we set
f = 2). Before the next round, we recompute the
required number of threads per block and update the
segment size accordingly.

D. CUDA-Specific Deadlock Scenario

In the round robin scheme, completion of a copy edge of
a vertex in a thread Ti may depend on some other thread Tj
where i 6= j. Due to the nature of dependency, Tj also may
have a copy edge that depends on another vertex that belongs
to Ti. Therefore, if any of these threads are not running
simultaneously on the GPU, the other thread will not be able
to complete and a deadlock situation may arise. To avoid
such a situation, we must ensure that either all the GPU
threads are running concurrently or the dependent threads
are put to sleep for a while. In the current CUDA frame-
work, the runtime engine schedules each kernel block to a
streaming multiprocessor, and the blocks of running threads
are non-preemptible. Therefore, to ensure that threads are
running concurrently to avoid deadlock situation, we cannot
use more blocks than the number of available streaming
multiprocessors. Note that the upcoming CUDA runtime

supports cooperative groups. On such future systems, the
deadlock situation could be avoided using block sizes larger
than the number of shared multiprocessors ∗.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our algorithm and its per-
formance by experimental analysis. We demonstrate the
accuracy of our algorithm by showing that our algorithm
produces networks with power-law degree distribution as
desired. We also compare the runtime of our algorithm using
several sequential and parallel algorithms.

A. Hardware and Software

We used a computer consisting of 24 AMD Opteron(tm)
6174 processor with an 800 MHz clock speed and 64GB
system memory. The machine also incorporates a NVidia
1080 GPU with 8GB memory. The operating system is
Ubuntu 16.04 LTS, and all software on this machine
was compiled with GNU gcc 4.6.3 with optimization
flags -O3. The CUDA compilation tools V8 were
used for the GPU code along with nvcc compiler.

B. Degree Distribution

To demonstrate the accuracy of cuPPA, we compared
it with the Sequential Barabási–Albert (SBA) [7] and the
Sequential Copy Model (SCM) algorithms. The degree dis-
tributions of the networks generated by SBA, SCM, and
cuPPA are shown in Figure 3 in a log-log scale. We used
n = 500M vertices, each generating d = 4 new edges
with a total of two billion (2×109) edges. The distribution
is heavy-tailed, which is a distinct feature of the power-
law networks. The exponent γ of the power-law degree
distribution is measured to be 2.7. This supports the fact
that for the finite average degree of a scale-free network,
the exponent should be 2 < γ < ∞ [12]. Also notice that
the degree distributions of SBA and SCM are quite identical,
experimentally verifying Theorem 1. The degree distribution
of cuPPA is also similar to both SBA and SCM.

C. Visualization of Generated Graphs

In order to gain an idea of the structure and degree
distributions, we obtained a visualization of some of the
networks generated by our algorithm. We generated the
visualizations using a popular network visualization tool
called Gephi. Bearing aesthetics in mind and to minimize
undue clutter, we focused on a few small networks by
choosing n = 10000, p = 0.5, and d = 1, 2, 4. The
visualizations are shown in Figures 4 to 6.

∗https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/

100

102

104

106

108

101 102 103 104 105

Degree

#
 o

f
V

er
tic

es

SBA

SCM

cuPPA

Figure 3: The degree distributions of the PA Networks (n =
500M , d = 4). In log-log scale the degree distribution is a
straight line validating the scale-free property. Further, all
three models produce almost identical degree distributions
showing that cuPPA produces networks with accurate degree
distributions.

Figure 4: Visualization of networks generated by cuPPA
using n = 10000, p = 0.5 and d = 1.

Figure 5: Visualization of networks generated by cuPPA
using n = 10000, p = 0.5 and d = 2.

D. Effect of Edge Probability on Degree Distribution

As mentioned earlier, the strength of the copy model is
the capability of generating other preferential attachment
networks by simply varying one parameter, namely, the
probability p. In Figure 7 we display the degree distribution
of the generated networks by varying p. When p = 0, all

https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/

Figure 6: Visualization of networks generated by cuPPA
using n = 10000, p = 0.5 and d = 4.

edges are produced by copy edges, and thus the network
becomes a star network where all additional vertices connect
to the d initial vertices. With a small value of p (p = 0.01),
we can generate a network with a very long tail. When we
set p = 0.5, we get the Barabási–Albert networks which
exhibit a straight line in log–log scale. When we increase p
to 1, we get a network consists entirely of direct edges that
do not form any tail.

Figure 7: The degree distributions of the networks by cuPPA
(n = 250M , d = 4) with varying p.

E. Waiting Queue Size

As mentioned in Section III-C, the waiting queue size
depends on p and d. To evaluate the impact of p and d, we
ran simulations using 1280 CUDA threads (20 blocks and
64 threads per block) where each thread only executed one
vertex. The value of p is varied from 0 to 1 with different
probability values. We also varied the value of d from 1 to
4096 as increasing powers of 2. In Figure 8, we show the
number of items placed in the waiting queue per vertex for
different combinations of p and d. We also added the worst
case value as a line in the plot. As seen from the figure, in
the worst case with p = 0, the maximum size of the waiting
queue increases linearly with d for smaller values of d (up to
64) and afterward, it does not increase much compared to d.

Therefore, for smaller values of d we need to have provisions
for at least d items per vertex in the waiting queue.

Worst
Case

1

10

100

1,000

20 21 22 23 24 25 26 27 28 29 210 211 212

d

W
ai

tin
g

Q
ue

ue
 S

iz
e

p=0
p=0.25
p=0.5
p=0.75

p=0.9
p=0.95
p=1

Figure 8: Maximum size of the waiting queue per thread
for different values of p and d (both axes in log scale). In
the worst case (p = 0) the maximum size increases linearly
with d for smaller values (d ≤ 64). For larger d, the actual
maximum size of waiting queue is comparatively smaller
than the worst case.

0

50

100

150

0 25 50 75 100

Round

W
ai

tin
g

Q
ue

ue
 S

iz
e d=512

d=256
d=128
d=64

Figure 9: Size of the waiting queue decreases significantly
with rounds in SRRP scheme.

However, as the round progresses, the maximum size of
the waiting queue decreases significantly as shown in Fig-
ure 9. For this figure, we also ran cuPPA using 1280 CUDA
threads (20 blocks and 64 threads per block) to generate
networks with d = 512, 256, 128, 64 and p = 0.5. Each
CUDA thread processes exactly one vertex per round. Only
the first 100 rounds are shown for brevity. From Figure 9, we
can see that as the round progresses, the size of the waiting
queue per round decreases dramatically for all different
values of d. This indicates that we could process more
vertices in later rounds using the same amount of queue
memory. Therefore, we can dynamically change the size of
the segments between two consecutive rounds to increase
parallelization. Based on these observations regarding the
size of the waiting queue, we designed an adaptive version of
cuPPA that monitors the maximum size of the waiting queue

and manages the segment size accordingly as discussed in
Section III-C. We call this version cuPPA-Dynamic and use
it for all other experiments.

F. Runtime Performance

In this section, we analyze the runtime and performance
of cuPPA relative to other algorithms and show the variation
of performances against various parameters.

1) Runtime Comparison with Existing Algorithms: To the
best of our knowledge, our algorithm is the first GPU–based
parallel algorithm to generate preferential attachment net-
works. Therefore, it is not possible to compare the runtime
with other GPU–based algorithms. Instead, we compare with
the existing non–GPU algorithms. The runtimes of cuPPA
and the existing algorithms are shown in Figure 10 for
generating two billion edges (n = 500M , d = 4).
• Sequential Algorithms: We compare cuPPA with two

efficient sequential algorithms: SBA [7] and SCM [6].
As shown in Figure 10, cuPPA generates the network in
just 2.72 seconds in the NVidia 1080 GPU with more
than 100× speedup.

• Parallel Algorithms: We also compared cuPPA with
a distributed–memory (PPA-DM) [8] and a shared–
memory (PPA-SM) [11] parallel algorithms. As shown
in Figure 10, cuPPA outperforms PPA-DM on a system
with 24 processors. The main reason is that unlike PPA-
DM, cuPPA does not require complex synchronizations
and message communications.
Due to the unavailability of the PPA-SM code, we
compared the runtime to generate the largest graph
(n = 107, d = 10) reported in [11] with the correspond-
ing runtime of cuPPA. PPA-SM generates the network
using 16 cores of Intel Xeon CPU E5-2698 2.30 GHz
in approximately 7.5 seconds, whereas cuPPA generates
the same network in just 0.3 second.

386.6
344.39

68.82

2.72
0

60

120

180

240

300

360

420

SBA SCM PPA-DM cuPPA

R
un

tim
e

(s
ec

o
nd

s)

Figure 10: Runtimes of SBA, SCM, PPA-DM, and cuPPA for
generating two billion edges (n = 500M , d = 4). cuPPA
can generate the network in less than three seconds.

2) Runtime vs. Number of Vertices: First we examine the
runtime performance of cuPPA with increasing number of
vertices n. Here we examine two cases. In the first case we
set d = 4, vary p = {0, 0.001, 0.25, 0.5, 0.75, 1}, and
vary n = {1.9M, 3.9M, 7.8M, 15.6M, 31.25M, 62.5M,

125M, 250M, 500M} to see how the runtime changes
with increasing number of vertices for different p. The
corresponding runtime is shown in Figure 11. In the second
case, we set p = 0.5, vary d = {1, 2, 4, 8, 16, 32, 64, 128},
and vary n = {60K, 120K, 240K, 480K, 960K, 1.92M,
3.84M, 7.68M} to see how the runtime changes with
increasing number of vertices for different d. The corre-
sponding runtime is shown in Figure 12.

0

2

4

6

0 5.0× 108 109 1.5× 109 2.0× 109

E
R

un
tim

e
(s

ec
o
nd

s)

p=0
p=0.001
p=0.25

p=0.5
p=0.75
p=1

Figure 11: Runtime vs. number of edges suggests that cuPPA
is very scalable with increasing n for different values of p
with a fixed value of d = 4.

0

10

20

30

0 5.0× 106 107 1.5× 107

n

R
un

tim
e

(s
ec

o
nd

s)

d=1
d=2
d=4
d=8

d=16
d=32
d=64
d=128

Figure 12: Runtime vs. number of vertices suggests that
cuPPA is very scalable with increasing n for different values
of d with a fixed value of p = 0.5.

From Figures 11 and 12, we can observe that for any fixed
set of values for p and d, with increasing n, the runtime
increases linearly, indicating that the algorithm scales very
well with increasing value of n.

3) Runtime vs. Degree of Preferential Attachment: Next,
we examine the runtime performance of cuPPA with increas-
ing d. The runtime is shown in Figure 13. Here, we set n =
7812500, vary p = {0, 0.00001, 0.001, 0.25, 0.5, 0.75, 1},
and vary d = {1, 2, 4, 8, 16, 32, 64, 128} to see how the
runtime changes for increasing value of d for different p. As
seen from the figure, with increasing d, the runtime increases

0

20

40

60

1 8 16 32 64 128

d

R
un

tim
e

(s
ec

o
nd

s)

p=0
p=0.00001
p=0.001
p=0.25

p=0.5
p=0.75
p=1

Figure 13: Runtime vs. d for generating networks with
n = 7812500 with varying d = 1, 2, 4, 8, 16, 32, 64, 128 for
different values of p. The runtime almost increases linearly.

almost linearly. Therefore the algorithm is observed to scale
well for increasing value of d. Note that higher values of d
are typically unlikely. However, we included higher values
of d for performance measurement purpose. Also notice that
the runtime is the largest for p = 0. With a small value of
p = 0.00001 the runtime drops significantly and does not
change much for higher values of p. Since the typical values
of p are much larger than 0, this observation suggests that
cuPPA performs well for real world scenarios.

4) Runtime vs. Probability of Copy-Edge: Next we ex-
amine the runtime performance of cuPPA with increasing
p. The runtime is shown in Figure 14. Here, we used three
different set of values for n and d (〈n = 500M,d = 4〉,
〈n = 125M,d = 16〉, and 〈n = 31.25M,d = 64〉), and vary
p = {0, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 0.99, 1.00}. As seen from the figure, the
runtime reduces dramatically with a slight increase of p = 0
to p = 0.00001 up to p = 0.1 in all of these three cases.
Then the runtime reduces almost linearly up to p = 0.9 and
then reduces sharply towards p = 1. With lower values of p,
most of the edges are produced by copy edges. Therefore,
the size of the waiting queue increases, thereby increasing
the runtime. As the value of p increases towards 1, most
of the edges are created using direct edges and, therefore,
fewer items are stored in the waiting queue.

5) Runtime varied with the number of Threads: To un-
derstand how the performance of cuPPA depends on the
number of threads, we set p = 0.5 and used four different
sets of n and d to generate networks. We also varied the
number of CUDA threads per block from 64, 128, 256, 512,
to 1024. The runtime (solid lines) and the relative speedup
(dashed lines) of the experiments are shown in Figure 15.
Let tT be the runtime of cuPPA using T threads. Then, the
relative speedup is defined as tT

t64
in this experiments, i.e.,

the speedup gained compared to the runtime of cuPPA using
64 threads. Figure 15 is shown in two y-axes, the left and

0

20

40

60

80

0 10−5 10−4 10−3 10−2 0.1 0.5 1

p

R
un

tim
e

(s
ec

o
nd

s)

n=500M, d=4
n=250M, d=8
n=125M, d=16

Figure 14: Runtime vs. p for three sets of values for n
and d (x-axis in log scale). At p = 0 the runtime is the
largest which reduces significantly with a slight increase.
As p increases the runtime reduces.

right axis correspond to the runtime and relative speedup
respectively. From the figure, the best performance is ob-
served with 512 threads per block for all cases. Therefore,
in our final algorithm, we use up to 512 threads per block.

0

20

40

60

1

2

3

4

5

6

64 128 256 512 1,024

Number of Threads (per Block)

R
un

tim
e

(s
ec

o
nd

s)

R
elative Sp

eed
 U

p

n=125M, d=16 n=250M, d=8
n=500M, d=4 n=62.5M, d=32

Figure 15: Runtime (solid lines) and Relative Speedup
(dashed lines) vs. Number of Threads. Best performance is
observed with 512 threads per block.

V. RELATED WORK

Although the concepts of random networks have been
used and well studied over the last several decades, efficient
algorithms to generate the networks were not available
until recently. The first efficient sequential algorithm to
generate Erdős–Rényi and Barabási–Albert networks was
proposed in [7]. A distributed memory–based algorithm to
generate preferential attachment networks was proposed in
[13]. However, their algorithm was not exact, rather an
approximate algorithm and required manually adjusting sev-
eral control parameters. The first exact distributed memory–
based parallel algorithm using the copy model was proposed

in [8]. Another distributed memory–based parallel algorithm
using the Barabási–Albert model was proposed in [14, 15].
However, instead of using pseudorandom number generators,
they used hash functions to generate the networks. A shared–
memory-based parallel algorithm using the copy model was
proposed in [11]. A GPU–based algorithm for generating
Erdős–Rényi networks was presented in [16]. Another GPU–
based algorithm for generating networks using the small–
world model [17] was presented in [18]. However, no GPU–
based algorithm exists for the preferential attachment model.

Several other theoretical studies were done on the prefer-
ential attachment-based models. Machta and Machta [19]
described how an evolving network can be generated in
parallel. Dorogovtsev et al. [20] proposed a model that
can generate graphs with fat-tailed degree distributions. In
this model, starting with some random graphs, edges are
randomly rewired according to some preferential choices.

VI. CONCLUSION

A novel GPU-based algorithm, named cuPPA, has been
presented, with a detailed performance study, and its com-
bination of its scale and speed has been tested by achieving
the ability to generate networks with up to two billion
edges in under three seconds of wall clock time. The
algorithm is customizable with respect to the structure
of the network by varying a single parameter, namely, a
probability measure that captures the preference style of
new edges in the preferential attachment model. Also, a
high amount of concurrency in the generator’s workload per
thread or processor is observed when that probability is at
very small fractions greater than zero. In future work, we
intend to exploit code profiling tools for further optimization
of the runtime and memory usage on the GPU. Also, the
algorithm needs to be extended to exploit multiple GPUs
that may be co-located within the same node. This would
require periodic data synchronization across GPUs, which
can be efficiently achieved using the NVidia Collective
Communication Library (NCCL). Additional future work
involves porting to GPUs spanning multiple nodes, and
also hybrid CPU-GPU scenarios in order to utilize unused
cores of multi-core CPUs. Methods to incorporate other
network generator models can also be explored with our
cuPPA as a starting point. Finally, future work is needed in
converting our internal, GPU-based graph representation to
other popular network formats for usability.

REFERENCES

[1] P. Erdős and A. Rényi, “On the evolution of random
graphs,” Publications of the Mathematical Institute of
the Hungarian Academy of Sciences, pp. 17–61, 1960.

[2] A.-L. Barabási and R. Albert, “Emergence of scaling in
random networks,” Science, vol. 286, no. 5439, 1999.

[3] R. Albert, H. Jeong, and A.-L. Barabási, “Error and
attack tolerance of complex networks,” Nature, 2000.

[4] D. P. Chassin and C. Posse, “Evaluating north amer-
ican electric grid reliability using the barabási-albert
network model,” Physica A, vol. 355, no. 2-4, 2005.

[5] J. Leskovec and E. Horvitz, “Planetary-scale views on
a large instant-messaging network,” in International
Conference on World Wide Web. ACM Press, 2008.

[6] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar,
A. Tomkins, and E. Upfal, “Stochastic models for the
web graph,” in Annual Symposium on Foundations of
Computer Science. IEEE Comput. Soc, 2000.

[7] V. Batagelj and U. Brandes, “Efficient generation of
large random networks,” Physical Review E, 2005.

[8] M. Alam, M. Khan, and M. V. Marathe, “Distributed-
memory parallel algorithms for generating mas-
sive scale-free networks using preferential attachment
model,” in Intl. Conf. for High Performance Comput-
ing, Networking, Storage and Analysis, 2013.

[9] J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan,
and A. Tomkins, “The web as a graph: Measurements,
models, and methods,” in Annual International Con-
ference on Computing and Combinatorics, 1999.

[10] M. Alam, “HPC-based parallel algorithms for generat-
ing random networks and some other network analysis
problems,” Ph.D. dissertation, Virginia Tech, 2016.

[11] K. Azadbakht, N. Bezirgiannis, F. S. de Boer, and
S. Aliakbary, “A high-level and scalable approach
for generating scale-free graphs using active objects,”
in Proc. of the Annual ACM Symposium on Applied
Computing, 2016.

[12] S. Dorogovtsev and J. Mendes, “Evolution of net-
works,” in Advances in Physics, vol. 51, no. 4, 2002.

[13] A. Yoo and K. Henderson, “Parallel generation of
massive scale-free graphs,” CoRR, 2010.

[14] P. Sanders and C. Schulz, “Scalable generation of
scale-free graphs,” Info. Proc. Letters, 2016.

[15] U. Meyer and M. Penschuck, “Generating massive
scale-free networks under resource constraints,” in
Proc. of the Workshop on Algorithm Engineering and
Experiments (ALENEX), 2016.

[16] S. Nobari, X. Lu, P. Karras, and S. Bressan, “Fast
random graph generation,” in International Conference
on Extending Database Technology, 2011, p. 331.

[17] D. J. Watts and S. H. Strogatz, “Collective dynamics
of ‘small-world’ networks,” Nature, no. 6684, 1998.

[18] A. Leist and K. Hawick, “Graph generation on GPUs
using dynamic memory allocation,” in Intl. Conf. on
Parallel and Distributed Processing Techniques and
Applications, 2011.

[19] B. Machta and J. Machta, “Parallel dynamics and
computational complexity of network growth models,”
Physical Review E, vol. 71, no. 2, p. 26704, 2005.

[20] S. Dorogovtsev, J. Mendes, and A. Samukhin, “Prin-
ciples of statistical mechanics of uncorrelated random
networks,” Nuclear Physics B, 2003.

	Introduction
	Background
	Preliminaries and Notations
	Preferential Attachment–Based Models
	Sequential Algorithm: Barabási-Albert Model
	Sequential Algorithm: Copy Model

	GPU–based Parallel Algorithm: cuPPA
	Graph Representation
	Partitioning and Load Balancing
	Segmented Round Robin Paritioning
	CUDA-Specific Deadlock Scenario

	Experimental Results
	Hardware and Software
	Degree Distribution
	Visualization of Generated Graphs
	Effect of Edge Probability on Degree Distribution
	Waiting Queue Size
	Runtime Performance
	Runtime Comparison with Existing Algorithms
	Runtime vs. Number of Vertices
	Runtime vs. Degree of Preferential Attachment
	Runtime vs. Probability of Copy-Edge
	Runtime varied with the number of Threads

	Related Work
	Conclusion

